Electronic Supplementary Information

N-heterocyclic Carbenes bearing two, one and no nitrogen atoms at the ylidene carbon: insight from theoretical calculations.

Aleksandr A. Tukov^a, Adrien T. Normand^{b*}, Mikhail S. Nechaev^{a,c,*}

^a Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation

^b Department of Chemistry and Center for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Street, Ottawa K1N 6H5, ON, Canada

^c A. V. Topchiev Institute of Petrochemical Synthesis, RAS, Leninsky Prosp., 29, Moscow 119991, Russian Federation

* Corresponding authors. Address: A.T.N.: Department of Chemistry and Center for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Street, Ottawa K1N 6H5, ON, Canada. M.S.N.: Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation.

Tel./fax: +7 495 9392677.

E-mail address: nechaev@nmr.chem.msu.ru (M.S.N). anormand@uottawa.ca (A.T.N.)

Contents

Free NHCs	Page 3
AIM	Page 5
NBO	Page 7
Carbene Stability	Page 9
PA	Page 10
NHC as ligands	Page 11
Table of correlation factors	Page 13

Free NHCs

Structures

Table S1.

Experimental and calculated structures of carbenes (distances in Å, valence angles in degrees; data

obtained in present work are in bold).

Method / Substitutes	C ₁ -N ₂₍₅₎	C ₃₍₄₎ -N ₂₍₅₎	C ₃ -C ₄)	N ₂ -C ₁ -N ₅
X-ray (R=Ad, R'=H), [1]	1.373 / 1.367	1.386 / 1.382	1.338	102.2
X-ray (R=Mes, R'=H), [2]	1.365 / 1.371	1.381 / 1.378	1.333	101.4
X-ray (R=Me, R'=Me), [2]	1.363	1.394	1.352	101.5
MP2/6-31G(d), R=Me, R'=H [3]	1.373	1.382	1.366	100.9
MP2/6-31G(d), R=R'=H [3]	1.371	1.384	1.364	99.4
BPW91/I, R=Me, R'=H [4]	1.382	1.397	1.372	101.4
PBE/TZ2P-SBK, R=Me, R'=H	1.376	1.393	1.366	101.6

Method / Substitutes	C ₁ -N ₂₍₅₎	C ₃₍₄₎ -N ₂₍₅₎	C ₃ -C ₄	$N_2-C_1-N_5$
X-ray, R=Mes, R'=H [5]	1.352 / 1.345	1.475 / 1.487	1.505	104.7
MP2/6-31G(d), R=R'=H [3]	1.356	1.471	1.529	103.4

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

B3LYP/6-31G*, R=Me, R'=H [6]	1.352	-	-	105.2			
PBE/TZ2p-SBK, R=Me, R'=H	1.353	1.484	1.536	105.7			

Method / Substitutes	C_1-N_2	C ₁ -C ₅	$N_2-C_1-C_5$
X-ray, $R = (i-Pr)_2Ph$, $2R' = Cy^*$, $R'' = Me$ [7]	1.315	1.516	106.5
PBE/TZ2p-SBK, R=R'=Me, R"=H	1.313	1.531	105.7

Method / Substitutes	C_1 - N_2	C ₁ -C ₅	N ₃ -C ₄	C ₄ -C ₅	N ₂ -N ₃	$N_2-C_1-C_5$
R=R''=Me, R'=H. BPW91/I [4]	1.355	1.423	1.368	1.390	1.444	102.3
R=R'=R"=Me. PBE/TZ2p-SBK	1.346	1.416	1.370	1.386	1.444	103.2

- 1. J. Am. Chem. Soc. 1991, 113, 361-363.
- 2. J. Am. Chem. Soc. 1992, 114, 5530-5534.
- 3. J. Am. Chem. Soc. 1996, **118**, 2039-2046.
- 4. J. Am. Chem. Soc. 2002, **124**, 5865-5880.
- 5. J. Am. Chem. Soc. 1995, 117, 11027-11028.
- 6. Chem. Phys. Lett. 2001, **349**, 477-482.
- 7. Angew. Chem. Int. Ed. 2005, 44, 5705-5709.

AIM

The bonding situation was studied using AIM approach founded by Bader.[T5] The AIM method, based on the topological analysis of the electron density $\rho(\mathbf{r})$, allows a classification of interatomic interactions and quantitative analysis of characteristics of the bonds. In order to accomplish this, the gradient of ρ ($\nabla \rho$), the Hessian matrix (the collection of second derivatives of ρ), and the Laplacian of ρ ($\nabla^2 \rho$) should be analyzed. The points where $\nabla \rho = 0$ are called critical points (CPs). They are labeled by their rank, the number of non-zero eigenvalues (denoted $\lambda_1, \lambda_2, \lambda_3$) of the Hessian matrix, and signature σ , the sum of their algebraic signs. There are four possible types of CPs of rank three: maxima (3,-3), minima (3,+3), and saddles (3,-1) and (3,+1). Considerable attention is usually focused on the (3,-1) CPs, since they are found between every bonded pair of nuclei. The existence of such a critical point and its associated atomic interaction line is a necessary condition for the presence of chemical bond. [T5] The value of $\rho(r_c)$, its Laplacian $\nabla^2 \rho(r_c)$ (defined as the sum of the eigenvalues of the Hessian of the electron density, $\nabla^2 \rho = \lambda_1 + \lambda_2 + \lambda_3$ in such points (usually called bond critical points BCPs) allow the classification of bonds as shared or closed-shell interactions. Usually, in contrast to the shared interaction (covalent or polar bonds), rather low values of $\rho(r_c)$ (of the order of 10^{-2} a.u.), $\nabla^2 \rho(r_c) > 0$ are evident signs of the closed-shell interaction (e.g., ionic or hydrogen bonds, van der Waals interactions). The eigenvector associated with λ_3 is parallel to the bond path (the gradient line connecting the nuclei where (3,-3) CPs are located), whereas the eigenvectors associated with λ_1 and λ_2 are perpendicular to the bond path. For the closed-shell interaction the ratio $|\lambda_1|/\lambda_3$ is expected to be less than 1 whereas for shared interaction the value is more than 1. However, intermediate values may be ascribed to a mixed character of the bond. [T5] The ellipticity ε (defined as $\varepsilon = \lambda_1 / \lambda_2 - 1$) at the BCP gives some additional information about the bond or the bond critical point. This can be interpreted as an indicator of the structural stability of the bond in a situation when the ring critical point (RCP, point (3,+1)) is located close to the BCP. Ellipticity ε can be also interpreted as a quantitative index of the π -character of the bond. [T5]

T5. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, 1990.

Table S2.

Bond critical points within cycles in molecules 1 - 6 ($\rho(r_{cp}), \nabla^2 \rho(r_{cp}), \lambda_1, \lambda_2, \lambda_3$ in a.u.).

Molecule	Bond	$\rho(r_{cp})$	$\nabla^2 \rho(\mathbf{r}_{cp})$	λ_1	λ_2	λ3	$ \lambda_1 /\lambda_3$	3
1	N-C:	0.292	-0.522	-0.533	-0.501	0.513	1.04	0.06
	=C-N	0.288	-0.551	-0.473	-0.422	0.344	1.38	0.12
	C=C	0.325	-0.937	-0.687	-0.530	0.280	2.45	0.29
2	N-C:	0.307	-0.591	-0.607	-0.535	0.551	1.10	0.13
	C-N	0.244	-0.431	-0.442	-0.423	0.435	1.02	0.05
	C-C	0.235	-0.419	-0.433	-0.428	0.443	0.98	0.01
_								
3	N-C:	0.328	-0.449	-0.705	-0.555	0.812	0.87	0.27
	Me ₂ C-C:	0.237	-0.373	-0.440	-0.417	0.484	0.91	0.05
	C-N	0.235	-0.386	-0.421	-0.403	0.438	0.96	0.04
	C-C	0.235	-0.425	-0.431	-0.422	0.427	1.01	0.02
	$C-C(Me)_2$	0.218	-0.334	-0.390	-0.380	0.436	0.89	0.03
4	N.C.	0.206	0 207	0566	0 415	0 774	0.72	0.26
4	N-C:	0.290	-0.207	-0.300	-0.415	0.774	0.75	0.30
	C-C: N N	0.270	-0.301	-0.310	-0.494	0.445	1.13	0.05
	N-N	0.300	-0.165	-0.720	-0.001	1.150	0.05	0.20
	$\Gamma = C$	0.290	-0.333	-0.493	-0.443	0.382	0.85	0.11
	C-C	0.508	-0.0+5	-0.021	-0.477	0.274	2.20	0.23
5	C3-C:	0.284	-0.646	-0.547	-0.526	0.426	1.28	0.04
	N-C:	0.283	-0.312	-0.540	-0.382	0.611	0.88	0.41
	C5-C6	0.319	-0.934	-0.666	-0.543	0.275	2.42	0.23
	C3-C4	0.307	-0.838	-0.627	-0.526	0.315	1.99	0.19
	C6-N	0.302	-0.599	-0.542	-0.491	0.434	1.25	0.11
	C4-C5	0.298	-0.797	-0.607	-0.525	0.335	1.81	0.16
6	C-C:	0.283	-0.643	-0.523	-0.514	0.394	1.33	0.02
	C-N	0.299	-0.384	-0.529	-0.478	0.623	0.85	0.11
	C=C	0.308	-0.864	-0.627	-0.522	0.285	2.20	0.20

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

NBO

Table S3.

Molecule	Orbital	Symmetry	Occupation (e)	Bond polarization (%)	Hybridization
1	BD C1-N2	π	1.85	C, 20.75; N, 79.25	C, p; N, p
	BD C3-C4	π	1.89	C, 50.00; C, 50.00	C, p; C, p
	LP C1	σ	1.91	-	$sp^{1.10}$
	LP N5	π	1.55	-	р
2	BD C1-N2	π	1.92	C, 17.40; N, 82.60	C, p; N, p
	LP C1	σ	1.87	-	$sp^{1.34}$
	LP N5	π	1.64	-	р
3	BD C1-N2	π	1.94	C, 22.26; N, 77.74	C, p; N, p
	LP C1	σ	1.87	-	sp ^{1.38}
	DD CI NO		1.00		
4	BD C1-N2	π	1.90	C, 21.45; N, 78.55	C, p; N, p
	BD C4-C5	π	1.80	C, 48.19; C, 51.81	C, p; C, p
	LPCI	σ	1.85	-	sp ¹¹⁷
	LP N3	π	1.62	-	р
5	BD C1 N2	π	1 78	C 21 45: N 78 55	C n: N n
5	BDC3-C4	π	1.78	C, 21.43, N, 70.33 C, 48, 78; C, 51, 22	C, p, N, p
	BD C5 C6	π	1.74	C, 40.70, C, 51.22	C, p, C, p
		n G	1.00	C, 47.45, C, 50.55	c, p, c, p
		0	1.00	-	sp
6	BD C2-C3	π	1.69	C, 49.58; C, 50.42	C, p; C, p
	BD C5-C6	π	1.69	C, 49.58; C, 50.42	C, p; C, p
	LP C1	σ	1.84	-	sp ^{1.95}
	LP* C1	π	0.59	-	p
	LP N4	π	1.49		р

Selected NBO orbitals of free carbenes 1-6.

Table S4.

Molecule	Donor		Acceptor	$\Delta E^{(2)}{}_{i \to j^*}$
1	LP N(5)	\rightarrow	BD*(π) C(1)-N(2)	45.4
	LP N(5)	\rightarrow	BD*(π) C(3)-C(4)	27.6
	$BD(\pi) C(1)-N(2)$	\rightarrow	BD*(π) C(3)-C(4)	17.6
	$BD(\pi) C(3)-C(4)$	\rightarrow	BD*(π) C(1)-N(2)	7.9
2	LP N(5)	\rightarrow	BD*(π) C(1)-N(2))	53.7
4	LP N(3)	\rightarrow	BD*(π) C(4)-C(5)	24.6
	$BD(\pi) C(4)-C(5)$	\rightarrow	$BD^{*}(\pi) C(1)-N(2)$	19.3
	LP N(3)	\rightarrow	BD*(π) C(1)-N(2)	9.4
5	BD*(π) C(3)-C(4)	\rightarrow	BD*(π) C(1)-N(2)	65.8
	BD*(π) C(3)-C(4)	\rightarrow	BD*(π) C(5)-C(6)	60.9
	$BD(\pi) C(5)-C(6)$	\rightarrow	BD*(π) C(1)-N(2)	19.5
	$BD(\pi) C(1)-N(2)$	\rightarrow	BD*(π) C(3)-C(4)	18.7
	$BD(\pi) C(5)-C(6)$	\rightarrow	BD*(π) C(3)-C(4)	14.8
	BD(π) C(3)-C(4)	\rightarrow	BD*(π) C(5)-C(6)	13.0
6	LP* C(1)	\rightarrow	BD*(π) C(2)-C(3)	124.3
	LP* C(1)	\rightarrow	BD*(π) C(5)-C(6)	124.1
	LP N(5)	\rightarrow	BD*(π) C(2)-C(3)	27.9
	LP N(5)	\rightarrow	BD*(π) C(5)-C(6)	27.9
	$BD(\pi) C(2)-C(3)$	\rightarrow	LP* C(1)	26.6
	$BD(\pi) C(5)-C(6)$	\rightarrow	LP* C(1)	26.6

Selected MP2 orbital interactions in free carbenes 1 - 6 ($\Delta E^{(2)}_{i \rightarrow j^*}$ in kcal/mol).

In carbenes 1, 2 and 4 the highest non-Lewis corrections correspond to donation from nitrogen lone electron pairs LP N to antibonding orbitals BD*(π) C=N (1 and 2) and BD*(π) C=C (4). In 5 the highest correction corresponds to donation from antibonding BD*(π) C3=C4 to antibonding BD*(π) C1=N2. In 6 the highest correction corresponds to donation from vacant orbital LP* C1 to antibonding BD*(π) C=C. Donation of electron density from antibonding orbitals is due to their significant non-zero population and proximity in energy to accepting orbitals. In carbenes 1, 4 and 5 corrections corresponding to donation from bonding π -orbitals BD(π) to π -antibonding orbitals BD*(π) of multiple C=C and C=N bonds are also significant. In 6 the noticeable corrections are: donation from the nitrogen lone pair LP N to the two π -antibonding BD*(π) of C=C, and donation from BD(π) of C=C to the vacant orbital of the ylidene carbon LP* C1.

Carbene stability

Scheme S1.

Correlation of calculated CSE and E_{dim} (kcal/mol) of free carbenes 1 - 6.

PA

Scheme S2.

Correlation of calculated proton affinities PA (kcal/mol) and HOMO energies E_{HOMO} (eV) of free carbenes 1 - 6.

NHCs as ligands

Structures

Scheme S3.

Selected structural parameters of the complexes (NHC)Rh(CO)₂Cl (1a - 6a; interatomic distances in Å, valence angles in degrees).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Table SXX.

Correlation of calculated parameters. R² higher than 0.95 are marked.

