Oxygen isotopic exchange in a $Mn^{III}Mn_3^{IV}$ -oxo cubane.

C. André Ohlin, Robin Brimblecombe, Leone Spiccia, and William H. Casey

Supporting information

Contents

S.0	ESI-MS spectrum of $[Mn^{III}Mn^{IV}_{3}O_{4}(PO_{2}\{C_{6}H_{4}OCH_{3}\}_{2})_{6}]^{+}$	2
S.1	Isotope deconvolution	2
S.2	Evaluation of kinetic data	4
S.3	Determination of activation enthalpy and entropy	6
S.4	Kinetic traces as a function of different parameters	7
S5.	Kinetic model for isotopic exchange in a system with four distinct oxygen sites O_A , O_B , O_C and O_D .	nd . 19
S.6	Kinetic model for for isotopic exchange in a system with four oxygens occupying identical sites	. 22
S.7	Effect of water concentration, concentration of $[Mn_4O_4(O_2P\{C_7H_7O\}_2)_6][ClO_4]$ and temperature.	.26
S8.	Simulation of one- and two-oxygen-type systems	.28
S.9	Structure of $[Mn^{III}Mn^{IV}_4O_4(O_2P\{C_6H_4OCH_3\}_2)_6]^+$.30

S.0 ESI-MS spectrum of $[Mn^{III}Mn^{IV}_{3}O_{4}(PO_{2}\{C_{6}H_{4}OCH_{3}\}_{2})_{6}]^{+}$

Fig. S.0.1 ESI-MS spectrum of $[Mn^{III}Mn^{IV}_4O_4(O_2P\{C_6H_4OCH_3\}_2)_6]^+$ in dry acetonitrile; +20 V conevoltage.

S.1 Isotope deconvolution

Spectra were deconvoluted according to equation 1,

$$I_{Tot}(m/z) = \sum_{i=0}^{4} r_i I_i$$
(S.1.1)

where I_{Tot} is the observed relative abundance at a given m/z, *i* is the number of ¹⁸O in the molecule, r_i is proportional to the mol fraction of the molecule with *i* number of ¹⁸O, and I_i is the theoretical relative abundance of the molecule with *i* number of ¹⁸O at a given m/z. By fitting this equation for abundances at between 1946.0 m/z and 1959.0 m/z in parallel, the relevant r_i could be determined.

$$x_{i} = \frac{r_{i}}{\sum_{n=0}^{4} r_{n}}$$
(S.1.2)

Normalisation (Eq. 2) gave the mol fraction, χ_i , from which the concentration of each species could be calculated.

Figure S.1.1 shows the isotopic pattern of unenriched $[Mn^{III}Mn^{IV}_{4}O_4(O_2P(C_6H_4OCH_3)_2)_6]^+$, whereas figure S.1.2 shows the isotopic pattern of a mixture of 10% $[Mn^{III}Mn^{IV}_{4}^{16}O_4(O_2P(C_6H_4OCH_3)_2)_6]^+$, 20% $[Mn^{III}Mn^{IV}_{4}^{16}O_3^{18}O(O_2P(C_6H_4OCH_3)_2)_6]^+$, 50% $[Mn^{III}Mn^{IV}_{4}^{16}O_2^{18}O_2(O_2P(C_6H_4OCH_3)_2)_6]^+$, 15% $[Mn^{III}Mn^{IV}_{4}^{18}O_4(O_2P(C_6H_4OCH_3)_2)_6]^+$, and 5% $[Mn^{III}Mn^{IV}_{4}^{18}O_4(O_2P(C_6H_4OCH_3)_2)_6]^+$.

Fig. S.1.1 Isotopic pattern of unenriched $[Mn^{III}Mn^{IV}_4O_4(O_2P(C_6H_4OCH_3)_2)_6]^+$.

Fig. S.1.2 Isotopic pattern (black) of a system comprising 10% unenriched, 20% singly-, 50% doubly-, 15% triply- and 5% quadruply enriched $[Mn^{III}Mn^{IV}_4O_4(O_2P(C_6H_4OCH_3)_2)_6]^+$. The coloured traces show the contribution of each species.

S.2 Evaluation of kinetic data

Rate equations S.2.1-S.2.4 (see sections S.5 and S.6 for derivation) were used to estimate the rate constants k_A , $k_{A'}$, k_B , $k_{B'}$, k_C , $k_{C'}$ and k_D . Since water was present in large excess relative to the manganese cubane, the concentration of water was assumed to be constant and was ignored. While *e.g.* k_A and $k_{A'}$ would be expected to be identical (see equations S.6.13-S.6.17), they were fitted separately in order to avoid propagation of errors.

$$\frac{d[O_4]}{dt} = -4k_A[O_4]$$
 S.2.1

$$\frac{d[O_3O^*]}{dt} = 4k_{A'}[O_4] - 3k_B[O_3O^*]$$
 S.2.2

$$\frac{d[O_2O_2^*]}{dt} = 3k_{B'}[O_3O^*] - 2k_C[O_2O_2^*]$$
 S.2.3

$$\frac{d[O \ O_3^*]}{dt} = 2k_{C'}[O_2O_2^*] - k_D[O \ O_3^*]$$
 S.2.4

$$\frac{d[O_4^*]}{dt} = k_D[O \ O_3^*]$$
 S.2.5

Table S.2.1 Rate constants obtained using equation S.	2.	.1
---	----	----

Entry	Т	См	C _{H2O}	k _A
-	(°C)	(10 ⁻³ M)	(M)	(s ⁻¹)
1	30.0	0.250	0.250	1.07 ^{-10⁻⁵±2.91^{-10⁻⁷}}
2	40.0	0.250	0.250	1.88 ⁻ 10 ⁻⁵ ±5.38 ⁻ 10 ⁻⁷
3	50.1	0.250	0.250	5.60 ⁻ 10 ⁻⁵ ±1.62 ⁻ 10 ⁻⁶
4 ^a	50.1	0.250	0.250	6.35 ⁻ 10 ⁻⁶ ±1.25 ⁻ 10 ⁻⁷
5 ^b	50.1	0.250	0.250	7.02 ⁻ 10 ⁻⁶ ±1.04 ^{-10⁻⁷}
6 ^c	50.1	0.250	0.250	5.38 ⁻ 10 ⁻⁵ ±9.60 ⁻ 10 ⁻⁷
7	50.1	0.250	0.125	2.23 ^{-10⁻⁵±2.65^{-10⁻⁷}}
8	50.1	0.250	0.375	3.92 ⁻ 10 ⁻⁵ ±1.06 ⁻ 10 ⁻⁶
9	50.1	0.250	0.500	3.68 ⁻ 10 ⁻⁵ ±7.95 ⁻ 10 ⁻⁷
10	50.1	0.163	0.250	3.10 ^{-10⁻⁵±7.97⁻10⁻⁷}
11	50.1	0.500	0.250	7.44 [.] 10 ⁻⁵ ±2.79 [.] 10 ⁻⁶
12	59.8	0.250	0.250	9.65 ^{-10⁻⁵±3.61^{-10⁻⁶}}

^a[HClO₄]= $2.5 \cdot 10^{-3}$ M. ^b[C₇H₇SO₃H]= $2.5 \cdot 10^{-3}$ M. ^C[HNO₃]= $2.5 \cdot 10^{-3}$ M. M stands for mol^{-d}m⁻³.

Table S.2.2 Rate constants obtained using equation S.2	.2
--	----

Entry	T (°C)	С _м (10 ⁻³ М)	С _{н20} (M)	k _{A′} (s⁻¹)	k _в (s⁻¹)
1	30.0	0.250	0.250	5.95 ⁻ 10 ⁻⁶ ±6.16 ⁻¹⁰⁻⁷	1.33 [·] 10 ⁻⁵ ±2.36 [·] 10 ⁻⁶
2	40.0	0.250	0.250	1.33 ⁻ 10 ⁻⁵ ±9.03 ⁻ 10 ⁻⁷	2.15 ^{-10⁻⁵±2.23^{-10⁻⁶}}
3	50.1	0.250	0.250	3.88 [·] 10 ⁻⁵ ±3.17 [·] 10 ⁻⁶	6.30 ^{-10⁻⁵±7.25^{-10⁻⁶}}

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2009

4 ^a	50.1	0.250	0.250	3.39 [.] 10 ⁻⁶ ±3.17 [.] 10 ⁻⁷	6.40 [.] 10 ⁻⁶ ±1.57 [.] 10 ⁻⁶
5 ^b	50.1	0.250	0.250	$3.4910^{-6}\pm2.1510^{-7}$	2.88 [.] 10 ⁻⁶ ±1.01 [.] 10 ⁻⁶
6 [°]	50.1	0.250	0.250	4.30 10 ⁻⁵ ±1.51 10 ⁻⁶	4.94 ^{-10⁻⁵±2.82^{-10⁻⁶}}
7	50.1	0.250	0.125	$1.4010^{-5} \pm 5.1310^{-7}$	1.72 [.] 10 ⁻⁵ ±1.96 [.] 10 ⁻⁶
8	50.1	0.250	0.375	2.81 [.] 10 ⁻⁵ ±1.86 [.] 10 ⁻⁶	4.56 [.] 10 ⁻⁵ ±4.79 [.] 10 ⁻⁶
9	50.1	0.250	0.500	2.76 [.] 10 ⁻⁵ ±1.55 [.] 10 ⁻⁶	4.19 [.] 10 ⁻⁵ ±3.88 [.] 10 ⁻⁶
10	50.1	0.163	0.250	2.31 [.] 10 ⁻⁵ ±1.57 [.] 10 ⁻⁶	3.81 [.] 10 ⁻⁵ ±4.21 [.] 10 ⁻⁶
11	50.1	0.500	0.250	5.12 [.] 10 ⁻⁵ ±5.09 [.] 10 ⁻⁶	8.58 [.] 10 ⁻⁵ ±1.16 [.] 10 ⁻⁵
12	59.8	0.250	0.250	6.45 [·] 10 ⁻⁵ ±7.13 [·] 10 ⁻⁶	1.19 ^{-10⁻⁴±1.73^{-10⁻⁵}}
2	3 h.				3

 a [HClO₄]=2.5^{-10⁻³} M. b [C₇H₇SO₃H]=2.5^{-10⁻³} M. c [HNO₃]=2.5^{-10⁻³} M. M stands for mol^{-d}m⁻³.

Table S.2.3 Rate constants obtained using equation S.2.3

Entry	Т	C _M	C _{H2O}	k _{B'}	k _c
	(°C)	(10 ⁻³ M)	(M)	(s ⁻¹)	(s ⁻¹)
1	30.0	0.250	0.250	2.10 ⁻⁵ ±4.75 ⁻¹⁰⁻⁶	2.65 ⁻ 10 ⁻⁵ ±9.31 ^{-10⁻⁶}
2	40.0	0.250	0.250	2.03 [.] 10 ⁻⁵ ±2.32 [.] 10 ⁻⁶	1.67 ^{-10⁻⁵±3.67^{-10⁻⁶}}
3	50.1	0.250	0.250	5.14 [.] 10 ⁻⁵ ±5.61 [.] 10 ⁻⁶	3.58 [.] 10 ⁻⁵ ±9.92 [.] 10 ⁻⁶
4 ^a	50.1	0.250	0.250	2.83 [·] 10 ⁻⁵ ±6.70 [·] 10 ⁻⁶	3.47 [.] 10 ⁻⁵ ±1.16 [.] 10 ⁻⁵
5 ^b	50.1	0.250	0.250	3.00 [.] 10 ⁻⁵ ±5.17 [.] 10 ⁻⁶	4.43 ⁻ 10 ⁻⁵ ±1.04 ⁻¹⁰⁻⁵
6 [°]	50.1	0.250	0.250	6.11 [.] 10 ⁻⁵ ±3.53 [.] 10 ⁻⁶	5.63 ⁻ 10 ⁻⁵ ±5.78 ⁻ 10 ⁻⁶
7	50.1	0.250	0.125	5.70 ^{-10⁻⁵±5.96⁻10⁻⁶}	8.11 ^{-10⁻⁵±1.40^{-10⁻⁵}}
8	50.1	0.250	0.375	5.45 ^{-10⁻⁵±7.07^{-10⁻⁶}}	6.39 ⁻ 10 ⁻⁵ ±1.26 ⁻ 10 ⁻⁵
9	50.1	0.250	0.500	4.71 [.] 10 ⁻⁵ ±5. 57 [.] 10 ⁻⁶	5.80 ⁻ 10 ⁻⁵ ±1.27 ⁻ 10 ⁻⁵
10	50.1	0.163	0.250	3.60 [.] 10 ⁻⁵ ±4.14 [.] 10 ⁻⁶	3.18 [.] 10 ⁻⁵ ±7.71 [.] 10 ⁻⁶
11	50.1	0.500	0.250	6.61 [·] 10 ⁻⁵ ±9.31·10 ⁻⁶	5.34 ⁻ 10 ⁻⁵ ±1.50 ⁻ 10 ⁻⁵
12	59.8	0.250	0.250	9.42 [·] 10 ⁻⁵ ±1.49 [·] 10 ⁻⁵	6.64 ^{-10⁻⁵±2.45⁻⁵}

^a[HClO₄]=2.5 10⁻³ M. ^b[C₇H₇SO₃H]=2.5 10⁻³ M. ^C[HNO₃]=2.5 10⁻³ M. M stands for mol dm⁻³.

Entry	Т	C _M	C _{H2O}	k _{c'}	k _D
	(°C)	(10 ⁻³ M)	(M)	(s ⁻¹)	(s ⁻¹)
1	30.0	0.250	0.250	3.28 ⁻ 10 ⁻³ ±3.55 ⁻ 10 ⁻²	5.84 ⁻ 10 ⁻³ ±6.35 ⁻ 10 ⁻²
2	40.0	0.250	0.250	1.16 ^{-10⁻⁴±3.36^{-10⁻⁵}}	1.83 ⁻ 10 ⁻⁴ ±5.88 ⁻ 10 ⁻⁵
3	50.1	0.250	0.250	1.46 ^{-10⁻²±1.69^{-10⁻¹}}	2.73 ^{-10⁻²±3.19^{-10⁻¹}}
4 ^a	50.1	0.250	0.250	1.00 ^{-10⁻⁴±8.81^{-10⁻⁵}}	2.71 ^{-10⁻⁴±2.61^{-10⁻⁴}}
5 ^b	50.1	0.250	0.250	8.94 [.] 10 ⁻³ ±1.29 [.] 10 ⁻¹	2.69 ^{-10⁻²±3.89^{-10⁻¹}}
6 ^c	50.1	0.250	0.250	1.24 ⁻¹⁰⁻⁴ ±1.37 ⁻¹⁰⁻⁵	2.28 ⁻ 10 ⁻⁴ ±3.48 ⁻ 10 ⁻⁵
7	50.1	0.250	0.125	4.56 ^{-10⁻⁴±3.51^{-10⁻⁴}}	$1.40^{-10^{-3}} \pm 1.14^{-10^{-3}}$
8	50.1	0.250	0.375	1.43 ⁻¹⁰⁻⁴ ±2.95 ⁻¹⁰⁻⁵	2.07 ^{-10⁻⁴±5.57⁻10⁻⁵}
9	50.1	0.250	0.500	2.04 ^{-10⁻⁴±6.33^{-10⁻⁵}}	4.24 ^{-10⁻⁴±1.16^{-10⁻⁴}}
10	50.1	0.163	0.250	1.84 10 ⁻⁴ ±5.21 10 ⁻⁵	3.14 ^{-10⁻⁴±1.05^{-10⁻⁴}}
11	50.1	0.500	0.250	1.14 ⁻¹ ±2.80	1.93 [.] 10 ⁻¹ ±4.74
12	59.8	0.250	0.250	2.26 ^{-10⁻³±2.79^{-10⁻³}}	3.70 ⁻¹⁰⁻³ ±4.68 ⁻¹⁰⁻³

Table S.2.4 Rate constants obtained using equation S.2.4

 a [HClO₄]=2.5 10⁻³ M. b [C₇H₇SO₃H]=2.5 10⁻³ M. c [HNO₃]=2.5 10⁻³ M. M stands for mol dm⁻³.

Entry	т	C _M	C _{H2O}	k _{σ'}
	(°C)	(10 ⁻³ M)	(M)	(s ⁻¹)
1	30.0	0.250	0.250	4.51 ^{-10⁻⁵±3.51^{-10⁻⁶}}
2	40.0	0.250	0.250	2.90 ^{-10⁻⁵±1.91^{-10⁻⁶}}
3	50.1	0.250	0.250	$1.10^{-4} \pm 7.37^{-1} 10^{-6}$
4 ^a	50.1	0.250	0.250	2.37 [·] 10 ⁻⁵ ±3.22 [·] 10 ⁻⁶
5 ^b	50.1	0.250	0.250	1.80 ^{-10⁻⁵±2.31^{-10⁻⁶}}
6 ^c	50.1	0.250	0.250	4.98 ^{-10⁻⁵±3.26^{-10⁻⁶}}
7	50.1	0.250	0.125	5.41 ^{-10⁻⁵±6.02^{-10⁻⁶}}
8	50.1	0.250	0.375	9.47 ^{-10⁻⁵±6.04^{-10⁻⁶}}
9	50.1	0.250	0.500	1.37 ^{-10⁻⁴±9.01^{-10⁻⁶}}
10	50.1	0.163	0.250	6.15 ^{10⁻⁵±4.65^{10⁻⁶}}
11	50.1	0.500	0.250	1.55 ⁻ 10 ⁻⁴ ±1.02 ⁻ 10 ⁻⁵
12	59.8	0.250	0.250	2.04 10 ⁻⁴ ±1.51 10 ⁻⁵

Table S.2.5 Rate constants obtained using equation S.2.5

 a [HClO₄]=2.5 10⁻³ M. b [C₇H₇SO₃H]=2.5 10⁻³ M. c [HNO₃]=2.5 10⁻³ mol dm⁻³. M stands for mol dm⁻³.

S.3 Determination of activation enthalpy and entropy

Activation enthalpies and entropies were determined using the Eyring-Polanyi equation (Eq. 3).

$$k = \left(\frac{k_B T}{h}\right) e^{\left(\frac{\Delta S^{\ddagger}}{R}\right)} e^{\left(-\frac{\Delta H^{\ddagger}}{RT}\right)}$$
(S.3.1)

where k is the rate constant at a given temperature, k_B is Boltzmann's constant, h is Planck's constant and R is the gas constant. T, ΔH^{\ddagger} and ΔS^{\ddagger} are the temperature, activation enthalpy and activation entropy, respectively.

Table S.3.2 Activation enthalpy and entropy calculated using equation S.3.1 with data from Entry 3 in tables S.2.1-S.2.5 and correcting the rate constants for $H_2^{18}O$ concentration.

	∆S‡ (J·K ^{-1.} mol ⁻¹)	∆H‡ (kJ·mol ⁻¹)
k _A	-135±22	59±7
k _{A'}	-141±25	58±8
k _B	-121±17	63±6
k _{Β'}	-153±26	53±9
k _c	-197±46	39±15
k _D	-146±42	59±14

S.4 Kinetic traces as a function of different parameters

Fig. S. 4.2 $[Mn_4O_4(O_2P\{C_7H_7O\}_2)_6][CIO_4]$ (0.25 mM) and $H_2^{18}O$ (0.25 M) at 40.0 °C.

PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

Fig. S. 4.3 $[Mn_4O_4(O_2P\{C_7H_7O\}_2)_6][CIO_4]$ (0.25 mM) and $H_2^{18}O$ (0.25 M) at 50.1 °C.

Fig. S. 4.4 $[Mn_4O_4(O_2P\{C_7H_7O\}_2)_6][ClO_4]$ (0.25 mM) and $H_2^{18}O$ (0.125 M) at 50.1 °C.

Fig. S. 4.5 $[Mn_4O_4(O_2P\{C_7H_7O\}_2)_6][ClO_4]$ (0.25 mM) and $H_2^{18}O$ (0.375 M) at 50.1 °C.

Fig. S. 4.6 $[Mn_4O_4(O_2P\{C_7H_7O\}_2)_6][ClO_4]$ (0.25 mM) and $H_2^{18}O$ (0.250 M) at 59.8 °C.

Fig. S. 4.7 [$Mn_4O_4(O_2P\{C_7H_7O\}_2)_6$][ClO₄] (0.50 mM) and $H_2^{18}O$ (0.250 M) at 50.1 °C.

Fig. S. 4.8 $[Mn_4O_4(O_2P\{C_7H_7O\}_2)_6][CIO_4]$ (0.25 mM) and $H_2^{18}O$ (0.50 M) at 50.1 °C.

Fig. S. 4.9 $[Mn_4O_4(O_2P\{C_7H_7O\}_2)_6][ClO_4]$ (0.163 mM) and $H_2^{18}O$ (0.25 M) at 50.1 °C.

Fig. S. 4.10 $[Mn_4O_4(O_2P\{C_7H_7O\}_2)_6][ClO_4]$ (0.25 mM) and $H_2^{18}O$ (0.25 M) in the presence of HClO₄ (2.5 mM) at 50.1 °C.

PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

Fig. S. 4.11 $[Mn_4O_4(O_2P\{C_7H_7O\}_2)_6][ClO_4]$ (0.25 mM) and $H_2^{18}O$ (0.25 M) in the presence of toluenesulfonic acid (2.5 mM) at 50.1 °C.

Fig. S. 4.12 $[Mn_4O_4(O_2P\{C_7H_7O\}_2)_6][ClO_4]$ (0.25 mM) and $H_2^{18}O$ (0.25 M) in the presence of HNO₃ (2.5 mM) at 50.1 °C.

PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

S5. Kinetic model for isotopic exchange in a system with four distinct oxygen sites O_A , O_B , O_C and O_D .

A general system with four unique oxygen sites (O_A, O_B, O_C and O_D) in a compound $O_A O_B O_C O_D$, in which

- each oxygen is associated with a specific rate constant (k_A , k_B , k_C and k_D)
- O^{*} denotes an isoptopically labelled oxygen
- O₄, O₃O^{*}, O₂O^{*}₂, OO^{*}₃ and O^{*}₄ describes a system in which no oxygens have exchanged, one oxygen has exchanged, two oxygens have exchanged and four oxygens have exchanged, respectively

can be described by equations S.5.1-S.5.21

$$\frac{d[O_4]}{dt} = \frac{d[O_A O_B O_C O_D]}{dt}$$
(S.5.1)

$$\frac{d[O_A O_B O_C O_D]}{dt} = (k_A [O_A^* O_B O_C O_D] + k_B [O_A O_B^* O_C O_D] + k_C [O_A O_B O_C^* O_D] + k_D [O_A O_B O_C O_D^*]) [H_2 O]$$
$$-(k_A + k_B + k_C + k_D) [O_A O_B O_C O_D] [H_2 O^*]$$

(S.5.2)

$$\frac{d[O_3O^*]}{dt} = \frac{d[O_A^*O_BO_CO_D]}{dt} + \frac{d[O_AO_B^*O_CO_D]}{dt} + \frac{d[O_AO_BO_C^*O_D]}{dt} + \frac{d[O_AO_BO_C^*O_D]}{dt} + \frac{d[O_AO_BO_CO_D^*]}{dt}$$
(S.5.3)

$$\frac{d[O_{A}^{*}O_{B}O_{C}O_{D}]}{dt} = (k_{A}[O_{A}O_{B}O_{C}O_{D}] - (k_{B} + k_{C} + k_{D})[O_{A}^{*}O_{B}O_{C}O_{D}])[H_{2}O^{*}] + (k_{B}[O_{A}^{*}O_{B}^{*}O_{C}O_{D}] + k_{C}[O_{A}^{*}O_{B}O_{C}^{*}O_{D}] + k_{D}[O_{A}^{*}O_{B}O_{C}O_{D}^{*}] - k_{A}[O_{A}^{*}O_{B}O_{C}O_{D}])[H_{2}O]$$
(S.5.4)

$$\frac{d[O_A O_B^* O_C O_D]}{dt} = (k_B [O_A O_B O_C O_D] - (k_A + k_C + k_D) [O_A O_B^* O_C O_D]) [H_2 O^*] + (k_A [O_A^* O_B^* O_C O_D] + k_C [O_A O_B^* O_C^* O_D] + k_D [O_A O_B^* O_C O_D^*] - k_B [O_A O_B^* O_C O_D]) [H_2 O]$$
(S.5.5)

$$\frac{d[O_A O_B O_C^* O_D]}{dt} = (k_C [O_A O_B O_C O_D] - (k_A + k_B + k_D) [O_A O_B O_C^* O_D]) [H_2 O^*] + (k_A [O_A^* O_B O_C^* O_D] + k_B [O_A O_B^* O_C^* O_D] + k_D [O_A O_B O_C^* O_D^*] - k_C [O_A O_B O_C^* O_D] [H_2 O]$$
(S.5.6)

$$\frac{d[O_A O_B O_C O_D^*]}{dt} = (k_D [O_A O_B O_C O_D] - (k_A + k_B + k_C) [O_A O_B O_C O_D^*]) [H_2 O^*] + (k_A [O_A^* O_B O_C O_D^*] + k_B [O_A O_B^* O_C O_D^*] + k_C [O_A O_B O_C^* O_D^*] - k_D [O_A O_B O_C O_D^*]) [H_2 O]$$
(S.5.7)

$$\frac{d[O_2O_2^*]}{dt} = \frac{d[O_A^*O_B^*O_CO_D]}{dt} + \frac{d[O_A^*O_BO_C^*O_D]}{dt} + \frac{d[O_A^*O_BO_CO_D^*]}{dt} + \frac{d[O_AO_B^*O_C^*O_D]}{dt} + \frac{d[O_AO_B^*O_CO_D^*]}{dt} + \frac{d[O_AO_B^*O_CO_D^*]}{dt} + \frac{d[O_AO_B^*O_CO_D^*]}{dt}$$
(S.5.8)

$$\frac{d[O_{A}^{*}O_{B}^{*}O_{C}O_{D}]}{dt} = ((k_{A}[O_{A}O_{B}^{*}O_{C}O_{D}] + k_{B}[O_{A}^{*}O_{B}O_{C}O_{D}]) - (k_{C} + k_{D})[O_{A}^{*}O_{B}^{*}O_{C}O_{D}])[H_{2}O^{*}] + (k_{C}[O_{A}^{*}O_{B}^{*}O_{C}O_{D}] + k_{D}[O_{A}^{*}O_{B}^{*}O_{C}O_{D}^{*}] - (k_{A} + k_{B})[O_{A}^{*}O_{B}^{*}O_{C}O_{D}])[H_{2}O]$$
(S.5.9)

$$\frac{d[O_{A}^{*}O_{B}O_{C}^{*}O_{D}]}{dt} = ((k_{A}[O_{A}O_{B}O_{C}^{*}O_{D}] + k_{C}[O_{A}^{*}O_{B}O_{C}O_{D}]) - (k_{B} + k_{D})[O_{A}^{*}O_{B}O_{C}^{*}O_{D}])[H_{2}O^{*}] + (k_{B}[O_{A}^{*}O_{B}^{*}O_{C}^{*}O_{D}] + k_{D}[O_{A}^{*}O_{B}O_{C}^{*}O_{D}^{*}] - (k_{A} + k_{C})[O_{A}^{*}O_{B}O_{C}^{*}O_{D}])[H_{2}O]$$
(S.5.10)

$$\frac{d[O_{A}^{*}O_{B}O_{C}O_{D}^{*}]}{dt} = ((k_{A}[O_{A}O_{B}O_{C}O_{D}^{*}] + k_{D}[O_{A}^{*}O_{B}O_{C}O_{D}]) - (k_{B} + k_{C})[O_{A}^{*}O_{B}O_{C}O_{D}^{*}])[H_{2}O^{*}] + (k_{B}[O_{A}^{*}O_{B}^{*}O_{C}O_{D}^{*}] + k_{C}[O_{A}^{*}O_{B}O_{C}O_{D}^{*}] - (k_{A} + k_{D})[O_{A}^{*}O_{B}O_{C}O_{D}^{*}])[H_{2}O]$$
(S.5.11)

$$\frac{d[O_A O_B^* O_C^* O_D]}{dt} = ((k_B [O_A O_B O_C^* O_D] + k_C [O_A O_B^* O_C O_D]) - (k_A + k_D) [O_A O_B^* O_C^* O_D]) [H_2 O^*] + (k_A [O_A^* O_B^* O_C^* O_D] + k_D [O_A O_B^* O_C^* O_D^*] - (k_B + k_C) [O_A O_B^* O_C^* O_D]) [H_2 O]$$
(S.5.12)

$$\frac{d[O_A O_B^* O_C O_D^*]}{dt} = ((k_B [O_A O_B O_C O_D^*] + k_D [O_A O_B^* O_C O_D]) - (k_A + k_C) [O_A O_B^* O_C O_D^*]) [H_2 O^*] + (k_A [O_A^* O_B^* O_C O_D^*] + k_C [O_A O_B^* O_C^* O_D^*] - (k_B + k_D) [O_A O_B^* O_C O_D^*]) [H_2 O]$$
(S.5.13)

$$\frac{d[O_A O_B O_C^* O_D^*]}{dt} = ((k_C [O_A O_B O_C O_D^*] + k_D [O_A O_B O_C^* O_D]) - (k_A + k_B) [O_A O_B O_C^* O_D^*]) [H_2 O^*] + (k_A [O_A^* O_B O_C^* O_D^*] + k_B [O_A O_B^* O_C^* O_D^*] - (k_C + k_D) [O_A O_B O_C^* O_D^*]) [H_2 O]$$
(S.5.14)

$$\frac{d[O \ O_3^*]}{dt} = \frac{d[O_A^* O_B^* O_C^* O_D]}{dt} + \frac{d[O_A^* O_B^* O_C O_D^*]}{dt} + \frac{d[O_A^* O_B O_C^* O_D^*]}{dt} + \frac{d[O_A O_B^* O_C^* O_D^*]}{dt} + \frac{d[O_A O_B^* O_C^* O_D^*]}{dt}$$
(S.5.15)

$$\frac{d[O_{A}^{*}O_{B}^{*}O_{C}^{*}O_{D}]}{dt} = (k_{A}[O_{A}O_{B}^{*}O_{C}^{*}O_{D}] + k_{B}[O_{A}^{*}O_{B}O_{C}^{*}O_{D}] + k_{C}[O_{A}^{*}O_{B}^{*}O_{C}O_{D}] - k_{D}[O_{A}^{*}O_{B}^{*}O_{C}^{*}O_{D}])[H_{2}O^{*}] + (k_{D}[O_{A}^{*}O_{B}^{*}O_{C}^{*}O_{D}^{*}] - (k_{A} + k_{B} + k_{C})[O_{A}^{*}O_{B}^{*}O_{C}^{*}O_{D}])[H_{2}O]$$
(S.5.16)

$$\frac{d[O_{A}^{*}O_{B}^{*}O_{C}O_{D}^{*}]}{dt} = (k_{A}[O_{A}O_{B}^{*}O_{C}O_{D}^{*}] + k_{B}[O_{A}^{*}O_{B}O_{C}O_{D}^{*}] + k_{D}[O_{A}^{*}O_{B}^{*}O_{C}O_{D}] - k_{C}[O_{A}^{*}O_{B}^{*}O_{C}O_{D}^{*}])[H_{2}O^{*}] + (k_{C}[O_{A}^{*}O_{B}^{*}O_{C}O_{D}^{*}] - (k_{A} + k_{B} + k_{D})[O_{A}^{*}O_{B}^{*}O_{C}O_{D}^{*}])[H_{2}O]$$
(S.5.17)

$$\frac{d[O_{A}^{*}O_{B}O_{C}^{*}O_{D}^{*}]}{dt} = (k_{A}[O_{A}O_{B}O_{C}^{*}O_{D}^{*}] + k_{C}[O_{A}^{*}O_{B}O_{C}O_{D}^{*}] + k_{D}[O_{A}^{*}O_{B}O_{C}^{*}O_{D}] - k_{D}[O_{A}^{*}O_{B}O_{C}^{*}O_{D}^{*}])[H_{2}O^{*}] + (k_{B}[O_{A}^{*}O_{B}^{*}O_{C}^{*}O_{D}^{*}] - (k_{A} + k_{C} + k_{D})[O_{A}^{*}O_{B}O_{C}^{*}O_{D}^{*}])[H_{2}O]$$
(S.5.18)

$$\frac{d[O_A O_B^* O_C^* O_D^*]}{dt} = (k_B [O_A O_B O_C^* O_D^*] + k_C [O_A O_B^* O_C O_D^*] + k_D [O_A O_B^* O_C^* O_D] - k_B [O_A O_B^* O_C^* O_D^*]) [H_2 O^*] + (k_A [O_A^* O_B^* O_C^* O_D^*] - (k_B + k_C + k_D) [O_A O_B^* O_C^* O_D^*]) [H_2 O]$$
(S.5.19)

$$\frac{d[O_4^*]}{dt} = \frac{d[O_A^*O_B^*O_C^*O_D^*]}{dt}$$
(S.5.20)

$$\frac{d[O_{A}^{*}O_{B}^{*}O_{C}^{*}O_{D}^{*}]}{dt} = (k_{A}[O_{A}O_{B}^{*}O_{C}^{*}O_{D}^{*}] + k_{B}[O_{A}^{*}O_{B}O_{C}^{*}O_{D}^{*}] + k_{C}[O_{A}^{*}O_{B}^{*}O_{C}O_{D}^{*}] + k_{D}[O_{A}^{*}O_{B}^{*}O_{C}^{*}O_{D}])[H_{2}O^{*}] - (k_{A} + k_{B} + k_{C} + k_{D})[O_{A}^{*}O_{B}^{*}O_{C}^{*}O_{D}^{*}][H_{2}O]$$
(S.5.21)

S.6 Kinetic model for for isotopic exchange in a system with four oxygens occupying identical sites

We can adapt the model above (eqs S.5.1-S.5.21) to a system with four oxygens, but which all occupy identical sites, and in which k_A , k_B , k_C and k_D are identical.

We know that

$$\frac{d[O_4]}{dt} = \frac{d[O_A O_B O_C O_D]}{dt}$$
(S.5.1)

where

$$\frac{d[O_A O_B O_C O_D]}{dt} = (k_A [O_A^* O_B O_C O_D] + k_B [O_A O_B^* O_C O_D] + k_C [O_A O_B O_C^* O_D] + k_D [O_A O_B O_C O_D^*]) [H_2 O] - (k_A + k_B + k_C + k_D) [O_A O_B O_C O_D] [H_2 O^*]$$
(S.5.2)

Since all the sites are identical, and there are thus equal amounts of compound with sites A, B, C and D containing exchanged oxygens – the sum of concentrations of which equals $[O_3O^*]$ – we can rewrite equation S.6.2 as

$$\frac{d[O_A O_B O_C O_D]}{dt} = 4k_A \frac{[O_3 O^*]}{4} [H_2 O] - 4k_A [O_4] [H_2 O^*]$$
(S.6.1)

Next, we know that

$$\frac{d[O_3O^*]}{dt} = \frac{d[O_A^*O_BO_CO_D]}{dt} + \frac{d[O_AO_B^*O_CO_D]}{dt} + \frac{d[O_AO_BO_C^*O_D]}{dt} + \frac{d[O_AO_BO_CO_D]}{dt} + \frac{d[O_AO_BO_CO_D]}{$$

where

$$\frac{d[O_{A}^{*}O_{B}O_{C}O_{D}]}{dt} = (k_{A}[O_{A}O_{B}O_{C}O_{D}] - (k_{B} + k_{C} + k_{D})[O_{A}^{*}O_{B}O_{C}O_{D}])[H_{2}O^{*}] + (k_{B}[O_{A}^{*}O_{B}^{*}O_{C}O_{D}] + k_{C}[O_{A}^{*}O_{B}O_{C}^{*}O_{D}] + k_{D}[O_{A}^{*}O_{B}O_{C}O_{D}^{*}] - k_{A}[O_{A}^{*}O_{B}O_{C}O_{D}])[H_{2}O]$$
(S.6.2)

This then becomes

$$\frac{d[O_A^*O_BO_CO_D]}{dt} = k_A[O_4][H_2O^*] - 3k_A \frac{[O_3O^*]}{4}[H_2O^*] - (3k_A \frac{[O_2O_2^*]}{4} - k_A \frac{[O_3O^*]}{4})[H_2O]$$
(S.6.3)

Again, there is no preference towards any particular site, so

$$\frac{d[O_A^*O_BO_CO_D]}{dt} = \frac{d[O_AO_B^*O_CO_D]}{dt} = \frac{d[O_AO_BO_C^*O_D]}{dt} = \frac{d[O_AO_BO_C^*O_D]}{dt} = \frac{d[O_AO_BO_CO_D^*]}{dt} = \frac{1}{4}\frac{d[O_3O^*]}{dt}$$
(S.6.4)

which in combination with equation S.6.5 allows us to rewrite equation S.6.4 as

$$\frac{d[O_3O^*]}{dt} = 4(k_A[O_4][H_2O^*] - 3k_A \frac{[O_3O^*]}{4}[H_2O^*] + (3k_A \frac{[O_2O_2^*]}{6} - k_A \frac{[O_3O^*]}{4})[H_2O])$$

= $4k_A[O_4][H_2O^*] - 3k_A[O_3O^*][H_2O^*] + (2k_A[O_2O_2^*] - k_A[O_3O^*])[H_2O]$
(S.6.5)

Likewise,

$$\frac{d[O_2O_2^*]}{dt} = \frac{d[O_A^*O_B^*O_CO_D]}{dt} + \frac{d[O_A^*O_BO_C^*O_D]}{dt} + \frac{d[O_A^*O_BO_CO_D^*]}{dt} + \frac{d[O_AO_B^*O_C^*O_D]}{dt} + \frac{d[O_AO_B^*O_CO_D^*]}{dt} + \frac{d[O_AO_B^*O_CO_D^*]}{dt}$$
(S.5.2)

Since we know that there is no particular, favoured, site,

$$\frac{d[O_A^*O_B^*O_CO_D]}{dt} = \frac{d[O_A^*O_BO_C^*O_D]}{dt} = \frac{d[O_A^*O_BO_CO_D^*]}{dt} = \frac{d[O_AO_B^*O_C^*O_D]}{dt}$$
$$= \frac{d[O_AO_B^*O_CO_D^*]}{dt} = \frac{d[O_AO_BO_C^*O_D^*]}{dt} = \frac{d[O_AO_BO_C^*O_D^*]}{dt} = \frac{1}{6}\frac{d[O_2O_2^*]}{dt}$$
(S.6.6)

where, for example

$$\frac{d[O_{A}^{*}O_{B}^{*}O_{C}O_{D}]}{dt} = ((k_{A}[O_{A}O_{B}^{*}O_{C}O_{D}] + k_{B}[O_{A}^{*}O_{B}O_{C}O_{D}]) - (k_{C} + k_{D})[O_{A}^{*}O_{B}^{*}O_{C}O_{D}])[H_{2}O^{*}] + (k_{C}[O_{A}^{*}O_{B}^{*}O_{C}O_{D}] + k_{D}[O_{A}^{*}O_{B}^{*}O_{C}O_{D}^{*}] - (k_{A} + k_{B})[O_{A}^{*}O_{B}^{*}O_{C}O_{D}])[H_{2}O]$$
(S.6.7)

This becomes

$$\frac{d[O_A^*O_B^*O_CO_D]}{dt} = 2k_A \frac{[O_3O^*]}{4} [H_2O^*] - 2k_A \frac{[O_2O_2^*]}{6} [H_2O^*] + (2k_A \frac{[O_2O_3^*]}{4} - 2k_A \frac{[O_2O_2^*]}{6}) [H_2O]$$
(S.6.8)

which yields

$$\frac{d[O_2O_2^*]}{dt} = 6(2k_A \frac{[O_3O^*]}{4}[H_2O^*] - 2k_A \frac{[O_2O_2^*]}{6}[H_2O^*] + (2k_A \frac{[O O_3^*]}{4} - 2k_A \frac{[O_2O_2^*]}{6})[H_2O])$$

= $3k_A[O_3O^*][H_2O^*] - 2k_A[O_2O_2^*][H_2O^*] + (3k_A[O O_3^*] - 2k_A[O_2O_2^*])[H_2O]$
(S.6.9)

In the same way

$$\frac{d[O \ O_3^*]}{dt} = \frac{d[O_A^* O_B^* O_C^* O_D]}{dt} + \frac{d[O_A^* O_B^* O_C O_D^*]}{dt} + \frac{d[O_A^* O_B O_C^* O_D^*]}{dt} + \frac{d[O_A O_B^* O_C^* O_D^*]}{dt} + \frac{d[O_A O_B^* O_C^* O_D^*]}{dt}$$
(S.5.15)

where e.g.

$$\frac{d[O_A^*O_B^*O_C^*O_D]}{dt} = 3k_A \frac{[O_2O_2^*]}{6} [H_2O^*] - k_A \frac{[O \ O_3^*]}{4} [H_2O^*] + (k_A[O_4^*] - 3k_A \frac{[O \ O_3^*]}{4}) [H_2O]$$
(S.6.10)

So

$$\frac{d[O \ O_3^*]}{dt} = 4 \frac{d[O_A^* O_B^* O_C^* O_D]}{dt} = 2k_A[O \ O_3^*][H_2 O^*] - k_A[O \ O_3^*][H_2 O^*] + (4k_A[O_4^*] - 3k_A[O \ O_3^*])[H_2 O]$$
(S.6.11)

Finally,

$$\frac{d[O_A^*O_B^*O_C^*O_D^*]}{dt} = (k_A[O_AO_B^*O_C^*O_D^*] + k_B[O_A^*O_BO_C^*O_D^*] + k_C[O_A^*O_B^*O_CO_D^*] + k_D[O_A^*O_B^*O_C^*O_D])[H_2O^*] - (k_A + k_B + k_C + k_D)[O_A^*O_B^*O_C^*O_D^*][H_2O]$$

(S.5.21)

which can be rewritten as

$$\frac{d[O_A^*O_B^*O_C^*O_D^*]}{dt} = k_A[O_AO_B^*O_C^*O_D^*][H_2O^*] + k_B[O_A^*O_BO_C^*O_D^*][H_2O^*] + k_C[O_A^*O_B^*O_CO_D^*][H_2O^*] + k_D[O_A^*O_B^*O_C^*O_D][H_2O^*] - (k_A + k_B + k_C + k_D)[O_A^*O_B^*O_C^*O_D^*][H_2O] = 4k_A \frac{[O\ O_3^*]}{4}[H_2O^*] - 4k_A[O_4^*][H_2O] = \frac{d[O_4^*]}{dt}$$
(S.6.12)

The collected equations are thus

$$\frac{d[O_4]}{dt} = -4k_A[O_4][H_2O^*] + k_A[O_3O^*][H_2O]$$
(S.6.1)

$$\frac{d[O_3O^*]}{dt} = 4k_A[O_4][H_2O^*] - 3k_A[O_3O^*][H_2O^*] + 2k_A[O_2O_2^*][H_2O] - k_A[O_3O^*][H_2O]$$
(S.6.5)

$$\frac{d[O_2O_2^*]}{dt} = 3k_A[O_3O^*][H_2O^*] - 2k_A[O_2O_2^*][H_2O^*] + 3k_A[O_2O_3^*][H_2O] - 2k_A[O_2O_2^*][H_2O]$$
(S.6.9)

$$\frac{d[O \ O_3^*]}{dt} = 2k_A[O_2O_2^*][H_2O^*] - k_A[O \ O_3^*][H_2O^*] + 4k_A[O_4^*][H_2O] - 3k_A[O \ O_3^*][H_2O]$$
(S.6.11)

$$\frac{d[O_4^*]}{dt} = k_A[O \ O_3^*][H_2O^*]$$

$$-4k_A[O_4^*][H_2O]$$
(S.6.12)

If we assume that the concentration of isotopically normal water is negligible, the full set of rate laws thus becomes

$$\frac{d[O_4]}{dt} = -4k_A[O_4][H_2O^*]$$
(S.6.13)

$$\frac{d[O_3O^*]}{dt} = 4k_A[O_4][H_2O^*] - 3k_A[O_3O^*][H_2O^*]$$
(S.6.14)

$$\frac{d[O_2O_2^*]}{dt} = 3k_A[O_3O^*][H_2O^*] - 2k_A[O_2O_2^*][H_2O^*]$$
(S.6.15)

$$\frac{d[O \ O_3^*]}{dt} = 2k_A[O_2O_2^*][H_2O^*] - k_A[O \ O_3^*][H_2O^*]$$
(S.6.16)

$$\frac{d[O_4^*]}{dt} = k_A[O \ O_3^*][H_2O^*]$$
(S.6.17)

Fig. S.7.1 Kinetic traces for the disappearance of $[Mn_4^{16}O_4(O_2P\{C_7H_7O\}_2)_6]^+$ at different $H_2^{18}O$ concentrations.

Fig. S.7.2 Kinetic traces for the disappearance of $[Mn_4^{16}O_4(O_2P\{C_7H_7O\}_2)_6]^+$ at different initial $[Mn_4^{16}O_4(O_2P\{C_7H_7O\}_2)_6]^+$ concentrations.

Fig. S.7.2 Kinetic traces for the disappearance of $[Mn_4^{16}O_4(O_2P\{C_7H_7O\}_2)_6]^+$ at different temperatures.

S8. Simulation of one- and two-oxygen-type systems

Kinetic traces were simulated in Micromath Scientist by using equations S.5.1-S.5.21. $[H_2O^*]$ was set to 1, $[H_2O^{16}]$ was set to 0, and the initial $[O_AO_BO_CO_D]$ was set to 25^{-10⁻⁵} mol^{-dm⁻³}.

Fig. S.8.1 Simulated traces, setting $k_A = k_B = k_C = k_D = 1.10^{-3} \text{ s}^{-1}$.

Fig. S.8.2 Simulated traces, setting $k_A = k_B = k_C = 1 \cdot 10^{-3}$ and $k_D = 1 \cdot 10^{-4} \text{ s}^{-1}$.

Fig. S.8.3 Simulated traces, setting $k_A = k_B = k_C = 1.10^{-3}$ and $k_D = 1.10^{-5} \text{ s}^{-1}$.

S.9 Structure of $[Mn^{111}Mn^{1V}_4O_4(O_2P\{C_6H_4OCH_3\}_2)_6]^+$

Fig. S.9.1 Structure of $[Mn^{III}_{2}Mn^{IV}_{4}O_4(O_2P\{C_6H_4OCH_3\}_2)_6]^+$. Mn in blue, P in orange, C in grey, H in wheat, O in red. Based on the structure of $[Mn^{III}_{2}Mn^{IV}_{2}O_4(O_2P\{C_6H_4OCH_3\}_2)_6]$ (CCDC 232599, Inorg. Chem. **2004**, *43(19)*, 5795-5797).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Fig. S.9.2 Structure of $[Mn^{III}_{2}Mn^{IV}_{4}O_4(O_2P\{C_6H_4OCH_3\}_2)_6]^+$. Only three of the six ligands are drawn.