Supplementary information:

Experimental Section

General methods: The syntheses of **2** and **3** were performed in Schlenk-type flasks under dry nitrogen. Solvents were dried by conventional methods and distilled immediately prior to use. CDCl₃ was passed down a 5 cm-thick alumina column and stored under nitrogen over molecular sieves (4 Å). Routine ¹H, ¹³C{¹H}, ¹⁹F{¹H} and ³¹P{¹H} NMR spectra were recorded on a FT Bruker AVANCE 300 (¹H: 300.1 MHz, ¹³C: 75.5 MHz, ¹⁹F: 282.4 MHz, ³¹P: 121.5 MHz) instrument at 25°C. ¹H NMR spectral data were referenced to residual CHCl₃ [7.26 ppm], ¹³C chemical shifts are reported relative to CDCl₃ [77.0 ppm], and the ³¹P NMR data are given relative to external H₃PO₄. The ¹⁹F spectra were measured relative to neat CFCl₃. Elemental analyses were performed by the Service de Microanalyse, Institut de Chimie (CNRS), Strasbourg. The diphosphite L (having *S*,*S* stereochemistry) and complex **1** were prepared according to reported procedures.¹⁵ For convenience, spectroscopic data for **1** are also given below.

(n³-allyl)-cis-P,P'-{[(S,S)-5,11,17,23-tetra-tert-butyl-25,27-dipropyloxy-26,28-bis(1,1'binaphthyl-2,2'-dioxyphosphanyloxy)calix[4]arene]}palladium(II) tetrafluoroborate dimer, 2: A solution of (S,S)-5,11,17,23-tetra-tert-butyl-25,27-dipropyloxy-26,28-bis(1,1'binaphthyl-2,2'-dioxyphosphanyloxy)calix[4]arene (0.110 g, 0.08 mmol) in acetone (30 mL) was slowly added to a suspension of $[(\eta^3-C_3H_5)PdCl]_2$ (0.014 g, 0.04 mmol) and NH₄BF₄ (0.009 g, 0.09 mmol) in acetone (30 mL) at 0°C. The reaction mixture was stirred for 1 h at room temperature, then filtered through Celite. The solvent was evaporated and the residue was washed with hexane (10 mL) to afford the product as a pale yellow solid. Recrystallisation from CH₂Cl₂-hexane afforded colourless crystals (0.099 g, 78%). The 1 H and ${}^{13}C{}^{1}H$ NMR spectra are essentially identical to those reported earlier for complex 1 (and given below). ${}^{31}P{}^{1}H$ NMR (121 MHz, CDCl₃): δ 128.74 and 126.67 (AB spin system, $J_{PP'} = 108.4 \text{ Hz}, OP(OAr)_2$). ¹⁹F{¹H} NMR (282 MHz, CDCl₃): $\delta - 153.87$ (s, BF₄). Found: C 67.63, H 6.01%. Calc. For $C_{93}H_{95}BF_4O_8P_2Pd \cdot 1CH_2Cl_2$ ($M_r = 1594.56 + 84.93$): C 67.17, H 5.82%. Crystals (colourless) suitable for X-ray diffraction were obtained by slow diffusion of heptane into a CH₂Cl₂ solution of the complex.

Bis{ $(\eta^3$ -allyl)-c*is-P,P'*-{[(*S,S*)-5,11,17,23-tetra-*tert*-butyl-25,27-dipropyloxy-26,28bis(1,1'-binaphthyl-2,2'-dioxyphosphanyloxy)calix[4]arene]}palladium(II)} 1.0 hexafluorophos phate, 1.0 tetrafluoroborate, 3: Colourless crystals of the product, suitable for X-ray diffraction, were obtained by slow diffusion of petroleum ether into a CH₂Cl₂ solution of a stoichiometric amount of (η^3 -allyl)-c*is-P,P'*-{[(*S,S*)-5,11,17,23-tetra-*tert*-butyl-25,27-dipropyloxy-26,28-bis(1,1'-binaphthyl-2,2'-

dioxyphosphanyloxy)calix[4]arene]} palladium(II) hexafluorophosphate (0.100 g, 0.06 mmol) and (η^3 -allyl)-c*is-P,P'*-{[(*S,S*)-5,11,17,23-tetra-*tert*-butyl-25,27-dipropyloxy-26,28-bis(1,1'binaphthyl-2,2'-dioxy-phosphanyloxy)calix[4]are ne]} palladium(II) tetrafluoroborate (0.096 g, 0.06 mmol). The ¹H NMR and ¹³C{¹H} NMR spectra were identical to those of complex **1**. ³¹P{¹H} NMR (121 MHz, CDCl₃): δ 128.70 and 126.62 (AB spin system, $J_{PP'}$ = 108.4 Hz, OP(OAr)₂), -144.38 (sept, J_{PF} = 712.8 Hz, PF₆). ¹⁹F{¹H} NMR (282 MHz, CDCl₃): δ -73.60 (d, J_{FP} = 712.8 Hz, PF₆), -153.91 (s, BF₄). Found: C 68.66, H 5.81%. Calc. For C₁₈₆H₁₉₀F₁₀O₁₆P₅BPd₂ (M_r = 1654.08): C 68.74, H 5.89%. The 1:1 BF₄ / PF₆ ratio was verified on a crystalline sample of **3**.

X-ray crystallographic data of 3: $C_{186}H_{190}BF_{10}O_{16}P_5Pd_2 \cdot 3CH_2Cl_2 \cdot 1C_5H_{12}$, $M_r = 3576.76$, monoclinic, $P2_1$, a = 21.7830(7), b = 19.1953(6), c = 23.4584(8)Å, $\beta = 94.962(2)$, $V = 9771.9(6)Å^3$, Z = 2, $D_c = 1.216$ Mg m⁻³, $\lambda(MoK_a) = 0.71073Å$, $\mu = 0.373$ cm⁻¹, F(000) = 3728, T = 293(2) K. Single crystals were obtained by slow diffusion of pentane into a CH₂Cl₂ solution of the complex. A sample was studied on a Bruker AXS X8-APEX II with graphite-monochromated MoK_a radiation. The data collection $(2\theta_{max} = 56^\circ$, distance detector = 60mm, ϕ scan frames via $0.7^\circ \phi$ rotation and 20 s per frame, range HKL : H -28,28 K -25,15 L - 30,30) gave 75013 reflections. These led to 30297 independent reflections, for which 15086 had $I > 2.0 \sigma(I)$. The structure was solved with SIR-97,¹⁹ which revealed the non hydrogen atoms of the molecule. After anisotropic refinement, many hydrogen atoms were found from the Fourier difference map. The whole structure was refined with SHELXL97²⁰ by the full-matrix least-square techniques (use of $|F^2|$; x, y, z, β_{ij} for Pd, P, Cl, C and O atoms, x, y, z in riding mode for H atoms; 2127 variables and 15086 observations with $I > 2.0 \sigma(I)$; calc $w = 1/[\sigma^2(Fo^2) + (0.0642P)^2]$ where $P = (F_o^2 + 2 F_c^2)/3$ with the resulting R = 0.0537, $R_W = 0.1189$ and $S_W = 0.834$, $\Delta \rho < 0.650$ eÅ⁻³. Flack parameter: 0.02 (2). The molecule crystallises with three molecules of dichloromethane and one molecule of pentane. The full crystallographic data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data</u> request/cif by citing CCDC 292540.

NMR data for monomer 1: ¹H NMR (300 MHz, CDCl₃): δ 8.22 (d, 1H, CH arom, ³J = 8.9 Hz), 8.13 (d, 1H, CH arom, ${}^{3}J = 8.9$ Hz), 8.04 (d, 1H, CH arom, ${}^{3}J = 8.2$ Hz), 7.97 (d, 1H, CH arom, ${}^{3}J = 8.1$ Hz), 7.82-7.02 (m, 21H, CH arom and m-ArH), 7.00 (d, 1H, m-ArH, ${}^{4}J = 2.1$ Hz), 6.74 (d, 1H, *m*-ArH, ${}^{4}J$ = 2.2 Hz), 6.70 (d, 1H, *m*-ArH, ${}^{4}J$ = 2.2 Hz), 6.50 (d, 1H, *m*-ArH, ${}^{4}J = 2.4$ Hz), 6.42 (d, 1H, *m*-ArH, ${}^{4}J = 2.0$ Hz), 6.37 (d, 1H, *m*-ArH, ${}^{4}J = 2.2$ Hz), 6.31 (d, 1H, *m*-ArH, ${}^{4}J = 2.1$ Hz), 5.16 and 3.57 (AB system, 2H, ArCH₂Ar, ${}^{2}J = 13.1$ Hz), 5.12 and 3.47 (AB system, 2H, ArCH₂Ar, ${}^{2}J = 13.2$ Hz), 5.06 and 3.10 (AB system, 2H, ArCH₂Ar, ${}^{2}J = 13.2$ Hz), 5.14-4.99 (m, 1H, central allyl), 4.93 and 3.00 (AB system, 2H, ArC H_2 Ar, $^2J = 13.2$ Hz), 4.35-4.25 (m, 1H, OCH₂), 4.25-4.14 (m, 1H, OCH₂), 4.03-3.89 (m, 2H, OCH₂), 2.79-2.56 (m, 2H, terminal allyl), 2.35-2.12 (m, 2H, terminal allyl), 2.12-1.82 (4H, CH₂CH₃), 1.17-1.01 (6H, CH₂CH₃), 1.14 (s, 9H, C(CH₃)₃), 1.08 (s, 9H, C(CH₃)₃), 0.81 (s, 9H, C(CH₃)₃), 0.78 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 151.43-119.88 (arom C and central allyl CH), 78.02 (s, OCH₂), 77.87 (s, OCH₂), 77.23 (s, terminal allyl CH₂), 34.00 (s, C(CH₃)₃), 33.93 (s, C(CH₃)₃), 33.66 (s, C(CH₃)₃), 33.61 (s, C(CH₃)₃), 33.27 (s, ArCH₂Ar), 33.19 (s, ArCH₂Ar), 33.13 (s, ArCH₂Ar), 33.06 (s, ArCH₂Ar), 31.23 (s, C(CH₃)₃), 31.17 (s, C(CH₃)₃), 30.93 (s, C(CH₃)₃), 24.15 (s, CH₂CH₃), 23.47 (s, CH₂CH₃), 10.07 (s, CH₂CH₃), 10.01 (s, CH₂CH₃). ³¹P{¹H} NMR (121 MHz, CDCl₃): δ 128.51 and 126.36 (AB spin system, $J_{PP'}$ = 107.7 Hz, $OP(OAr)_2$, -144.38 (sept, $J_{PF} = 712.8$ Hz, PF_6). ¹⁹F {¹H} NMR (282 MHz, $CDCl_3$): δ -73.6 (d, $J_{\rm FP}$ = 713.0 Hz, PF₆). Found: C 65.09, H 5.51%. Calc. For $C_{93}H_{95}F_6O_8P_3Pd \cdot 1CH_2Cl_2$ ($M_r = 1654.08 + 84.93$): C 64.92, H 5.62%. MS (ESI TOF): m/z 1507.57 [M⁺, expected isotopic profile].