## A Ligand Knowledge Base for Carbenes (LKB-C): Maps of Ligand Space

Natalie Fey,\* Mairi F. Haddow, Jeremy N. Harvey, Claire L. McMullin, A. Guy Orpen\*

School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.

**Supporting Information** 

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009 **Table S1:** Ligands in LKB-C.

| a) symmetrical, R=                                                                                   | Н                                              | Me                                            | Ph                                           |
|------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------------|
| :CR <sub>2</sub>                                                                                     | 1                                              | 2                                             | 3                                            |
|                                                                                                      | 4                                              | 5                                             | 6                                            |
| R<br>N<br>C:<br>N<br>R                                                                               | 7                                              | 8                                             | 9                                            |
| R<br>C:<br>R                                                                                         | 10                                             | 11                                            | 12                                           |
| R C P R                                                                                              | 13                                             | 14                                            | 15                                           |
| R-P-C                                                                                                | 16                                             | 17                                            | 18                                           |
| R                                                                                                    |                                                |                                               |                                              |
| R<br>b) asymmetrical, R=                                                                             | Н                                              | Ме                                            | Ph                                           |
| R<br>b) asymmetrical, R=<br>:CMe(OR)                                                                 | H<br>19                                        | Me<br>20                                      | Ph 21                                        |
| R<br>b) asymmetrical, R=<br>:CMe(OR)<br>:CPh(OR)                                                     | H<br>19<br>22                                  | Me<br>20<br>23                                | Ph<br>21<br>24                               |
| R<br>b) asymmetrical, R=<br>:CMe(OR)<br>:CPh(OR)<br>:CHR                                             | H<br>19<br>22<br>(1)                           | Me<br>20<br>23<br>25                          | Ph<br>21<br>24<br>26                         |
| R<br>b) asymmetrical, R=<br>:CMe(OR)<br>:CPh(OR)<br>:CHR<br>:CMeR                                    | H<br>19<br>22<br>(1)<br>(25)                   | Me<br>20<br>23<br>25<br>(2)                   | Ph<br>21<br>24<br>26<br>27                   |
| R $b) asymmetrical, R=$ $:CMe(OR)$ $:CPh(OR)$ $:CHR$ $:CMeR$ $CMeR$ $CR$                             | H<br>19<br>22<br>(1)<br>(25)<br>28             | Me<br>20<br>23<br>25<br>(2)<br>29             | Ph<br>21<br>24<br>26<br>27<br>30             |
| R $b) asymmetrical, R=$ $:CMe(OR)$ $:CPh(OR)$ $:CHR$ $:CMeR$ $C:$ $R$ $C:$ $R$ $C:$ $R$              | H<br>19<br>22<br>(1)<br>(25)<br>28<br>31       | Me<br>20<br>23<br>25<br>(2)<br>29<br>32       | Ph<br>21<br>24<br>26<br>27<br>30<br>33       |
| R $b) asymmetrical, R=$ $:CMe(OR)$ $:CPh(OR)$ $:CHR$ $:CMeR$ $C:$ $R$ $C:$ $R$ $C:$ $R$ $C:$ $R$ $R$ | H<br>19<br>22<br>(1)<br>(25)<br>28<br>31<br>34 | Me<br>20<br>23<br>25<br>(2)<br>29<br>32<br>35 | Ph<br>21<br>24<br>26<br>27<br>30<br>33<br>33 |

Electronic Supplementary Information for Dalton Transactions

| :CH(CH=C(H)R)     | (37) | 40 | 41 |
|-------------------|------|----|----|
| $:CR(P(NMe_2)_2)$ | 42   | 43 | 44 |
| $:C(NMe_2)(PR_2)$ | 45   | 46 | 47 |

| c) other species              |                                      |                               |                            |  |  |  |  |
|-------------------------------|--------------------------------------|-------------------------------|----------------------------|--|--|--|--|
| R                             | R=cyclohexyl 48                      | R                             | R=Cy 53                    |  |  |  |  |
| C:                            | R= <sup>t</sup> butyl 49             | C:                            | R= <sup>t</sup> Bu 54      |  |  |  |  |
| N<br>R                        | R=adamantyl (Ad) 50                  | N<br>R                        | R=Ad 55                    |  |  |  |  |
|                               | $R=2,4,6-Me_3-C_6H_2$ (Mes)          |                               | R=Mes 56                   |  |  |  |  |
|                               | 51                                   |                               | $R=2,6-iPr_2-C_6H_3$       |  |  |  |  |
|                               | $R=2,6-iPr_2-C_6H_3$ 52              |                               | 57                         |  |  |  |  |
| :C(OMe)(CH=CH <sub>2</sub> )  | :C(OMe)(CH=C(H)Me)                   | :C(CH=C(H)Me) <sub>2</sub>    | :CMe(NH <sub>2</sub> ) 61  |  |  |  |  |
| 58                            | 59                                   | 60                            |                            |  |  |  |  |
| :CMe(NMe <sub>2</sub> ) 62    | :CPh(NMe <sub>2</sub> ) 63           | HO_C:                         | H <sub>2</sub> N<br>C:     |  |  |  |  |
|                               |                                      | 64                            | 65                         |  |  |  |  |
| Ph_C:                         | Ph<br>C:                             | :C(CN) <sub>2</sub> 68        | :CMe(CN) 69                |  |  |  |  |
| 66                            | Ph 67                                |                               |                            |  |  |  |  |
| :CPh(CN) 70                   | :CF <sub>2</sub> 71                  | :CCl <sub>2</sub> 72          | :CBr <sub>2</sub> 73       |  |  |  |  |
| :CI <sub>2</sub> 74           | :C(CF <sub>3</sub> ) <sub>2</sub> 75 | :CMe(CF <sub>3</sub> ) 76     | :CMeCl 77                  |  |  |  |  |
| :C(OMe)(NMe <sub>2</sub> ) 78 | :C(OPh)(NMe <sub>2</sub> ) 79        | :C(SMe)(NMe <sub>2</sub> ) 80 | :C(SPh)(NMe <sub>2</sub> ) |  |  |  |  |
|                               |                                      |                               | 81                         |  |  |  |  |
| C: 82                         | C: 83                                | C: 84                         | C: 85                      |  |  |  |  |
|                               | C:<br>N<br>87                        |                               | N<br>C:<br>N<br>89         |  |  |  |  |
| N<br>C:<br>90                 | O<br>N<br>C:<br>O<br>91              | 0<br>N<br>C:<br>0<br>N<br>92  | O<br>N<br>C:<br>O<br>93    |  |  |  |  |
| C:<br>N<br>94                 | C:<br>N<br>95                        | €<br>N<br>96                  | €<br>N<br>97               |  |  |  |  |

Electronic Supplementary Information for Dalton Transactions

| - This journal is © The Royal Socie | P<br>C:<br>N-P<br>99       | Ph<br>P<br>C:<br>N-P<br>Ph 100 | CO 101                 |
|-------------------------------------|----------------------------|--------------------------------|------------------------|
| CS 102                              | C=CH <sub>2</sub> 103      | C=CMe <sub>2</sub> 104         | C=CPh <sub>2</sub> 105 |
| C=C=CH <sub>2</sub> 106             | C=C=CMe <sub>2</sub> 107   | C=C=CPh <sub>2</sub> 108       | C=C=C=CH <sub>2</sub>  |
|                                     |                            |                                | 109                    |
| C=C=C=CMe <sub>2</sub> 110          | C=C=C=CPh <sub>2</sub> 111 | C≡N-H 112                      | C≡N-Me 113             |
| C≡N-Ph 114                          |                            |                                |                        |

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009 **Table S2**: Descriptor loadings for principal component analysis on carbene ligands.

|                         | PC1    | PC2    | PC3    | PC4    |
|-------------------------|--------|--------|--------|--------|
| % of variance explained | 41.4   | 16.9   | 12.2   | 7.4    |
| E <sub>HOMO(s)</sub>    | 0.201  | 0.065  | 0.361  | -0.191 |
| E <sub>LUMO(s)</sub>    | 0.281  | 0.016  | -0.040 | 0.022  |
| E <sub>t-s</sub>        | 0.236  | 0.035  | -0.298 | 0.072  |
| He <sub>8</sub> _steric | 0.172  | -0.209 | -0.014 | 0.114  |
| РА                      | 0.228  | -0.020 | 0.309  | 0.035  |
| Q(Au fragm.)            | -0.297 | -0.040 | -0.028 | 0.040  |
| BE(Au)                  | -0.055 | 0.279  | 0.369  | -0.168 |
| Au-Cl                   | 0.237  | -0.083 | 0.296  | 0.084  |
| Au-C                    | 0.265  | -0.176 | 0.006  | 0.034  |
| $\Delta$ C-A (Au)       | -0.013 | -0.337 | 0.258  | 0.104  |
| $\Delta$ A-C-B (Au)     | 0.039  | 0.365  | -0.022 | 0.411  |
| Q(Pd fragm.)            | -0.268 | -0.084 | 0.010  | 0.158  |
| BE (Pd)                 | -0.171 | 0.242  | 0.257  | -0.158 |
| Pd-Cl trans             | 0.163  | 0.048  | 0.425  | -0.009 |
| Pd-C                    | 0.199  | -0.102 | -0.046 | 0.126  |
| $\Delta$ C-A (Pd)       | -0.072 | -0.304 | 0.228  | 0.187  |
| $\Delta$ A-C-B (Pd)     | 0.053  | 0.342  | 0.080  | 0.425  |
| Q(Ru fragm.)            | -0.261 | -0.107 | 0.054  | 0.110  |
| BE (Ru)                 | -0.246 | 0.178  | 0.185  | -0.160 |
| Ru-C                    | 0.259  | -0.076 | -0.041 | 0.007  |
| Ru-Cl                   | 0.280  | 0.079  | -0.091 | -0.102 |
| Ru-P                    | -0.248 | -0.200 | 0.052  | 0.170  |
| $\Delta$ C-A (Ru)       | 0.009  | -0.220 | 0.152  | 0.272  |
| $\Delta$ A-C-B (Ru)     | 0.016  | 0.325  | 0.023  | 0.479  |
| < Cl-Ru-Cl              | 0.114  | 0.177  | -0.085 | -0.219 |
| < P-Ru-P                | -0.019 | 0.134  | -0.067 | -0.128 |

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009 **Table S3**: Descriptor loadings for principal component analysis on all C-donor ligands.

|                         | PC1    | PC2    | PC3    | PC4    |
|-------------------------|--------|--------|--------|--------|
| % of variance explained | 47.7   | 16.0   | 13.6   | 5.9    |
| E <sub>HOMO(s)</sub>    | 0.218  | -0.228 | 0.265  | 0.040  |
| E <sub>LUMO(s)</sub>    | 0.272  | 0.112  | -0.030 | -0.053 |
| E <sub>t-s</sub>        | 0.163  | 0.372  | -0.167 | -0.036 |
| He <sub>8</sub> _steric | 0.182  | -0.063 | -0.209 | 0.525  |
| РА                      | 0.225  | -0.224 | 0.157  | 0.090  |
| Q(Au fragm.)            | -0.294 | -0.038 | -0.061 | 0.054  |
| BE(Au)                  | -0.032 | -0.189 | 0.491  | 0.135  |
| Au-Cl                   | 0.254  | -0.240 | -0.058 | 0.051  |
| Au-C                    | 0.273  | -0.120 | -0.092 | 0.020  |
| $\Delta$ C-A (Au)       | 0.042  | -0.372 | -0.237 | -0.193 |
| Q(Pd fragm.)            | -0.268 | -0.038 | -0.099 | -0.013 |
| BE (Pd)                 | -0.156 | -0.142 | 0.397  | 0.011  |
| Pd-Cl trans             | 0.206  | -0.277 | 0.193  | -0.035 |
| Pd-C                    | 0.231  | -0.097 | -0.080 | -0.040 |
| $\Delta$ C-A (Pd)       | -0.018 | -0.367 | -0.251 | -0.239 |
| Q(Ru fragm.)            | -0.260 | -0.132 | -0.097 | 0.091  |
| BE (Ru)                 | -0.239 | -0.110 | 0.293  | -0.134 |
| Ru-C                    | 0.269  | -0.035 | -0.034 | 0.177  |
| Ru-Cl                   | 0.271  | 0.168  | 0.058  | -0.079 |
| Ru-P                    | -0.228 | -0.218 | -0.218 | 0.062  |
| $\Delta$ C-A (Ru)       | 0.047  | -0.244 | -0.238 | -0.255 |
| < Cl-Ru-Cl              | 0.112  | 0.196  | 0.170  | -0.638 |
| < P-Ru-P                | -0.101 | 0.200  | 0.110  | 0.210  |

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009 **Table S4**: Descriptor coefficients for regression models 1-3, for prediction of calculated bond

energy for dissociation of *trans*-CO in [Cr(CO)<sub>5</sub>L] (kcal/mol)

## Coefficients Descriptors

| Model 1                 |           |
|-------------------------|-----------|
| Intercept               | -22.4479  |
| E <sub>t-s</sub>        | 0.0578    |
| Q(Au fragm.)            | -15.9614  |
| Ru-C                    | 34.2148   |
| He <sub>8</sub> _steric | -0.0473   |
| Model 2                 |           |
| Intercept               | -26.3109  |
| E <sub>t-s</sub>        | 0.0581    |
| PA                      | 0.0269    |
| Q(Au fragm.)            | -9.2826   |
| BE (Pd)                 | -0.0688   |
| Ru-C                    | 35.2689   |
| He <sub>8</sub> _steric | -0.0662   |
| Model 3                 |           |
| Intercept               | 305.2383  |
| E <sub>HOMO</sub>       | -46.7534  |
| E <sub>t-s</sub>        | 0.0257    |
| P <sub>A</sub>          | 0.0620    |
| BE (Au)                 | 0.1323    |
| Au-Cl                   | -55.9431  |
| Au-C                    | 63.1273   |
| BE (Ru)                 | -0.1231   |
| Ru-P                    | -119.1609 |
| He <sub>8</sub> steric  | -0.0780   |

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009 **Table S5**: Calculated response data and model predictions for calculated bond energy for

| dissociation | of <i>trans</i> -CO | in $[Cr(CO)_5L]$ | (kcal/mol) |
|--------------|---------------------|------------------|------------|
|--------------|---------------------|------------------|------------|

|     |                     | Model 1,  | Model 1, | Model 2,  | Model 2, | Model 3,  | Model 3, |
|-----|---------------------|-----------|----------|-----------|----------|-----------|----------|
| No. | Calc. BE (trans CO) | predicted | residual | predicted | residual | predicted | residual |
| 1   | 39.13               | 39.62     | -0.49    | 37.72     | 1.41     | 38.89     | 0.24     |
| 2   | 41.80               | 42.86     | -1.06    | 42.33     | -0.53    | 42.08     | -0.28    |
| 3   | 43.01               | 43.97     | -0.96    | 44.38     | -1.37    | 43.74     | -0.73    |
| 4   | 50.99               | 53.38     | -2.39    | 52.83     | -1.84    | 51.98     | -0.99    |
| 5   | 52.34               | 52.25     | 0.09     | 52.27     | 0.07     | 52.09     | 0.25     |
| 6   | 50.38               | 50.00     | 0.38     | 50.49     | -0.11    | 50.53     | -0.15    |
| 7   | 51.91               | 52.92     | -1.01    | 52.25     | -0.34    | 52.36     | -0.45    |
| 8   | 52.81               | 53.69     | -0.88    | 53.68     | -0.87    | 52.61     | 0.20     |
| 9   | 51.54               | 51.58     | -0.04    | 51.94     | -0.40    | 51.64     | -0.10    |
| 10  | 48.08               | 47.37     | 0.71     | 47.42     | 0.66     | 47.76     | 0.32     |
| 11  | 49.30               | 48.15     | 1.15     | 48.26     | 1.04     | 48.67     | 0.63     |
| 12  | 49.61               | 47.80     | 1.81     | 48.13     | 1.48     | 49.09     | 0.52     |
| 13  | 45.20               | 43.79     | 1.41     | 44.40     | 0.80     | 45.02     | 0.18     |
| 14  | 47.33               | 45.48     | 1.85     | 46.13     | 1.20     | 45.95     | 1.38     |
| 15  | 46.45               | 45.21     | 1.24     | 46.20     | 0.25     | 45.67     | 0.78     |
| 16  | 44.84               | 43.87     | 0.97     | 44.49     | 0.35     | 45.05     | -0.21    |
| 17  | 48.46               | 45.78     | 2.68     | 46.45     | 2.01     | 46.48     | 1.98     |
| 18  | 47.67               | 45.75     | 1.92     | 46.69     | 0.98     | 46.39     | 1.28     |
| 19  | 44.39               | 45.09     | -0.70    | 45.13     | -0.74    | 44.45     | -0.06    |
| 20  | 45.50               | 46.77     | -1.27    | 45.90     | -0.40    | 46.24     | -0.74    |
| 21  | 44.29               | 44.97     | -0.68    | 44.77     | -0.48    | 44.42     | -0.13    |
| 22  | 44.57               | 47.08     | -2.51    | 46.12     | -1.55    | 46.14     | -1.57    |
| 23  | 45.26               | 46.47     | -1.21    | 46.06     | -0.80    | 46.38     | -1.12    |
| 24  | 43.74               | 44.27     | -0.53    | 44.64     | -0.90    | 45.21     | -1.47    |
| 25  | 41.13               | 41.29     | -0.16    | 40.21     | 0.92     | 39.74     | 1.39     |
| 26  | 42.56               | 42.87     | -0.31    | 42.79     | -0.23    | 42.81     | -0.25    |
| 27  | 41.42               | 43.18     | -1.76    | 43.14     | -1.72    | 43.40     | -1.98    |
| 28  | 48.65               | 49.21     | -0.56    | 48.78     | -0.13    | 48.72     | -0.07    |
| 29  | 49.87               | 49.58     | 0.29     | 49.44     | 0.43     | 48.79     | 1.08     |
| 30  | 48.52               | 48.58     | -0.06    | 48.87     | -0.35    | 49.10     | -0.58    |
| 31  | 49.12               | 50.00     | -0.88    | 49.76     | -0.64    | 48.88     | 0.24     |
| 32  | 49.57               | 49.57     | 0.00     | 49.28     | 0.29     | 48.50     | 1.07     |
| 33  | 48.78               | 48.42     | 0.36     | 48.52     | 0.26     | 48.12     | 0.66     |
| 34  | 48.46               | 48.45     | 0.01     | 47.94     | 0.52     | 48.81     | -0.35    |
| 35  | 49.14               | 49.27     | -0.13    | 49.16     | -0.02    | 48.98     | 0.16     |
| 36  | 48.48               | 48.17     | 0.31     | 48.42     | 0.06     | 49.13     | -0.65    |
| 37  | 41.44               | 41.90     | -0.46    | 41.22     | 0.22     | 41.46     | -0.02    |
| 38  | 42.77               | 43.34     | -0.57    | 42.99     | -0.22    | 42.98     | -0.21    |
| 39  | 42.41               | 44.06     | -1.65    | 44.39     | -1.98    | 44.27     | -1.86    |
| 40  | 42.43               | 42.69     | -0.26    | 42.21     | 0.22     | 42.53     | -0.10    |
| 41  | 43.11               | 43.20     | -0.09    | 43.01     | 0.10     | 43.45     | -0.34    |
| 42  | 40.21               | 44.29     | -4.08    | 45.58     | -5.37    | 44.25     | -4.04    |
| 43  | 45.09               | 43.22     | 1.87     | 43.62     | 1.47     | 41.87     | 3.22     |

Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry 2009

|     |                     | Model 1,  | Model 1, | Model 2,  | Model 2, | Model 3,  | Model 3, |
|-----|---------------------|-----------|----------|-----------|----------|-----------|----------|
| No. | Calc. BE (trans CO) | predicted | residual | predicted | residual | predicted | residual |
| 45  | 49.45               | 47.97     | 1.48     | 48.03     | 1.42     | 48.07     | 1.38     |
| 46  | 46.19               | 47.43     | -1.24    | 47.15     | -0.96    | 47.12     | -0.93    |
| 47  | 45.42               | 47.46     | -2.04    | 48.01     | -2.59    | 46.89     | -1.47    |
| 48  | 52.60               | 52.42     | 0.18     | 52.16     | 0.44     | 52.05     | 0.55     |
| 49  | 50.52               | 49.04     | 1.48     | 48.68     | 1.84     | 48.96     | 1.56     |
| 50  | 49.35               | 50.92     | -1.57    | 50.57     | -1.22    | 50.26     | -0.91    |
| 51  | 51.72               | 50.06     | 1.66     | 50.49     | 1.23     | 51.17     | 0.55     |
| 52  | 51.46               | 49.35     | 2.11     | 49.87     | 1.59     | 51.00     | 0.46     |
| 53  | 53.74               | 53.68     | 0.06     | 53.55     | 0.19     | 53.10     | 0.64     |
| 54  | 51.54               | 51.92     | -0.38    | 51.70     | -0.16    | 52.16     | -0.62    |
| 55  | 51.20               | 53.10     | -1.90    | 52.85     | -1.65    | 52.52     | -1.32    |
| 56  | 52.43               | 50.65     | 1.78     | 51.07     | 1.36     | 52.44     | -0.01    |
| 57  | 52.23               | 52.18     | 0.05     | 52.78     | -0.55    | 53.68     | -1.45    |
| 58  | 46.06               | 46.27     | -0.21    | 45.57     | 0.49     | 45.78     | 0.28     |
| 59  | 45.70               | 46.41     | -0.71    | 45.80     | -0.10    | 45.97     | -0.27    |
| 60  | 40.28               | 43.13     | -2.85    | 43.21     | -2.93    | 43.24     | -2.96    |
| 61  | 47.92               | 48.73     | -0.81    | 48.13     | -0.21    | 48.57     | -0.65    |
| 62  | 49.44               | 49.06     | 0.38     | 49.00     | 0.44     | 48.56     | 0.88     |
| 63  | 48.01               | 48.00     | 0.01     | 48.28     | -0.27    | 48.30     | -0.29    |
| 64  | 43.25               | 44.88     | -1.63    | 43.88     | -0.63    | 44.16     | -0.91    |
| 65  | 47.12               | 46.84     | 0.28     | 46.92     | 0.20     | 47.16     | -0.04    |
| 66  | 43.61               | 43.11     | 0.50     | 43.91     | -0.30    | 43.07     | 0.54     |
| 67  | 44.53               | 44.02     | 0.51     | 44.96     | -0.43    | 44.36     | 0.17     |
| 68  | 38.41               | 38.64     | -0.23    | 38.51     | -0.10    | 38.33     | 0.08     |
| 69  | 40.69               | 40.27     | 0.42     | 39.95     | 0.74     | 39.54     | 1.15     |
| 70  | 42.04               | 42.01     | 0.03     | 42.44     | -0.40    | 42.06     | -0.02    |
| 71  | 43.36               | 44.44     | -1.08    | 43.60     | -0.24    | 43.47     | -0.11    |
| 72  | 40.49               | 40.82     | -0.33    | 41.14     | -0.65    | 41.70     | -1.21    |
| 73  | 40.38               | 39.58     | 0.80     | 40.33     | 0.05     | 40.19     | 0.19     |
| 74  | 38.08               | 39.39     | -1.31    | 40.34     | -2.26    | 39.73     | -1.65    |
| 75  | 38.20               | 38.32     | -0.12    | 38.69     | -0.49    | 38.03     | 0.17     |
| 76  | 39.98               | 40.51     | -0.53    | 39.25     | 0.73     | 40.24     | -0.26    |
| 77  | 41.83               | 41.37     | 0.46     | 41.16     | 0.67     | 41.25     | 0.58     |
| 78  | 50.99               | 50.46     | 0.53     | 49.99     | 1.00     | 50.44     | 0.55     |
| 79  | 49.95               | 48.69     | 1.26     | 48.62     | 1.33     | 49.84     | 0.11     |
| 80  | 50.80               | 47.84     | 2.96     | 47.67     | 3.13     | 48.37     | 2.43     |
| 81  | 49.52               | 47.35     | 2.17     | 47.62     | 1.90     | 48.47     | 1.05     |
| 82  | 42.32               | 43.33     | -1.01    | 42.89     | -0.57    | 41.73     | 0.59     |
| 83  | 41.22               | 41.84     | -0.62    | 41.02     | 0.20     | 40.79     | 0.43     |
| 84  | 42.39               | 43.23     | -0.84    | 42.80     | -0.41    | 42.60     | -0.21    |
| 85  | 41.52               | 43.18     | -1.66    | 42.21     | -0.69    | 41.92     | -0.40    |
| 86  | 51.65               | 50.93     | 0.72     | 50.75     | 0.90     | 51.68     | -0.03    |
| 87  | 48.26               | 49.29     | -1.03    | 49.10     | -0.84    | 49.56     | -1.30    |
| 88  | 52.38               | 53.41     | -1.03    | 53.27     | -0.89    | 52.29     | 0.09     |
| 89  | 52.50               | 52.25     | 0.25     | 52.25     | 0.25     | 52.38     | 0.12     |

Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry 2009

|     |                     | Model 1,  | Model 1, | Model 2,  | Model 2, | Model 3,  | Model 3, |
|-----|---------------------|-----------|----------|-----------|----------|-----------|----------|
| No. | Calc. BE (trans CO) | predicted | residual | predicted | residual | predicted | residual |
| 90  | 52.76               | 51.09     | 1.67     | 52.17     | 0.59     | 50.92     | 1.84     |
| 91  | 52.70               | 52.43     | 0.27     | 52.36     | 0.34     | 52.50     | 0.20     |
| 92  | 51.62               | 52.94     | -1.32    | 52.61     | -0.99    | 52.04     | -0.42    |
| 93  | 52.46               | 52.71     | -0.25    | 52.67     | -0.21    | 52.20     | 0.26     |
| 94  | 51.68               | 50.33     | 1.35     | 50.55     | 1.13     | 50.53     | 1.15     |
| 95  | 50.27               | 49.21     | 1.06     | 49.64     | 0.63     | 49.78     | 0.49     |
| 96  | 50.94               | 51.04     | -0.10    | 51.31     | -0.37    | 51.39     | -0.45    |
| 97  | 50.62               | 50.50     | 0.12     | 50.98     | -0.36    | 51.04     | -0.42    |
| 98  | 45.37               | 46.05     | -0.68    | 46.06     | -0.69    | 45.32     | 0.05     |
| 99  | 48.18               | 45.47     | 2.71     | 46.05     | 2.13     | 46.24     | 1.94     |
| 100 | 47.28               | 45.43     | 1.85     | 46.26     | 1.02     | 46.21     | 1.07     |
| 101 | 44.58               | 47.60     | -3.02    | 46.57     | -1.99    | 45.83     | -1.25    |
| 102 | 40.61               | 42.19     | -1.58    | 41.84     | -1.23    | 41.26     | -0.65    |
| 103 | 41.26               | 41.25     | 0.01     | 40.63     | 0.63     | 39.99     | 1.27     |
| 104 | 42.61               | 41.92     | 0.69     | 42.22     | 0.39     | 42.45     | 0.16     |
| 105 | 41.57               | 40.93     | 0.64     | 41.49     | 0.08     | 41.28     | 0.29     |
| 106 | 42.79               | 41.20     | 1.59     | 41.20     | 1.59     | 42.39     | 0.40     |
| 107 | 44.57               | 42.95     | 1.62     | 43.34     | 1.23     | 44.11     | 0.46     |
| 108 | 44.97               | 43.77     | 1.20     | 44.56     | 0.41     | 45.52     | -0.55    |
| 109 | 42.16               | 41.22     | 0.94     | 41.32     | 0.84     | 41.41     | 0.75     |
| 110 | 41.57               | 41.55     | 0.02     | 41.96     | -0.39    | 42.01     | -0.44    |
| 111 | 42.37               | 40.92     | 1.45     | 41.40     | 0.97     | 41.45     | 0.92     |
| 112 | 47.22               | 47.53     | -0.31    | 47.47     | -0.25    | 47.92     | -0.70    |
| 113 | 48.42               | 48.63     | -0.21    | 48.85     | -0.43    | 49.48     | -1.06    |
| 114 | 47.62               | 46.64     | 0.98     | 46.98     | 0.64     | 47.60     | 0.02     |



Fig. S1: Principal component score plot (PC1 and PC2) for carbene ligands in LKB-C. Colours distinguish ground state electron configuration of free ligand (red = triplet, blue = singlet), shapes relate to substitution pattern, where triangle,  $\Delta$  = Schrock-type, circle,  $\circ$  = Fischer type, square,  $\Box$  = NHC/Arduengo.



Fig. S2: Matrix plot of PCs 1-4 for principal component analysis of carbene ligands.



Fig. S3: Principal component score plot (PC1 and PC2) for all ligands in LKB-C. Colours distinguish ground state electron configuration of free ligand (red = triplet, blue = singlet), shapes relate to substitution pattern, where triangle,  $\Delta$  = Schrock-type, circle,  $\circ$  = Fischer type, square,  $\Box$  = NHC/Arduengo, diamond,  $\diamond$  = other ligands.



Fig. S4: Principal component loadings (PC1 and PC2) for analysis on all ligands.



Fig. S4: Matrix plot of PCs 1-4 for principal component analysis of all ligands in LKB-C.