Supplementary Information

Environmentally benign synthesis of virus-templated, monodisperse, ironplatinum nanoparticles.

Sachin N. Shah, Nicole F. Steinmetz,^a Alaa A. A. Aljabali, George P. Lomonossoff and David. J. Evans*

Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH (United Kingdom)

Fax: +44-(0)1603-450018

E-mail: dave.evans@bbsrc.ac.uk

^a Present address: Department of Cell Biology and Centre of Integrated Molecular Biosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

Instrumentation

- Transmission Electron Microscope (TEM) Carbon-coated copper EM grids (400 mesh, Agar Scientific) on TEM JEOL 1200EX.
- Selected Area Electron Diffraction (SAED) Philips 420 TEM at working voltage of 120 KV.
- Energy dispersive X-ray Spectroscopy (EDXS) OXFORD INCA Energy 200Premium.
- Nanoparticle Tracking Analysis NanoSight VM 10 instrument.
- Dynamic Light Scattering (DLS) DynaPro Titan, Wyatt Technology Corporation.
- Zeta Potential Malvern Instruments Zetasizer Nano.

Cloning Procedure

Oligonucleotides encoding the peptide of interest, flanked by appropriate restriction sites (*Nhe*l and *Aat*II), were cloned into the CPMV RNA2-based vector, pCP2.^[1] In a second cloning step the chimaeric sequence was cloned *via* the enzymes *Bam*HI and *Eco*RI into the CPMV RNA-2 based binary vector pBinP-NS1.^[2] The resulting recombinant pBinP-NS1-based clone, termed, pBinP-NS1-FEPT, was used to agroinoculate cowpea (*Vigna unguiculata*) plants in the presence of the full-length clone of RNA-1, pBinP-S1NT. Plants were maintained in a greenhouse as previously described.^[2]

Chimaera Virus Propagation and Purification

To scale-up the production of virus particles, plant sap or purified virions were used to inoculate further cowpea plants.^[3] Virus particles were purified and the concentration of virions determined by Bradford assay or spectrophotometrically as previously described.^[4]

FePt coating of CPMV_{FePt} Chimaera

Chimaeric CPMV_{FePt} (10 mg/ml, 200 μ mol) in 10 mM sodium phosphate buffer of pH 7 was treated with 200 μ l of a 1:1 mixture of 0.05 mol dm⁻³ FeCl₃ and 0.05 mol dm⁻³ H₂PtCl₆ and 200 μ l of 0.1 mol dm⁻³ NaBH₄, in 10 mM sodium phosphate buffer pH 7, added with constant stirring over 10 min at room temperature. After a further 3 days stirring at ambient temperature the FePt-coated CPMV_{FePt} nanoparticles were then recovered from the reaction mixture by centrifugation at 14000 r.p.m. for 10 min, the supernatant containing FePt-coated CPMV_{FePt} nanoparticles was passed through 100 K Millipore cut-off columns and washed several times with Mill-Q water. The recovery of purified FePt-coated CPMV_{FePt} nanoparticles was approximately 55 % based on initial virus concentration. Control experiments with wild-type CPMV were performed under identical conditions.

Supplementary Material (ESI) for Dalton Transactions # This journal is (c) The Royal Society of Chemistry 2009

Dynamic light scattering.

Supporting Figure 1. Dynamic light scattering.

Dynamic light scattering (DLS) comparing $CPMV_{FePt}$ chimaera (blue line) and FePt - coated $CPMV_{FePt}$ particles (red line). Average radius increases by 1nm after mineralization.

Zeta Potential Measurement.

1 ml of 0.05 mg/ml FePt-coated CPMV_{FePt} particles dispersed in 10 mM sodium phosphate buffer pH 7.2 was prepared. Zeta cells were equilibrated at 21 °C for 2 minutes before recording three measurements each of ten runs. Data was collected with automatic attenuation selected and analysed using the Smoluchowski module.

Supplementary Material (ESI) for Dalton Transactions

This journal is (c) The Royal Society of Chemistry 2009

Supporting Figure 2. Zeta potential measurement for FePt-coated $CPMV_{FePt}$ particles suspended in buffer at pH 7.2.

References

[1] J. T. Dessens and G. P. Lomonossoff, J. Gen. Virol., 1993, 74, 889-892.

[2] L. Liu and G. P. Lomonossoff, J. Virol. Meth., 2002, 105, 343-348.

[3] J. Wellink, Methods Mol. Biol., 1998, 81, 205-209.

[4] N. F. Steinmetz, G. P. Lomonossoff and D. J. Evans, *Langmuir*, 2006, 22, 3488-3490.