Supporting Information

Reactivity of CO₂ towards Mo[N(R)Ph]₃

Nigel J. Brookes,[†] Alireza Ariafard,^{†§} Robert Stranger,[‡] and Brian F. Yates^{†,*}

†School of Chemistry, University of Tasmania, Private Bag 75, Hobart Tas7001, Australia

‡Department of Chemistry, The Australian National University, Canberra ACT 0200, Australia

§ Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad

University, Shahrak Gharb, Tehran, Iran

1 Table of Contents

2	General Basis Set (GBS) 2	S2
3	CO ₂ and CS ₂ Bending Energies	S3
4	Oniom-opt linear transit	S6
5	Slower CS ₂ Bonding Onset	S6
6	Diagrams and Measurements of 1_Q, 4_D and 6_T	S7
7	Reaction of 4_D + 1_Q	S8
8	Geometric and energetic details of Model structures	S13
9	Full-Opt Structures	S19
10	Oniom-Opt Structures	S27
11	Model CS ₂ (or CS) Structures	S34
12	References	S35

2 General Basis Set (GBS) 2

This basis set is LANL2TZ+(3f) for Molybdenum.

It was obtained in the same way as described in Yates, B.F. for platinum.¹

a) The triple-zeta split was obtained by uncontracting the LANL2DZ basis set of Hay and Wadt to give: [341/321/31] -> [3311/3111/211]

b) The f-function exponent (1.043) was taken from Frenking and co-workers and then split according to the even scaling rule to give three exponents (4.172, 1.043, 0.26075).²

c) Diffuse s, p and d functions were added using an even tempered extension of the two outermost exponents. This gave exponents of s=0.0106044, p=0.0078217 and d=0.037293.

-C -H -N 0 6-311+G(2d,p) **** -Mo 0 0.000000000000 S 31.00 0.236100000D+01 -0.9121761947D+00 0.130900000D+01 0.1147745245D+01 0.450000000D+00 0.6097110301D+00 S 31.00 0.000000000000 0.236100000D+01 0.8139263079D+00 0.130900000D+01 -0.1136008569D+01 0.450000000D+00 -0.1161159582D+01 S 1 1.00 0.168100000D+00 0.1006479504D+01 0.000000000000 S 1 1.00 0.423000000D-01 0.10000000D+01 S 1 1.00 0.1064420000D-01 0.100000000D+01 Р 3 1.00 0.000000000000 0.489500000D+01 -0.9082579957D-01 0.104400000D+01 0.7042898967D+00 0.3877000000D+00 0.3973178981D+00 P 11.00 0.000000000000 0.499500000D+00 -0.1081945315D+00 Р 1 1.00 0.780000000D-01 0.1036809302D+01 Р 0.000000000000 1 1.00 0.247000000D-01 0.100000000D+01 Р 1 1.00 0.7821700000D-02 0.100000000D+01 0 000000000000 D 2100 0.299300000D+01 0.5270630009D-01 0.106300000D+01 0.5003907009D+00 D 11.00 0.3721000000D+00 0.100000000D+01 D 11.00 0.000000000000 0.117800000D+00 0.10000000D+01 D 11.00 0.3729300000D-01 0.100000000D+01 F 1 1.00 4.172000000D+00 0.100000000D+01 1 1.00 F 1.043000000D+00 0.100000000D+01 1 1.00 F 0.2607500000D+00 0.100000000D+01

Mo 0 lanl2dz

3 CO₂ and CS₂ Bending Energies

Table S1

	CO ₂		CS ₂		
	Model-Opt	Energy Relative		Model-Opt	Energy Relative
O-C-O Angle	Energy	to 180° (kJ mol ⁻¹)	O-C-O Angle	Energy	to 180° (kJ mol ⁻¹)
140.0	-188.5364058	116.92	140.0	-834.4536598	92.45
141.0	-188.5387805	110.69	141.0	-834.4555088	87.59
142.0	-188.5410782	104.66	142.0	-834.4572982	82.90
143.0	-188.5433005	98.82	143.0	-834.4590292	78.35
144.0	-188.5454484	93.18	144.0	-834.460703	73.96
145.0	-188.5475232	87.74	145.0	-834.4623208	69.71
146.0	-188.5495261	82.48	146.0	-834.4638834	65.61
147.0	-188.5514581	77.41	147.0	-834.465392	61.65
148.0	-188.5533203	72.52	148.0	-834.4668475	57.82
149.0	-188.5551138	67.81	149.0	-834.4682507	54.14
150.0	-188.5568394	63.28	150.0	-834.4696024	50.59
151.0	-188.5584983	58.92	151.0	-834.4709035	47.18
152.0	-188.5600912	54.74	152.0	-834.4721547	43.89
153.0	-188.5616191	50.73	153.0	-834.4733567	40.73
154.0	-188.563083	46.88	154.0	-834.4745101	37.71
155.0	-188.5644835	43.21	155.0	-834.4756157	34.80
156.0	-188.5658215	39.69	156.0	-834.476674	32.02
157.0	-188.5670979	36.34	157.0	-834.4776855	29.37
158.0	-188.5683133	33.15	158.0	-834.4786509	26.83
159.0	-188.5694686	30.12	159.0	-834.4795706	24.42
160.0	-188.5705645	27.24	160.0	-834.4804451	22.12
161.0	-188.5716016	24.52	161.0	-834.4812748	19.95
162.0	-188.5725808	21.95	162.0	-834.4820602	17.88
163.0	-188.5735026	19.53	163.0	-834.4828015	15.94
164.0	-188.5743678	17.26	164.0	-834.4834991	14.11
165.0	-188.5751769	15.13	165.0	-834.4841533	12.39
166.0	-188.5759306	13.15	166.0	-834.4847642	10.78
167.0	-188.5766295	11.32	167.0	-834.4853322	9.29
168.0	-188.5772742	9.62	168.0	-834,4858573	7.91
169.0	-188.5778652	8.07	169.0	-834,4863398	6.65
170.0	-188.5784029	6.66	170.0	-834,4867799	5.49
171.0	-188.578888	5.39	171.0	-834.4871774	4.45
172.0	-188.5793207	4.25	172.0	-834.4875329	3.51
173.0	-188 5797016	3 25	173.0	-834 4878463	2.69
174.0	-188.5800309	2.39	174.0	-834,4881176	1.98
175.0	-188.5803091	1.66	175.0	-834,488347	1.38
176.0	-188,5805363	1.06	176.0	-834,4885346	0.88
177.0	-188.5807128	0.60	177.0	-834.4886804	0.50

178.0	-188.5808388	0.27	178.0	-834.4887845	0.23
179.0	-188.5809143	0.07	179.0	-834.4888469	0.06
180.0	-188.5809402	0.00	180.0	-834.4888716	0.00

Figure S1. CO_2 and CS_2 bending energies relative to 180°

Figure S2. Destabilisation energy due to CO_2 and CS_2 bending during the $CX_2 + Mo(NH_2)_3$ interaction.

Figure S3. Graph displaying the initial $CO_2 + Mo(NH_2)_3$ interaction on the quartet surface (A), the bending energy (B) associated with each point of the initial interaction and the difference (A) – (B).

4 ONIOM-opt linear transit

Figure S4. Linear transit, at Oniom-opt level of theory, where the Mo-C distance is altered from 2.0 Å to 3.8 Å for the doublet and quartet CO_2 -Mo[N(^{*t*}Bu)Ph]₃species.

5 Slower CS₂ Bonding Onset

The apparent slower onset of bonding in CO_2 is a slight distortion of the linear transit data due to the measurement method. The transits consider the interaction based on Mo-C distances, when in fact the initial interactions of CO_2 and CS_2 differ due to the orbitals involved. Figure III highlights the initial interaction where CO_2 bonding is via the carbon centred π^* orbital, while CS_2 is via the sulfur bound π non-bonding orbital giving an apparent 'early-onset' based on Mo-C bonding distance.

Figure S5. Molecular orbital diagrams of the attractive component of the initial interaction of a) π^* of CO₂ with d_z² of Mo(NH₂)₃ b) π non-bonding CS₂ with d_z² Mo(NH₂)₃

6 Diagrams and Measurements of 1_Q, 4_D and 6_T

Figure S6. Pictorial representation of CO 1_Q, 4_D and 6_T.

Figure S7. Pictorial representation of CS 1_Q, 4_D and 6_T.

	Dimension	4_D	6_T
	Mo1-C	1.936	1.777
CO	C-0	1.170	1.268
	O-Mo2		2.054
	C-O-Mo		129.9°
	Mo1-C	1.861	1.756
CS	C-S	1.594	1.700
	S-Mo2		2.436
	C-S-Mo		96.8°

Table S2 Dimensions from Figures S3 and S4. All measurements in Å

7 Reaction of $4_D + 1_Q$.

The second section of this analysis is concerned with the potential for further reaction within the profile described in Figure 1 of the manuscript, that being $\mathbf{4_D} + \mathbf{1_Q}$. This may appear hypothetical since $\mathbf{4_D}$ can not be produced in our proposed reaction mechanism, but it should be remembered that $\mathbf{4_D}$ has been synthesised by an alternate route³ and found to be unreactive towards additional reactant $\mathbf{1_Q}$ (Mo[N(^{*t*}Bu)Ar]₃). This contrasts to the analogous CS reaction where $\mathbf{4_D}(\mathbf{CS})$ does react with additional $\mathbf{1_Q}$ to form a diamagnetic Mo-CS-Mo $\mathbf{6_S}(\mathbf{CS})$ product.

Firstly consider the Model-opt reaction analysis. Our calculations without Gibbs free energy correction, in reasonable agreement with those of Christian,⁴ indicate that the reaction $4_D + 1_Q \rightarrow 6_T$ is exothermic by -76.0 kJ mol⁻¹. Should the reaction proceed to the singlet **6** S it would have a similar value of -72.9 kJ mol⁻¹. Compare this with our previous calculations on the CS equivalent, ⁵ where the reaction $4_D(CS) +$ 1 $\mathbf{Q} \rightarrow \mathbf{6}$ S(CS) is exothermic by -156.5 kJ mol⁻¹. This -82.6 kJ mol⁻¹ difference in exothermicity between the CO and CS reaction analogues is rather surprising since the Model-opt structures of **1_Q**, **4_D**, **6_S** (and **6_T**) for both the CO and CS analogues appear remarkably similar in geometry, even to the rotation of one amide at one end of the 6_T and 6_S moiety (see supporting information). Both analogues show some activation of the C=O (and C=S) bond when the second MoL₃ coordinates, along with the corresponding shortening of the M-C bond length. Certainly from a structural perspective it would appear there should be little difference in reaction thermodynamics. The electronic properties of CO and CS are however, quite different. We have mentioned previously that the CO_2 orbital energies are significantly different (lower) to those of CS₂ and it similarly follows for CO versus CS. The carbonyl group has lower lying orbital energies than CS, and its π bonding is far stronger. It follows that the stability afforded by the bonding interaction with the second reactant will be less significant for CO when compared with the analogous CS complex. Indeed, when comparing natural bond orbital electron populations in $6_T(CO)$ to that in $6_T(CS)$ we find a series of subtle differences, as outlined in Table S3.

		6_T		6_S		4_D
	Charge on CO (or CS)	Mo1	Mo2	Mo1	Mo2	Мо
		Total d				
Mo2 × y		4.88	4.25	4.84	4.43	4.76
	-0.395	$d_{xz} = 1.30$	$d_{xz} = 1.01$	$d_{xz} = 1.25$	$d_{xz} = 0.68$	$d_{xz} = 1.02$
		$d_{yz} = 1.34$	$d_{yz} = 1.06$	$d_{yz} = 1.31$	$d_{yz} = 1.14$	$d_{yz} = 1.61$
		$d_{z^2} = 0.80$	$d_{z^2} = 0.63$	$d_{z^2} = 0.81$	$d_{z^2} = 0.57$	$d_{z^2} = 0.74$

Table S3. Natural Bond Orbital population analysis of 6_T, 6_S and 4_D for the CO and CS analogues.

		Total d =	Total d =	Total d =	Total d =	Total d
Moz		4.76	4.48	4.75	4.70	4.66
	-0.309	$d_{xz} = 1.17$	$d_{xz} = 1.06$	$d_{xz} = 1.16$	$d_{xz} = 0.73$	$d_{xz} = 0.95$
Mo1.,,,,		$d_{yz} = 1.22$	$d_{yz} = 1.11$	$d_{yz} = 1.19$	$d_{yz} = 1.63$	$d_{yz} = 1.44$
		$d_{z^2} = 0.89$	$d_{z^2} = 0.79$	$d_{z^2} = 0.90$	$d_{z^2} = 0.75$	$d_{z^2} = 0.84$

Firstly, Mo1 receives less σ donation from CO as seen by its lower electron density d_z² orbital (0.80 versus 0.89) and donates less density to the CO π orbitals as seen from higher density d_{xz} and d_{yz} orbitals (1.30 and 1.34 versus 1.17 and 1.22). Similarly Mo2 receives less σ donation from O since its d_z² orbital is less populated (0.63 versus 0.79). This pattern is reciprocated for the **6**_**S** structure. The bonding in Mo-CO (**4**_**D**) has been investigated by our group in the past where it was found that M-CO π back donation dominates the interaction.^{6,7}

We have established a significant reduction in exothermicity which is related to CO energetics when compared to CS, but it should be remembered the overall $4_D + 1_Q \rightarrow 6_T$ reaction is still exothermic by -76.0 kJ mol⁻¹ and, according to the uncorrected Model-opt calculations, the reaction should still proceed. However, two corrections yet to be considered are due to entropy and geometric distortion due to steric bulk. Both of these will have destabilising effects and both are likely to be very similar for both the CS and CO species since their reaction geometries are so similar. Essentially the same destabilisation correction due to entropy and steric bulk would be expected for both reactions. Given that the CS reaction analogue proceeds while the CO does not, one might expect this overall correction to be greater than the $6_T(CO)$ formation energy but less than the $6_S(CS)$ formation energy, ie greater than +76.0 kJ mol⁻¹ but less than +156.5 kJ mol⁻¹.

In regard to an entropy correction, a relatively simple calculation of Gibbs free energy at the Model-opt level of theory provides us with a correction of +67.0 and +64.7 kJ mol⁻¹ for the **6_T** CO and CS

formation respectively, and +71.8 and +75.0 kJ mol⁻¹ for the 6_S CO and CS formation. Steric corrections are unfortunately quite a challenge for systems of this size, particularly given the array of potential conformers presented by ligand rotation. However, a moderately accurate approximation can be made based on the known $6_S(CS)$ x-ray crystal structure.⁸ Using this structure as the starting point for our Oniom-opt calculations removes errors associated with conformer choice and vastly reduces computational time. If we assume the corrections on the singlet surface are of similar magnitude to the triplet surface a moderately accurate general correction can be made.

The Oniom-opt structures obtained are displayed in Figure S8 and as expected the CS analogue is in close agreement with its crystal structure (see above for exact coordinates and comparison). The figure indicates that the CS analogue has maintained a bent arrangement as found in the smaller Model-opt calculation due to its longer Mo-S and C-S bond distances, while the CO analogue shows greater distortion from the Model-opt geometry and a near linear central axis. The approximate steric correction, calculated as $\Delta E(\text{Oniom-opt}) - \Delta E(\text{Model-opt})$, for the **6**_**S**(**CO**) formation was found to be +116 kJ mol⁻¹, while for the **6**_**S**(**CS**) an unexpectedly large correction of +134 kJ mol⁻¹ was obtained. From the geometries one might expect the CS analogue to show a low level of destabilisation due to steric inclusion but unfortunately the calculated figures do not match this finding.

Figure S8. Model-opt and Oniom-opt structures of CO and CS analogues of 6_S.

If we assume these steric bulk corrections can be similarly applied to 6_T , our overall correction for entropy and steric bulk is between +183 and +209 kJ mol⁻¹, a value which is outside the expected +76.0 to +156.5 range by some +26 kJ mol⁻¹. These final reaction energies and corrections are illustrated in Table S4 along with the final corrected energies.

Table S4.	Reaction energies and corrections of the	$4_D + 1_Q \rightarrow 6$	_T (or 6_S) reactions.	All values in
kJ mol ⁻¹ .				

CO Reaction	$4_D+1_Q \rightarrow 6_T$	$4_D+1_Q \rightarrow 6_S$
ΔE uncorrected	-76.0	-72.0
Model-opt Gibbs Free Energy Correction	+67.0 +183	+71.8
Oniom-opt Steric Bulk Correction	+115.9*_	+115.9
CO Corrected Energy	+107	+116
CS Reaction		
ΔE uncorrected	-143.9	-156.5
Model-opt Gibbs Free Energy Correction	+64.7	+75.0
Oniom-opt Steric Bulk Correction	+134.0*	+134.0
CS Corrected Energy	+56	+52

* Singlet 6_S steric correction applied to triplet 6_T

Even though we have not taken into account a full exploration of conformational space, our calculations suggest that large corrections due to entropy and steric bulk destabilisation exist, and although they may be overestimated it is clear that the true entropy and steric bulk correction is at the high end of the previously established +76.0 to +156.5 kJ mol⁻¹ range. Our figures from Table S4 would suggest the corrections are overestimated by around +52 kJ mol⁻¹, since the calculated (corrected) gibbs free energy of the CS $4_D + 1_Q \rightarrow 6_S$ reaction should be negative, as it is known to proceed experimentally. If our calculated (corrected) CO $4_D + 1_Q \rightarrow 6_T$ reaction was endothermic by +107 kJ mol⁻¹ and our corrections are overestimated by some +52 kJ mol⁻¹, it still places the CO $4_D + 1_Q \rightarrow 6_T$ reaction endothermic by around +55 kJ mol⁻¹ (ie 107 – 52). This reaction will thermodynamically not proceed.

8 Geometric and energetic details of Model structures

 CO_2 B3LYP/GBS(1) = -188.577570 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -188.650304 a.u. CCSD(T)/GBS(1)//B3LYP/GBS(1) = -188.114308a.u. Enthalpy Correction = 0.015204 Gibbs Free Energy Correction = -0.009752

Aton	nic No x-co	oord	y-coord	z-coord
8 6	$0.000000 \\ 0.000000$	$\begin{array}{c} 0.000000\\ 0.000000\end{array}$	1.169591 0.000000	
8	0.000000	0.000000	-1.169591	

Structure 1_Q B3LYP/GBS(1) = -235.389457 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -235.494256 a.u. CCSD(T)/GBS(1)//B3LYP/GBS(1) = -234.428708 a.u. Enthalpy Correction = 0.082433 Gibbs Free Energy Correction = 0.039541

Ato	mic No x-c	oord	y-coord	z-coord
42	0.000000	0.000079	0.000000	
7	0.000000	1.981422	0.000000	
1	0.090038	2.566539	0.826505	
7	-1.715834	-0.990670	-0.000032	
1	-2.177712	-1.360784	-0.826632	
7	1.715834	-0.990670	0.000032	
1	2.177712	-1.360784	0.826632	
1	2.267327	-1.205835	-0.826491	
1	-0.090038	2.566539	-0.826505	
1	-2.267327	-1.205835	0.826491	

Structure 1_D B3LYP/GBS(1) = -235.3666549 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -235.470088 a.u. CCSD(T)/GBS(1)//B3LYP/GBS(1) = -234.4003381 a.u. Enthalpy Correction = 0.082743Gibbs Free Energy Correction = 0.042062

Ato	mic No x-co	oord	y-coord	z-coord
42	0.332737	0.054316	0.000000	
7	0.065478	-0.902700	1.676069	
1	-0.827787	-1.145830	2.094445	
7	-0.081101	1.953243	0.000000	
1	-0.299110	2.492351	-0.834357	
7	0.065478	-0.902700	-1.676069	
1	-0.827786	-1.145830	-2.094445	
1	0.809075	-1.490121	-2.057949	
1	0.809075	-1.490121	2.057949	
1	-0.299110	2.492351	0.834357	

Structure 2_Q

 $B3LYP/GBS(1) = -423.972047 \quad a.u.$ $B3LYP/GBS(2)//B3LYP/GBS(1) = -424.146998 \quad a.u.$ $CCSD(T)/GBS(1)//B3LYP/GBS(1) = -422.551043 \quad a.u.$ Enthalpy Correction = 0.099216 Gibbs Free Energy Correction = 0.041774

Atomic No x-coord			y-coord	z-coord
42	0.553115	-0.222847	2.733487	
7	-0.353906	-1.372256	1.393893	
7	0.609685	1.728186	2.374161	
7	1.373287	-0.989462	4.361338	
1	-0.001606	2.413922	2.810555	
1	0.882945	-1.166776	5.234447	
1	-1.340975	-1.616004	1.413175	
1	1.353790	2.201762	1.867820	

1	0.124490	-1.922248	0.684716
1	2.344503	-1.277676	4.448738
8	0.020814	1.199781	-0.927747
6	-1.000769	1.232633	-0.358819
8	-2.048320	1.288683	0.159249

Structure 2_Q to 2_D MECP/GBS1 B3LYP/GBS(1) = -423.948453884 a.u.

z-coord

Ato	mic No x-co	y-coord		
42	0.740134	-0.208005	1.993692	
7	1.167847	-1.612245	0.705816	
7	1.646693	1.498556	1.715431	
7	0.341497	-0.822775	3.805262	
1	1.120333	2.372234	1.766431	
1	-0.454310	-0.444949	4.320297	
1	1.023475	-2.604082	0.877465	
1	2.639003	1.677722	1.843033	
1	1.719249	-1.475640	-0.137062	
1	1.016208	-1.224821	4.450685	
8	-3.204362	1.015041	1.209340	
6	-2.410526	1.444061	1.949547	
8	-1.648161	1.911199	2.712090	

Structure 2_Q to 2_D MECP/GBS2

B3LYP/GBS(2) = -424.122903 a.u.

Ato	omic No x-	coord	y	/-coord	z-coord
42	-0.763002	5 0.00	94296	0.000496	8
7	-1.8403008	3 1.55	32297	-0.4574072	2
7	-0.742240	5 -1.42	96883	-1.301293	C
7	-0.665374	1 -0.42	07257	1.8919804	1
1	0.1409180) -1.85	50160	-1.5748259)
1	0.2278154	4 -0.634	46572	2.3293323	5
1	-2.1941850	5 2.22	01277	0.2187195	5
1	-1.5164493	3 -2.03	20496	-1.552245	7
1	-2.2806247	7 1.70	15394	-1.3579706	5
1	-1.427704	1 -0.75	76689	2.4670539)
8	3.2531444	1.19	14295	-0.2680107	7
6	2.7904052	0.148	34578	-0.0714322	2
8	2.3756846	5 -0.92	14309	0.1322205	5

Structure 2_D

B3LYP/GBS(1) = -423.985609 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -424.161869 a.u. CCSD(T)/GBS(1)/B3LYP/GBS(1) = -422.553281 a.u. Enthalpy Correction = 0.099871 Gibbs Free Energy Correction = 0.052922

Atomic No x-coord y-coord z-coord

42	-0.304412	-1.684353	1.355381
7	-2.037318	-2.323323	0.758097
7	-0.448142	-1.071567	3.213116
7	1.294693	-2.767366	1.162801
1	0.356121	-0.842980	3.795831
1	1.511439	-3.588996	1.722978
1	-2.584630	-3.041803	1.227325
1	-1.278136	-0.621151	3.596369
1	-2.286776	-2.250677	-0.227365
1	1.782784	-2.787623	0.268383
8	0.223054	1.135439	-0.001836
6	0.063717	-0.053372	0.067744
8	0.031569	-1.073607	-0.704911

Structure 3_T B3LYP/GBS(1) = -659.4235013 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -659.701137 a.u. CCSD(T)/GBS(1)//B3LYP/GBS(1) = -657.031063 a.u. Enthalpy Correction = 0.185042Gibbs Free Energy Correction = 0.116251

Ato	mic No x-co	ord	y-coord	z-coord
42	-0.208568	2.555056	2.998987	
7	-1.926100	1.658737	3.151711	
7	-0.179103	4.275421	3.887951	
7	1.298662	1.424619	3.478977	
1	0.669564	4.760335	4.175783	
1	1.548074	1.179731	4.436673	
1	-2.392973	1.458002	4.035490	
1	-0.993346	4.877250	4.002207	
1	-2.248660	1.019143	2.424663	
1	1.656678	0.725173	2.827831	
8	0.120408	3.583853	0.040486	
6	-0.010339	2.726041	1.004012	
8	-0.057880	1.466632	0.708119	
1	-1.903853	1.581665	-3.065495	
7	-1.435310	1.306632	-2.207203	
42	0.161758	2.199095	-1.533695	
1	-1.860960	0.485867	-1.784338	
7	0.317718	3.538788	-3.013819	
7	1.831896	1.219823	-1.787206	
1	0.649655	4.474429	-2.787015	
1	0.576889	3.307008	-3.970608	
1	2.094176	0.426353	-1.206995	
1	2.409958	1.279591	-2.620466	

Structure 3_S B3LYP/GBS(1) = -659.423658 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -659.697617 a.u. CCSD(T)/GBS(1)//B3LYP/GBS(1) = -657.027338 a.u. Enthalpy Correction = 0.186027Gibbs Free Energy Correction = 0.120436

Atomic No x-coord y-coord z-coord

42	-0.064415	2.342873	2.976791
7	-1.980532	2.668505	2.979619
7	0.986418	3.977506	3.027912
7	0.481401	1.061330	4.319967
1	1.112998	4.552173	3.860508
1	1.429696	0.978031	4.683406
1	-2.513757	2.954049	3.800335
1	1.126426	4.536539	2.185440
1	-2.463046	2.951597	2.125802
1	-0.104349	0.301297	4.662748
8	-0.200798	2.736430	0.481073
6	0.274594	1.635525	1.111742
8	0.694658	0.695741	0.406043
1	-1.444730	0.635490	-3.079958
7	-1.029049	0.647403	-2.149157
42	0.104454	2.068880	-1.457551
1	-0.974451	-0.297956	-1.770967
7	-0.542625	3.557879	-2.516753
7	1.927301	1.939487	-2.123430
1	0.006347	4.383762	-2.763821
1	-1.518818	3.709286	-2.778965
1	2.232105	2.235542	-3.050101
1	2.578518	1.257875	-1.734637

Structure 4_D B3LYP/GBS(1) = -348.747844 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -348.893196 a.u. CCSD(T)/GBS(1)//B3LYP/GBS(1) = -347.492091 a.u. Enthalpy Correction = 0.094406 Gibbs Free Energy Correction = 0.049417

Ator	nic No x-co	ord y	y-coord	z-coord
42	-0.299222	-0.105416	1.290147	
7	-1.999078	-1.027619	1.727568	
7	-0.260733	1.797691	1.770696	
7	1.311508	-1.190545	1.576164	
1	-0.215482	2.093359	2.746467	
1	1.632667	-1.416959	2.518077	
1	-2.902638	-0.558955	1.713640	
1	0.003639	2.572070	1.167743	
1	-2.127009	-2.031583	1.618102	
1	2.065790	-1.346105	0.912868	
8	-0.074984	0.215872	-1.790305	
6	-0.121531	0.113335	-0.625338	

Structure 5_D B3LYP/GBS(1) = -310.673746 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -310.817551 a.u. CCSD(T)/GBS(1)//B3LYP/GBS(1) = -309.533073 a.u. Enthalpy Correction = 0.088036 Gibbs Free Energy Correction = 0.044663

Ato	mic No x-co	oord	y-coord	z-coord
42	0.058984	-0.123576	1.866068	
7	-1.667669	-0.743308	2.570793	
7	0.036031	1.718734	2.560406	
7	1.634743	-0.940297	2.712319	
1	0.856617	2.314277	2.464536	
1	2.216619	-1.636537	2.255328	
1	-2.087351	-0.418112	3.437720	
1	-0.806890	2.284686	2.477153	
1	-2.227390	-1.475863	2.144483	
1	1.924569	-0.797561	3.675985	
8	0.114082	-0.154799	0.147979	

Structure 6_T B3LYP/GBS(1) = -584.169893 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -584.416394 a.u. CCSD(T)/GBS(1)//B3LYP/GBS(1) = -581.964367 a.u. Enthalpy Correction = 0.179974Gibbs Free Energy Correction = 0.114452

Atom	nic No	x-coo	ord y	-coord	z-coord
42	-0.97	8678	-2.445060	-0.920603	
7	-2.194	1596	-3.403455	-2.187067	
7	-1.738	3356	-1.741367	0.770256	
7	0.904	333	-3.078703	-0.887310	
1	-2.020)230	-2.359061	1.530111	
1	1.174	089	-3.898838	-0.345468	
1	-2.731	1714	-3.020820	-2.957134	
1	-1.885	5414	-0.775394	1.039054	
1	-2.514	1232	-4.350962	-1.988984	
1	1.734	054	-2.612030	-1.235093	
8	-0.617	7650	0.103314	-2.547098	
6	-0.769	9294	-0.936558	-1.836813	
42	-0.90	3563	0.374203	-4.562533	
7	0.787	085	1.348434	-4.712487	
7	-1.018	3833	-1.551296	-4.829140	
7	-2.292	2171	1.272956	-5.626152	
1	1.382	2057	1.438383	-3.890043	
1	1.339	219	1.427996	-5.563466	
1	-0.916	5927	-2.189298	-4.032323	
1	-0.809	9581	-2.026579	-5.704981	
1	-3.184	4818	0.841305	-5.857122	
1	-2.363	3349	2.284245	-5.721731	

Structure 6_S B3LYP/GBS(1) = -584.168566 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -584.414886 a.u. CCSD(T)/GBS(1)//B3LYP/GBS(1) = -581.957903 a.u. Enthalpy Correction = 0.180523Gibbs Free Energy Correction = 0.116302

Atomic No x-coord y-coord z-coord

42	-0.151033	-0.168857	-0.090000
7	-1.848854	-1.045705	-0.618689
7	-0.289327	1.652976	0.686781
7	1.305743	-1.335260	0.587541
1	-0.565583	1.796683	1.656989
1	1.251255	-1.782380	1.501336
1	-2.177250	-1.202759	-1.568358
1	-0.028324	2.538044	0.268563
1	-2.532694	-1.369245	0.063343
1	2.185765	-1.566281	0.141976
8	0.805762	0.451080	-2.925489
6	0.447846	0.211267	-1.710429
42	-0.562070	0.025043	-4.319107
7	0.187351	-0.141692	-6.104895
7	-1.813347	-1.437900	-3.970189
7	-1.734692	1.538514	-4.449688
1	0.926669	-0.805570	-6.339581
1	-0.302537	0.135009	-6.956071
1	-1.505675	-2.374298	-3.705056
1	-2.746558	-1.490325	-4.380067
1	-1.520660	2.392970	-4.966683
1	-2.527862	1.688868	-3.823022

Structure 7_D B3LYP/GBS(1) = -273.412894 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -273.529349 a.u. CCSD(T)/GBS(1)//B3LYP/GBS(1) = -272.345912 a.u. Enthalpy Correction = 0.088698 Gibbs Free Energy Correction = 0.047172

z-coord	y-coord	Atomic No x-coord		
	2.079294	0.031079	0.077951	42
	2.559785	-0.918103	-1.624961	7
	2.602998	1.922225	0.019775	7
	2.543886	-1.039775	1.656580	7
	3.579224	2.206572	0.076559	1
	3.511953	-1.174930	1.942332	1
	2.575609	-0.467829	-2.537308	1
	1.991059	2.712735	0.190214	1
	2.535948	-1.929127	-1.737227	1
	1.911528	-1.296601	2.406622	1
	0.335158	0.136112	0.205078	6

9 Full-Opt Structures

Structure 1_Q (rx4tbuphqmc)

B3LYP/GBS(1) = -1400.264476a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -1400.680278 a.u.Enthalpy Correction = 0.69558 Gibbs Free Energy Correction = 0.582432

Ator	nic No x-co	ord	y-coord	z-coord
42	0.033910	-0.003613	-0 703881	
7	-0 597324	1 905579	-0.653458	
7	-1 314236	-1 496188	-0 696383	
, 7	2.001078	-0.407982	-0.581877	
6	2.922624	-1.032289	-1.576066	
6	-0.435340	2.997351	-1.658092	
6	-2.262783	-1.950184	-1.755007	
6	-3.721154	-1.773879	-1.279882	
1	-4.420778	-2.086894	-2.064281	
1	-3.926235	-2.374013	-0.387774	
1	-3.923515	-0.724437	-1.037861	
6	-2.025970	-3.430056	-2.126388	
1	-2.200737	-4.091256	-1.272160	
1	-2.708068	-3.735039	-2.929240	
1	-0.998218	-3.583165	-2.475088	
6	-1.800896	3.535304	-2.137632	
1	-2.368187	3.982841	-1.316159	
1	-1.657029	4.307668	-2.902909	
1	-2.403399	2.730527	-2.574703	
6	0.385418	4.157307	-1.055150	
1	0.530420	4.952522	-1.796305	
1	-0.119781	4.593746	-0.187749	
1	1.370883	3.803243	-0.731909	
6	4.098024	-0.094827	-1.926441	
1	4.715250	0.120845	-1.049304	
1	4.742541	-0.560723	-2.681677	
1	3.730262	0.855057	-2.331424	
6	3.481866	-2.362179	-1.025666	
l	4.136397	-2.839187	-1.765158	
1	4.066112	-2.203609	-0.11360/	
l	2.666180	-3.055367	-0./90821	
6	-1.2385/9	2.228695	0.586144	
6	-0.4/9183	2.512931	1./3/133	
6	-2.042/3/	2.213392	0.700055	
1	-1.100318	2.770170	2.939337	
6	-3 261056	2.312443	1.001308	
1	-3 240650	1 073108	-0.166485	
6	-2 /02701	2 770079	3 050005	
1	-0.491055	2.770079	3 834931	
1	-4 346166	2.983411	1 994934	
1	-2 975223	2 977076	4 011475	
6	2.531189	-0.088922	0 710671	
6	3.210608	1.124062	0.943750	
6	2.335730	-0.956402	1.802045	
6	3.683459	1.448848	2.215497	
1	3.350499	1.814073	0.117280	
6	2.800837	-0.624175	3.075638	
1	1.799190	-1.886273	1.639884	
6	3.480624	0.576538	3.288280	
1	4.204344	2.390705	2.370159	
1	2.628217	-1.307448	3.903281	
1	3.843910	0.833718	4.279645	
6	-1.377398	-2.144644	0.579973	
6	-0.661751	-3.332762	0.828888	
6	-2.108838	-1.578541	1.641401	
6	-0.687688	-3.936626	2.086366	
1	-0.072713	-3.765098	0.025892	
6	-2.126042	-2.179968	2.900996	

7	0	0	0	r	c
/-	ι,	()	U	ч.	ι
_	-	~	~	•	-

1	-2.648732	-0.652435	1.468711
6	-1.421053	-3.363451	3.128674
1	-0.126658	-4.852789	2.254252
1	-2.691043	-1.718008	3.706603
1	-1.436365	-3.831120	4.109490
6	0.323025	2.434984	-2.871111
1	1.312802	2.065483	-2.579850
1	-0.231647	1.614295	-3.341099
1	0.463616	3.217755	-3.625700
6	-2.046826	-1.087112	-3.008828
1	-2.216803	-0.026249	-2.791308
1	-1.031033	-1.203700	-3.404046
1	-2.747437	-1.385248	-3.797600
6	2.130110	-1.325074	-2.860137
1	2.782534	-1.788213	-3.609643
1	1.301014	-2.014415	-2.664000
1	1.723551	-0.404358	-3.294625

Structure 1_D (rx2tbuphqm3f) B3LYP/GBS(1) = -1400.239242 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -1400.657254 a.u.Enthalpy Correction = 0.695472 Gibbs Free Energy Correction = 0.588733

z-coord

Atc	mic No x-c	oord	y-coord
42	0.518185	0.007330	-0.270196
7	-0.878695	-1.252288	-0.975821
7	2.287873	-0.731435	0.177822
7	0.059015	1.947251	-0.555835
6	0.931299	3.082810	-0.988330
6	-1.106078	-1.452990	-2.446427
6	3.514372	-1.432098	-0.233498
6	3.517330	-2.846480	0.383573
1	4.420234	-3.398346	0.095308
1	3.486777	-2.792569	1.477624
1	2.643329	-3.413808	0.045207
6	4.774669	-0.668867	0.226678
1	4.830382	-0.616306	1.318772
1	5.678422	-1.178565	-0.128112
1	4.779885	0.351788	-0.171923
6	-0.769276	-2.894929	-2.883981
1	-1.423072	-3.624507	-2.397910
1	-0.897106	-3.002758	-3.968075
1	0.268961	-3.144201	-2.635867
6	-2.572935	-1.143991	-2.815696
1	-2.720064	-1.239024	-3.898497
1	-3.263354	-1.833603	-2.320733
1	-2.840657	-0.124647	-2.518252
6	0.245863	3.922104	-2.087724
1	-0.679506	4.382690	-1.730210
1	0.915492	4.727094	-2.413113
1	0.009629	3.303947	-2.961427
6	1.259822	3.991811	0.215877
1	1.918422	4.813026	-0.091539
1	0.352455	4.430899	0.642637
1	1.764060	3.418584	1.001519
6	-1.709970	-2.027661	-0.107040

6	-2.867697	-1.465647	0.461364
6	-1.381960	-3.351955	0.239768
6	-3.664114	-2.199452	1.341325
1	-3.127018	-0.441550	0.211275
6	-2.178922	-4.084536	1.122498
1	-0.482337	-3.795576	-0.176710
6	-3.325839	-3.513344	1.676741
1	-4.552526	-1.740182	1.768220
1	-1.897698	-5.102978	1.379706
1	-3.945857	-4.082662	2.364113
6	-1.242931	2.275610	-0.050395
6	-2.340067	2.436874	-0.919021
6	-1.470104	2.393756	1.332482
6	-3.612798	2.716848	-0.421861
1	-2.184341	2.328691	-1.987644
6	-2.746109	2.667880	1.828116
1	-0.637986	2.254581	2.014971
6	-3.822693	2.833778	0.955238
1	-4.444329	2.836239	-1.111985
1	-2.896807	2.748784	2.901739
1	-4.815611	3.047059	1.341891
6	1.861731	-0.412884	1.479362
6	2.442985	0.613280	2.312070
6	0.637475	-1.034203	1.921214
6	1.825355	0.997864	3.475634
1	3.377405	1.071665	2.003926
6	0.009363	-0.568113	3.114912
1	0.373547	-2.019972	1.555665
6	0.580757	0.424402	3.874594
1	2.283994	1.760471	4.100815
1	-0.910716	-1.050120	3.434983
1	0.107867	0.756348	4.794766
6	-0.194663	-0.485298	-3.223013
1	-0.432498	0.559123	-2.996173
1	0.865550	-0.661552	-2.997370
1	-0.322598	-0.630640	-4.302298
6	3.510244	-1.533276	-1.765071
1	2.639775	-2.098386	-2.115019
1	3.483562	-0.538929	-2.224076
1	4.412667	-2.047740	-2.113979
6	2.243093	2.521094	-1.559748
1	2.888291	3.346135	-1.884186
1	2.788707	1.935893	-0.813485
1	2.054335	1.878740	-2.427350

Structure 2_Q (ecqco2tbu5qmf) B3LYP/GBS(1) = -1588.843768 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -1589.329873 a.u. Enthalpy Correction = 0.712582 Gibbs Free Energy Correction = 0.588394

Aton	nic No x-coord	y-coord	z-coord
Мо	-0.19113 0.02056	-0.62167	
Ν	-2.11532 -0.07768	-1.20215	
Ν	0.81865 -1.67621	-0.23077	
Ν	0.65495 1.80894	-0.25419	
С	1.74018 2.53555	-0.97545	

С	-2.76229 0.3453 -2.47928
С	1.26306 -2.7648 -1.14997
Ċ	0 54023 -4 08461 -0 8038
н	0.84761 -4.88225 -1.49086
н	0.04701 + 0.00223 + 1.49000 0.77118 - 4.41062 - 0.21521
11 11	0.77110 - 4.41002 - 0.21321 0.54562 - 2.0612 - 0.99406
П	-0.54505 -5.9015 -0.88400
C	2.78841 -2.98923 -1.07071
Н	3.09/45 -3.2934 -0.0662
Н	3.09235 -3.78001 -1.76717
Н	3.32975 -2.07566 -1.34185
С	-3.48606 -0.83159 -3.16847
Н	-4.30232 -1.21795 -2.55099
Н	-3.91609 -0.50485 -4.12298
Н	-2.78873 -1.65239 -3.37195
С	-3 77839 1 47622 -2 21128
й	-4 24515 1 80318 -3 14832
н	-4.57384 1 14457 -1 5365
11 11	-4.57584 1.14457 -1.5585
П	-5.28190 2.33900 -1.73440
C	1.24226 3.88689 -1.53261
Н	0.92959 4.56096 -0.72951
H	2.04201 4.385 -2.09393
Н	0.3921 3.73914 -2.20852
С	2.93529 2.79041 -0.03181
Н	3.74366 3.30257 -0.568
Н	2.64689 3.41814 0.81723
Н	3.32626 1.8473 0.36623
С	-2.96262 -0.57438 -0.15838
С	-3.36136 0.26054 0.90257
Ċ	-3.37088 -1.92326 -0.12744
Ċ	-4 13739 -0 23374 1 95252
Ĥ	-3 04008 1 29762 0 89989
C	-4 15507 -2 41206 0 91773
й	-3 05177 -2 58609 -0 92565
\hat{C}	-4 54226 -1 56972 -1 9636
с u	A 4226 0 42003 2 76444
11 11	4,4230 0.42333 2.70444
п	-4.45050 -5.45081 0.91945
Н	-5.14/84 -1.95328 2./8031
C	0.10889 2.42237 0.92054
С	-0.92995 3.37066 0.83184
С	0.55544 2.0483 2.20207
С	-1.48977 3.9315 1.98019
Н	-1.30184 3.64678 -0.15013
С	-0.0131 2.60365 3.34958
Н	1.34182 1.30425 2.28501
С	-1.03367 3.55079 3.24511
Н	-2.29082 4.66077 1.88645
н	0 34326 2 29144 4 3279
Н	-1 47436 3 98343 4 13926
C	1 00957 -1 86693 1 17693
c	2 2320 -1 55185 1 80107
č	-0.0486 -2.31004 1 08801
C	-0.0+00 $-2.5170+$ $1.700912.20102$ 1.60260 2.10110
U U	2.37103 - 1.07200 - 3.10110
Н	5.058/1 -1.18522 1.20081
C	0.109/4 -2.4498 3.36962
H	-1.00104 -2.55408 1.52349
С	1.33037 -2.14125 3.97251
Н	3.34509 -1.44236 3.63858
Н	-0.72664 -2.7927 3.97335
Η	1.45386 -2.24444 5.04724
С	-1.67364 0.87458 -3.42643

Η	-1.14665 1.72659 -2.98194
Η	-0.93976 0.09612 -3.66607
Η	-2.12273 1.21057 -4.36847
С	0.90045 -2.36815 -2.59015
Η	-0.18088 -2.22682 -2.69971
Η	1.405 -1.44159 -2.88782
Η	1.20981 -3.15495 -3.28808
С	2.21265 1.6639 -2.1497
Η	3.02929 2.1596 -2.68721
Η	2.5821 0.69426 -1.79798
Η	1.40199 1.48591 -2.86572
0	5.49642 -0.15163 -1.81129
С	5.56381 -0.08515 -0.64572
0	5.63014 -0.02012 0.52062

Structure 2_D to 2_Q MECP B3LYP/GBS(1) = -1588.797681 a.u.

Ato	mic No x-c	coord	y-coord
42	1.0559042	-0.6830092	-1.4247995
7	2.1710628	0.6313398	-0.4020881
7	2.1654472	-2.0409262	-2.4116145
7	-0.6153188	-1.3159514	-0.5067868
6	-2.0204130	-0.7620433	-0.3814755
6	2.0275107	-2.6817904	-3.7822399
6	2.9182028	1.8634827	-0.8554986
6	3.2875793	-2.4605431	-1.6196892
6	3.1330501	-3.4399729	-0.6239544
6	4.5726213	-1.9249276	-1.8353055
6	4.2250184	-3.8596367	0.1406540
1	2.1532954	-3.8750315	-0.4595414
6	5.6609838	-2.3488163	-1.0750111
1	4.7078165	-1.1767399	-2.6096114
6	5.4914587	-3.3170605	-0.0790715
1	4.0795011	-4.6167814	0.9067083
1	6.6450121	-1.9256570	-1.2614233
1	6.3413328	-3.6471259	0.5120053
6	-0.3933274	-2.5963315	0.1085725
6	-0.7673594	-3.7924622	-0.5341560
6	0.1917962	-2.6794462	1.3845360
6	-0.5618709	-5.0277276	0.0802419
1	-1.2099235	-3.7422253	-1.5225613
6	0.4027779	-3.9180240	1.9934946
1	0.4750562	-1.7654041	1.8943697
6	0.0264266	-5.0965381	1.3469961
1	-0.8600812	-5.9391591	-0.4315407
1	0.8600430	-3.9578725	2.9787325
1	0.1845444	-6.0598154	1.8243157
6	2.1924676	0.3675178	1.0095603
6	3.1134211	-0.5459899	1.5529290
6	1.2988033	1.0123044	1.8860445
6	3.1336728	-0.8085616	2.9242051
1	3.8123207	-1.0474812	0.8935195
6	1.3243913	0.7509861	3.2561007

z-coord

1	0.5774595	1.7123724	1.4796368
6	2.2414930	-0.1630618	3.7823700
1	3.8527476	-1.5205893	3.3203866
1	0.6249587	1.2609934	3.9136854
1	2.2601258	-0.3669207	4.8496706
6	2.3636743	-1.6457178	-4.8737428
1	3.3881689	-1.2753571	-4.7557280
1	2.2829738	-2.1016345	-5.8683869
1	1.6795144	-0.7961127	-4.8413011
6	2.0656798	3.1296336	-0.6304320
1	1.8677586	3.2860076	0.4345678
1	2.6001249	4.0139690	-0.9986627
1	1.1144761	3.0541030	-1.1622084
6	-2.6968389	-1.2628754	0.9130900
1	-3.6766582	-0.7812072	1.0070013
1	-2.8558569	-2.3446984	0.9090897
1	-2.1063669	-1.0051767	1.7982910
6	-1.9640615	0.7727942	-0.2982515
1	-1.4187938	1.0856983	0.5978683
1	-1.4859570	1.2248523	-1.1676494
1	-2.9815778	1.1753896	-0.2329647
6	-2.8786816	-1.1964180	-1.5875513
1	-2.9733134	-2.2866177	-1.6287633
1	-3.8899741	-0.7796961	-1.5030551
1	-2.4441782	-0.8552393	-2.5298409
6	0.5893623	-3.2046795	-3.9525125
1	0.3932601	-4.0059721	-3.2327112
1	-0.1485023	-2.4135560	-3.8166108
1	0.4564974	-3.6130193	-4.9619549
6	2.9769702	-3.8864159	-3.9487213
1	2.7820259	-4.3493585	-4.9224744
1	4.0314068	-3.5978589	-3.9202749
1	2.8098762	-4.6427112	-3.1756606
6	4.2435237	2.0017550	-0.0749488
1	4.8044726	2.8554468	-0.4717711
1	4.0798974	2.1780343	0.9920100
1	4.8626404	1.1052184	-0.1845381
6	3.2711896	1.7349282	-2.3471151
1	3.9113618	0.8650510	-2.5185648
1	2.3818734	1.6548713	-2.9734612
1	3.8204218	2.6266947	-2.6700820
8	0.1146644	1.5094871	-2.7571882
6	-0.0970871	0.3974565	-3.2200890
8	-0.6266431	-0.2307770	-4.1005514

Structure 2_D (ecdtbuqm2f) B3LYP/GBS(1) = -1588.831399 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -1589.317823 a.u.Enthalpy Correction = 0.713345 Gibbs Free Energy Correction = 0.601548

y-coord Atomic No x-coord z-coord 42 0.276368 0.079076 -0.834336 7 -1.623587 -0.484690 -1.041211

7	0.514995	1 902195	-0 029062
7	1 600531	-1 228762	-0.097556
6	2 470215	2 200840	0.742270
0	2.470213	-2.299840	-0.745279
6	1.4/0856	3.053321	-0.253661
6	-2.551346	-0.351159	-2.230912
6	-0.576316	2.172052	0.870872
6	-0 484873	1 788462	2 220550
6	-1 736161	2 850457	0.445833
6	1 51 41 25	2.030437	2 112002
0	-1.514155	2.081603	3.118093
1	0.404568	1.269749	2.559692
6	-2.761718	3.141067	1.343753
1	-1.826933	3.139359	-0.595605
6	-2.654221	2.760180	2.686176
1	-1 419850	1 776317	4 156862
1	3 647523	3 666304	0.005051
1	-3.047323	3.000394	0.993931
I	-3.453965	2.990657	3.384864
6	1.694716	-1.092245	1.330606
6	2.750548	-0.368915	1.919491
6	0.745254	-1.687501	2.177010
6	2 844172	-0 237070	3 303143
1	3 /07052	0.08/032	1 276907
1	0.02(201	1.547(21	1.270907
6	0.836381	-1.54/621	3.565093
I	-0.060059	-2.26/414	1.741754
6	1.882393	-0.822387	4.134736
1	3.669016	0.324306	3.734687
1	0.085522	-2.014592	4.196848
1	1 954741	-0 716345	5 213779
6	2 097417	1 245294	0.012021
0	-2.08/41/	-1.343284	0.013921
6	-2.690856	-0.801244	1.158801
6	-1.957152	-2.744217	-0.077193
6	-3.148042	-1.630719	2.184455
1	-2.803122	0.273462	1.232687
6	-2.422078	-3.570550	0.946090
1	-1 472258	-3 173709	-0.946378
6	-3.018812	-3.017003	2 082871
1	-3.010012	-3.017005	2.062671
1	-3.608978	-1.18/965	3.063439
1	-2.311265	-4.648278	0.858016
1	-3.378595	-3.661593	2.880312
6	0.930236	3.996068	-1.348256
1	-0.023477	4.444947	-1.051759
1	1 639820	4 815481	-1 517232
1	0.803230	3 456665	2 280772
1	2 499900	1 502002	2.20772
0	-2.488890	-1.392903	-3.143040
1	-2.848/43	-2.489142	-2.62916/
1	-3.128553	-1.438827	-4.021339
1	-1.466338	-1.764769	-3.489668
6	3.235258	-3.120401	0.317850
1	3 793785	-3 910402	-0 195869
1	3 052080	2 51/803	0.878187
1	2.550000	2.514093	1.024465
I	2.339990	-3.39/818	1.034403
6	1.57/606	-3.282603	-1.526113
1	0.878386	-3.783239	-0.847205
1	1.011451	-2.772805	-2.306083
1	2.197365	-4.053021	-2.001210
6	3.507585	-1.646900	-1.677869
1	4 118786	-0.921325	-1 129824
1 1	T. 1 10 / 00 1 177760	0.721323	1.127024
1	4.1///08	-2.412322	-2.00/030
I	3.030027	-1.136675	-2.515332
6	2.847464	2.512835	-0.674524
1	3.245922	1.838490	0.088422

1	2.806648	1.993690	-1.631187
1	3.546127	3.350566	-0.783968
6	1.666757	3.850131	1.054863
1	2.406661	4.638960	0.879754
1	0.744530	4.328659	1.396245
1	2.039583	3.208122	1.860289
6	-3.997537	-0.156580	-1.725548
1	-4.658246	-0.002362	-2.585948
1	-4.363994	-1.026119	-1.173456
1	-4.073058	0.721326	-1.074723
6	-2.177044	0.897319	-3.051215
1	-2.111581	1.783826	-2.412472
1	-1.235969	0.778472	-3.588636
1	-2.954335	1.082041	-3.801376
8	0.685001	-0.621195	-2.804279
6	1.034621	0.613485	-2.710177
8	1.486493	1.438758	-3.468399

Oniom-Opt Structures 10

Structure 1_Q (rxtbuphb3b3) B3LYP/GBS(1) = -1393.954182 a.u. B3LYP/GBS(2)/B3LYP/GBS(1) = -1400.67907835 a.u.Enthalpy Correction = 0.699853 Gibbs Free Energy Correction = 0.58663

Atoi	nic No x-co	oord	y-coord	z-coord
42	-0.383790	-0.093129	0.753555	
7	-1.671539	1.441552	0.649599	
7	1.589199	0.268339	0.823538	
7	-1.058195	-1.980444	0.663621	
6	-1.035540	-3.083139	1.682015	
6	-2.714143	1.922331	1.616197	
6	2.445304	0.896363	1.883862	
6	3.040180	2.228152	1.364271	
1	3.650012	2.698094	2.144091	
1	3.667181	2.052254	0.484875	
1	2.229998	2.910184	1.084643	
6	3.593976	-0.050372	2.310660	
1	4.257789	-0.258794	1.466647	
1	4.181051	0.414044	3.110999	
1	3.179690	-0.995982	2.677120	
6	-2.453827	3.389797	2.036800	
1	-2.510076	4.056664	1.171693	
1	-3.203748	3.705870	2.770814	
1	-1.458630	3.475436	2.487132	
6	-4.120248	1.807564	0.979065	
1	-4.884502	2.142702	1.689318	
1	-4.184426	2.422426	0.076263	
1	-4.318039	0.765207	0.706766	
6	-2.463550	-3.605080	1.973185	

1	-2.913100	-4.024293	1.068589
1	-2.425430	-4.387252	2.739884
1	-3.092958	-2.784452	2.334674
6	-0.150679	-4.251145	1.181056
1	-0.117843	-5.048183	1.932490
1	-0.547969	-4.663533	0.248619
1	0.867346	-3.890458	0.998384
6	-1.578797	2.111585	-0.622225
6	-2.185276	1.563773	-1.768003
6	-0.810708	3.283742	-0.769274
6	-2.033702	2.171755	-3.015574
1	-2.756803	0.648551	-1.669155
6	-0.668199	3.893800	-2.015968
1	-0.316462	3.694187	0.102804
6	-1.280306	3.340624	-3.144656
1	-2.501452	1.728009	-3.887347
1	-0.072977	4.795792	-2.108804
1	-1.164646	3.811938	-4.113809
6	-1.556583	-2.297341	-0.650592
6	-2.934753	-2.235976	-0.938444
6	-0.669421	-2.599439	-1.700799
6	-3.407721	-2.481112	-2.228094
1	-3.622569	-1.980478	-0.141664
6	-1.144996	-2.834548	-2.992035
1	0.393884	-2.624596	-1.495100
6	-2.514487	-2.781529	-3.260692
1	-4.472253	-2.429570	-2.429606
1	-0.443202	-3.054196	-3.788865
1	-2.882186	-2.965183	-4.263623
6	2.215991	-0.064198	-0.430343
6	2.880072	-1.294883	-0.604064
6	2.107596	0.797162	-1.538337
6	3.427547	-1.644271	-1.838916
1	2.944113	-1.974670	0.236832
6	2.648545	0.440488	-2.775002
1	1.575984	1.734014	-1.421773
6	3.314678	-0.777280	-2.929805
1	3.934620	-2.596304	-1.952911
1	2.543842	1.113601	-3.618594
1	3.734634	-1.052016	-3.890518
6	-2.655784	1.025597	2.870254
1	-2.847801	-0.019491	2.602933
1	-1.672032	1.096864	3.347831
1	-3.415829	1.347173	3.591570
6	1.555701	1.188737	3.109851
1	0.736964	1.863797	2.836196
1	1.134096	0.259683	3.509612
1	2.153398	1.665138	3.895546
6	-0.431909	-2.520479	2.985462
1	-0.399261	-3.306757	3.748362
1	0.588089	-2.160065	2.811319
1	-1.042219	-1.693253	3.364657

Structure 1_D (rx2tbuphfb3) B3LYP/GBS(1) = -1393.931567 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -1400.653951 a.u. Enthalpy Correction = 0.699419 Gibbs Free Energy Correction = 0.593532

Ato	mic No x-co	oord	y-coord
42	-0.494229	-0.250002	-0.271782
7	0.296597	1.445610	-0.998438
7	-2.417803	-0.262564	0.190775
7	0.615030	-1.892148	-0.577739
6	0.177438	-3.292277	-0.920795
6	0.458402	1.685776	-2.484274
6	-3.759982	0.266850	-0.167251
6	-3.835131	1.781062	0.139080
1	-4.821380	2.175629	-0.130566
1	-3.663574	1.960302	1.205737
1	-3.068390	2.312328	-0.434968
6	-4.839197	-0.486454	0.645179
1	-4.686644	-0.328083	1.717827
1	-5 836216	-0 121736	0 373993
1	-4 782379	-1 559266	0.433548
6	-0.301288	2 957953	-2 932685
1	0.106779	3 847034	-2 444406
1	-0.207818	3 081/72	-2.444400
1	1 362077	2 867825	2 677101
1	-1.302977	2.007023	-2.0//191
0	1.930083	1.825559	-2.848129
1	2.000255	1.970284	-3.929142
1	2.398999	2.682459	-2.331965
I	2.49/404	0.922074	-2.549/5/
6	1.111683	-3.911382	-1.988625
1	2.135296	-3.993382	-1.612739
1	0.752650	-4.913395	-2.248602
1	1.112432	-3.291710	-2.891902
6	0.188406	-4.177871	0.348968
1	-0.139714	-5.193041	0.098794
1	1.196429	-4.228660	0.771841
1	-0.486686	-3.757051	1.100922
6	0.839206	2.471095	-0.148979
6	2.121628	2.330356	0.411031
6	0.086720	3.610478	0.192627
6	2.632274	3.295730	1.279737
1	2.705303	1.451263	0.166659
6	0.598045	4.574042	1.065207
1	-0.908795	3.722888	-0.219885
6	1.874101	4.422593	1.611621
1	3 623355	3 165837	1 700767
1	-0.002902	5 440017	1 320977
1	2 271200	5 169695	2 289062
6	1 956366	-1 724084	-0.075798
6	3 030160	1 552850	0.050833
6	2 200600	1 645212	1 206457
6	2.200009	-1.045215	0.474612
1	4.320879	-1.525552	-0.4/4013
I	2.852/49	-1.380152	-2.0258/1
0	3.490112	-1.410/04	1./88555
I	1.3/08/5	-1./43513	1.995110
0	4.558138	-1.253631	0.903007
1	5.148543	-1.194581	-1.170147
1	3.656470	-1.345096	2.858173
1	5.558255	-1.071537	1.278972
6	-1.847826	-0.290281	1.498520
6	-1.970351	-1.416776	2.386540
6	-0.927386	0.775613	1.848723
6	-1.189216	-1.506741	3.509539

z-coord

1	-2.699829	-2.181847	2.143431
6	-0.104505	0.610671	3.006533
1	-1.072959	1.778113	1.464668
6	-0.218136	-0.498765	3.807959
1	-1.299114	-2.350738	4.182366
1	0.588548	1.406369	3.258320
1	0.399536	-0.602081	4.693029
6	-0.128265	0.472962	-3.239882
1	0.378084	-0.453053	-2.944791
1	-1.203329	0.376559	-3.046042
1	0.007534	0.610254	-4.319173
6	-3.971810	0.017558	-1.672282
1	-3.206782	0.541060	-2.254556
1	-3.900984	-1.053333	-1.887206
1	-4.958065	0.381871	-1.979532
6	-1.255930	-3.233016	-1.489931
1	-1.601466	-4.249602	-1.710029
1	-1.941684	-2.769152	-0.774934
1	-1.275159	-2.649983	-2.417555

Structure 4_D (ecdcomoqmqm2) B3LYP/GBS(1) = -1507.30782567 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -1514.063647 a.u. Enthalpy Correction = 0.711781 Gibbs Free Energy Correction = 0.600136

Ato	mic No x-c	coord	y-coord	z-coord
42	0.142025	-0.309750	-0.688811	
7	0.755836	-1.988591	0.224890	
7	1.306093	1.334040	-0.729131	
7	-1.835328	-0.037019	-0.786439	
6	-2.817426	-0.038079	-1.948039	
6	1.007761	-3.404590	-0.226406	
6	2.709342	1.591431	-1.227041	
6	3.606720	2.079944	-0.062642	
1	4.624762	2.241147	-0.433935	
1	3.233779	3.019593	0.353658	
1	3.630345	1.325436	0.730259	
6	2.685432	2.655131	-2.351327	
1	2.311327	3.611909	-1.976031	
1	3.699872	2.803997	-2.738289	
1	2.040809	2.313348	-3.167947	
6	2.258585	-3.501697	-1.134379	
1	3.163992	-3.229153	-0.583538	
1	2.375377	-4.527422	-1.503101	
1	2.149041	-2.829337	-1.989271	
6	1.166919	-4.340544	0.996095	
1	1.260754	-5.375509	0.649584	
1	2.053668	-4.086296	1.582999	
1	0.288554	-4.263517	1.645527	
6	-2.951954	-1.456442	-2.550686	
1	-3.299367	-2.161985	-1.789149	
1	-3.674884	-1.446929	-3.375064	
1	-1.989550	-1.799273	-2.937318	

6	-4.215459	0.442874	-1.484348
1	-4.875626	0.494410	-2.357016
1	-4.652880	-0.242849	-0.754070
1	-4.151272	1.437194	-1.032096
6	1.261726	-1.549416	1.494921
6	0.364453	-1.062528	2.466372
6	2.645416	-1.492766	1.783135
6	0 833434	-0 500423	3 658518
1	-0.698962	-1 146263	2 287176
6	3 103982	-0.957068	2 983076
1	3 353004	-1 855464	1 048815
6	2 200854	-0 444862	3 924478
1	0 118747	-0 124406	4 381874
1	4 169584	-0.924918	3 183525
1	2 564000	-0.024910	4 853064
1	2.304009	-0.020100	4.855004
6	2.413321	-0.002037 1 173047	1 1 2 0 0 1 1
6	-2.911112	-1.1/394/	1.139911
0	-2.444/09	1.194400	1.208/44
0	-3.421080	-1.140980	2.43/382
1	-2.8/1285	-2.103050	0.584801
0	-2.944/33	1.21/015	2.5/3293
I	-2.070024	2.100070	0.810444
6	-3.434996	0.050088	3.162443
1	-3.796674	-2.0588/8	2.888640
1	-2.949696	2.149804	3.125851
I	-3.8246/3	0.069444	4.173713
6	0.661313	2.448380	-0.075024
6	-0.100005	3.375390	-0.809225
6	0.749905	2.601962	1.319816
6	-0.751088	4.428394	-0.166193
1	-0.188374	3.245699	-1.880233
6	0.103089	3.661792	1.959362
1	1.316883	1.879849	1.894020
6	-0.648862	4.578022	1.220974
1	-1.339694	5.130762	-0.745790
1	0.181167	3.764689	3.035899
1	-1.153069	5.398302	1.718645
6	-0.231020	-3.863165	-1.028037
1	-1.123983	-3.795770	-0.398915
1	-0.374474	-3.230179	-1.906443
1	-0.100683	-4.899160	-1.360532
6	3.303130	0.283467	-1.786905
1	3.255584	-0.510246	-1.035929
1	2.768559	-0.041353	-2.681554
1	4.352427	0.452765	-2.053766
6	-2.312889	0.945955	-3.028155
1	-3.030656	0.989134	-3.855657
1	-2.208520	1.943742	-2.590990
1	-1.345811	0.630028	-3.422173
6	0.402798	-0.829788	-2.503899
8	0.583754	-1.158777	-3.618445

Structure 6_T (imtmocomoqmqm4) B3LYP/GBS(1) = -2901.265416 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -2914.730754 a.u. Enthalpy Correction = 1.415787 Gibbs Free Energy Correction = 1.226409

z-coord

Ator	nic No	x-cooi	d	y-coord
42	-2.5132	270 -	0.019785	0.005384
42	2.5652	.54 -	0.007315	0.002117
7	-3.0360	47 1	.830813	-0.560493
7	-3.0684	62 -(0.459189	1.883865
7	-3.1025	00 -1	.405317	-1.316459
7	2.9766	88 1	.698180	-1.009425
7	3.0032	73 0	.019499	1.979466
7	3.0355	79 -1	.724704	-0.959857
6	-4.2004	59 (.279481	2.396057
6	-4.0139	12 1	.368469	3.267128
6	-5.5133	73 -(0.077345	2.044157
6	-5.1059	81 2	2.076242	3.770556
1	-3.0058	91 1	.655938	3.536681
6	-6.6053	36 0	.636406	2.545043
1	-5.6685	97 -(0.913690	1.375543
6	-6.4070	12 1	.714501	3.409982
1	-4.9411	50 2	.913280	4.439966
1	-7.6108	53 (.343893	2.262187
1	-7.2543	47 2	2.265847	3.800628
6	-4.2627	38 -2	2.188944	-0.957838
6	-4.1224	80 -3	8.489956	-0.441022
6	-5.5595	94 -1	.675204	-1.129279
6	-5.2429	69 -4	1.253246	-0.110543
1	-3.1280	35 -3	3.890573	-0.294246
6	-6.6799	66 -2	2.438689	-0.791480
1	-5.6814	21 -().676775	-1.527607
6	-6.5275	35 -3	3.730174	-0.282909
1	-5.1129	22 -5	5.253935	0.286392
1	-7.6721	72 -2	2.023897	-0.933357
1	-7.3972	66 -4	1.323173	-0.025048
6	-4.1778	62 1	.935845	-1.441332
6	-4.0063	05 2	.147628	-2.821441
6	-5.4861	47 1	.843605	-0.937156
6	-5.1085	86 2	.262851	-3.669184
1	-3.0026	61 2	.215164	-3.220144
6	-6.5885	68 1	.954520	-1.788677
1	-5.6308	40 1	.683882	0.123134
6	-6.4053	71 2	.164597	-3.156684
1	-4.9551	46 2	.425633	-4.730227
1	-7.5902	42 1	.881900	-1.378808
I	-7.2606	23 2	2.253530	-3.816348
6	4.2999	22 -0	0.588944	2.192198
6	5.4825	80 0	.165759	2.116639
6	4.4072	94 - I	.9/0/21	2.447820
6	6.7289	15 -0	0.439163	2.300058
I	5.4174	40 1	.224414	1.90/361
6	5.6510	12 -2	.5/2192	2.638381
I	3.5020	94 -2 40 1	.564262	2.468040
0	6.8200	40 -l	.806012	2.56/1/6
1	/.02/0	04 U	.103311	2.229708
1	3./110 7 7077	ל- ספ מי דר	0.03/942	2.8323/3
1	1.18/1	ムレー2 オフロロ	.2/2813	2./12919
0	4.2310	+/ 2 10 2	146620	-0.30384/
0	4.3110	10 3	.140020	0.490292
0	3.4381	00 1	.0049/1	-1.131013

6	5 532551	3 647518	0 945573
1	2 20(474	2.444150	0.075079
1	3.3804/4	3.444130	0.9/50/8
6	6.682388	2.301604	-0.695132
1	5 429511	1 086994	-1 958586
6	6 726211	2 227211	0.249221
0	0./20311	3.22/211	0.348321
1	5.556060	4.356964	1.766007
1	7 600776	1 957553	-1 157888
1	7 676773	3 61/321	0.608114
I	1.070773	5.014521	0.098114
6	4.315365	-1.568868	-1.619973
6	5.519494	-1.827193	-0.944406
6	4 384340	-1 117086	-2 953191
6	4.304340	-1.117000	-2.933191
6	6./49/55	-1.64/458	-1.582351
1	5.483536	-2.163783	0.081998
6	5 612499	-0 945728	-3 591746
1	2 460001	0.992100	2 460022
I	5.402281	-0.882109	-3.409933
6	6.803635	-1.212322	-2.907243
1	7.665049	-1.846655	-1.035944
1	5 642231	0 505151	4 617004
1	5.042251	-0.393131	-4.01/994
I	7.759020	-1.07/047	-3.401657
6	2.372143	-3.054938	-1.215971
6	2 309207	0 436523	3 251079
6	2.307207	0.450525	2.049141
6	2.293/2/	2.549131	-2.048141
6	-2.586200	-1.573375	2.801400
6	-2 581215	-1 666355	-2.721370
6	2.501215	2 166944	0.054212
0	-2.310000	5.100844	-0.034313
6	1.865309	3.918448	-1.464987
1	1.205426	3.763791	-0.606267
1	2 740289	4 489801	-1 141564
1	2.740209	4.409001	-1.141304
I	1.331451	4.501011	-2.224911
6	1.886542	-3.172320	-2.681794
1	1 201784	-2 350049	-2.909597
1	2 733270	3 13/013	3 373360
1	2.735270	-3.134013	-3.373309
I	1.361412	-4.123387	-2.829013
6	1.878813	-0.791977	4.090887
1	1 225950	-1 434969	3 493073
1	2 752225	1.454709	4 410200
1	2.752525	-1.30/980	4.410388
1	1.335094	-0.464725	4.984751
6	-3.635204	3.934005	0.690117
1	1 162711	1 166801	0.014222
1	4.015220	4.100074	1.522520
I	-4.015338	3.337/97	1.522520
1	-3.227729	4.874019	1.079513
6	-3 704954	-1 430973	-3 760005
1	4 531011	2 120770	3 606856
1	-4.331911	-2.129/19	-3.000830
I	-4.084582	-0.409419	-3.680027
1	-3.300306	-1.584966	-4.766885
6	-3 743941	-2 553552	3 111643
1	4 550240	2.000002	2 651202
1	-4.550540	-2.049000	5.051205
I	-4.145060	-2.972414	2.185693
1	-3.363102	-3.369181	3.736879
6			
1	-2.065728	-3110771	-2 847195
1	-2.065728	-3.119771	-2.847195
	-2.065728 -2.880809	-3.119771 -3.836610	-2.847195 -2.714619
1	-2.065728 -2.880809 -1.635026	-3.119771 -3.836610 -3.265846	-2.847195 -2.714619 -3.844198
1 1	-2.065728 -2.880809 -1.635026 -1.290968	-3.119771 -3.836610 -3.265846 -3.309999	-2.847195 -2.714619 -3.844198 -2.099158
1 1 6	-2.065728 -2.880809 -1.635026 -1.290968 -2.050696	-3.119771 -3.836610 -3.265846 -3.309999 -0.986451	-2.847195 -2.714619 -3.844198 -2.099158 4 129280
1 1 6	-2.065728 -2.880809 -1.635026 -1.290968 -2.050696	-3.119771 -3.836610 -3.265846 -3.309999 -0.986451	-2.847195 -2.714619 -3.844198 -2.099158 4.129280
1 1 6 1	-2.065728 -2.880809 -1.635026 -1.290968 -2.050696 -2.848899	-3.119771 -3.836610 -3.265846 -3.309999 -0.986451 -0.486287	-2.847195 -2.714619 -3.844198 -2.099158 4.129280 4.684822
1 1 6 1 1	-2.065728 -2.880809 -1.635026 -1.290968 -2.050696 -2.848899 -1.653350	-3.119771 -3.836610 -3.265846 -3.309999 -0.986451 -0.486287 -1.798179	-2.847195 -2.714619 -3.844198 -2.099158 4.129280 4.684822 4.749065
1 1 6 1 1	-2.065728 -2.880809 -1.635026 -1.290968 -2.050696 -2.848899 -1.653350 -1.247266	-3.119771 -3.836610 -3.265846 -3.309999 -0.986451 -0.486287 -1.798179 -0.273180	-2.847195 -2.714619 -3.844198 -2.099158 4.129280 4.684822 4.749065 3.928210
1 1 6 1 1 1	-2.065728 -2.880809 -1.635026 -1.290968 -2.050696 -2.848899 -1.653350 -1.247266 2.005027	-3.119771 -3.836610 -3.265846 -3.309999 -0.986451 -0.486287 -1.798179 -0.273180 4.032271	-2.847195 -2.714619 -3.844198 -2.099158 4.129280 4.684822 4.749065 3.928210 1.220721
1 6 1 1 1 6	-2.065728 -2.880809 -1.635026 -1.290968 -2.050696 -2.848899 -1.653350 -1.247266 -2.005927	-3.119771 -3.836610 -3.265846 -3.309999 -0.986451 -0.486287 -1.798179 -0.273180 4.033371	-2.847195 -2.714619 -3.844198 -2.099158 4.129280 4.684822 4.749065 3.928210 -1.230731
1 6 1 1 6 1	-2.065728 -2.880809 -1.635026 -1.290968 -2.050696 -2.848899 -1.653350 -1.247266 -2.005927 -2.823801	-3.119771 -3.836610 -3.265846 -3.309999 -0.986451 -0.486287 -1.798179 -0.273180 4.033371 4.296294	-2.847195 -2.714619 -3.844198 -2.099158 4.129280 4.684822 4.749065 3.928210 -1.230731 -1.907369

1	-1.234004	3.497149	-1.788505
6	3.247384	2.791096	-3.248725
1	3.575413	1.831638	-3.660721
1	2.719372	3.353980	-4.026952
1	4.130132	3.359129	-2.943135
6	3.251311	1.326716	4.104215
1	3.568853	2.195832	3.519056
1	2.718026	1.671698	4.997360
1	4.140705	0.774102	4.418370
6	3.365236	-4.210263	-0.920141
1	3.728263	-4.132484	0.109658
1	2.853310	-5.170874	-1.047058
1	4.224002	-4.178437	-1.595966
6	-1.419963	-0.698218	-3.013664
1	-0.573616	-0.880490	-2.350404
1	-1.088290	-0.839865	-4.048387
1	-1.742108	0.340769	-2.896255
6	-1.349994	2.903315	0.915238
1	-0.516276	2.412102	0.409509
1	-0.994977	3.858121	1.319221
1	-1.674628	2.278153	1.752655
6	-1.451589	-2.343670	2.101171
1	-0.591074	-1.700161	1.914768
1	-1.135576	-3.174819	2.741530
1	-1.794894	-2.756134	1.147587
6	1.170466	-3.214755	-0.267385
1	0.410917	-2.458111	-0.462523
1	0.728918	-4.209093	-0.406973
1	1.498175	-3.114358	0.772351
6	1.065580	1.269953	2.898094
1	1.350951	2.132035	2.287145
1	0.344791	0.674996	2.337059
1	0.593361	1.627119	3.821295
6	1.054475	1.804581	-2.572661
1	1.343401	0.824186	-2.964374
1	0.324318	1.650101	-1.777712
1	0.591280	2.389828	-3.376271
6	0.769562	-0.057888	0.003752
8	-0.491166	-0.160072	0.007054

11 Model CS₂ (or CS) Structures

Geometries taken from A. Ariafard, N. J. Brookes, R. Stranger and B. F. Yates, *J. Am. Chem. Soc.*, 2008, **130**, 11928-11938.

Structure 4_D

B3LYP/GBS(1) = -671.694251 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -671.841335 a.u. Enthalpy Correction = 0.092339Gibbs Free Energy Correction = 0.045905

Atomic No x-coord			y-coord	
7	-1.310762	-0.001955	1.831040	
7	-0.891314	-1.682360	-0.969636	
7	-0.892524	1.683781	-0.966686	
1	-1.827643	1.977182	-1.249028	
1	-0.190136	2.209712	-1.479325	
1	-1.300013	-0.835567	2.415211	
1	-1.304135	0.831904	2.414922	
1	-0.188648	-2.207005	-1.483195	
1	-1.826305	-1.976671	-1.251417	
6	1.265434	0.000370	0.024121	
16	2.856470	0.000174	0.116195	
42	-0.595168	-0.000019	-0.015096	

z-coord

z-coord

Structure 6_T B3LYP/GBS(1) = -907.137037 a.u. B3LYP/GBS(2)//B3LYP/GBS(1) = -907.390388 a.u. Enthalpy Correction = 0.178055Gibbs Free Energy Correction = 0.110073

Atomic No x-coord y-coord -1.536207 0.810085 1.794366 7 7 -3.588143 -1.314495 0.158483 -2.381224 1.443759 -1.393638 7 1 -3.106212 2.159012 -1.398160 -1.920550 1.414072 -2.296487 1 1 -2.122595 1.305930 2.462508 1 -0.588088 0.711965 2.143476 -3.474716 -2.289522 -0.092891 1 -4.555611 -1.124764 0.412825 1 -0.805732 -0.757956 -0.492289 6 0.637908 -1.466189 -1.042357 16 42 -2.222137 0.111997 0.073948 42 2.164958 0.079388 0.059996 1.753263 -0.487375 1.892390 7 7 1.442821 1.743318 -0.668782 7 4.099030 -0.018810 -0.307868 1 1.040701 -1.186006 2.092823 2.029692 0.010662 2.7355401 1 0.486175 1.763904 -1.026234 1 1.683705 2.652037 -0.274283 1 4.515861 0.328995 -1.169402 1 4.706118 -0.717824 0.115654

12 References

- 1. B. F. Yates, Journal of Molecular Structure: THEOCHEM, 2000, 506, 223-232.
- 2. A. W. Ehlers, M. Bohme, S. Dapprich, A. Gobbi, A. Hollwarth, V. Jonas, K. F. Kohler, R. Stegmann, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.*, 1993, **208**, 111-114.
- 3. J. C. Peters, A. L. Odom and C. C. Cummins, *Chem. Commun.*, 1997, 1995-1996.
- 4. G. Christian, R. Stranger, B. F. Yates and C. C. Cummins, *Eur. J. Inorg. Chem.*, 2007, 3736-3741.
- 5. A. Ariafard, N. J. Brookes, R. Stranger and B. F. Yates, *J. Am. Chem. Soc.*, 2008, **130**, 11928-11938.
- 6. G. Cavigliasso, G. Christian, R. Stranger and B. F. Yates, *Dalton Trans.*, 2009, 956-964.
- 7. G. Christian, R. Stranger, B. F. Yates and C. C. Cummins, *Dalton Trans.*, 2008, 338-344.
- 8. A. R. Johnson, W. M. Davis, C. C. Cummins, S. Serron, S. P. Nolan, D. G. Musaev and K. Morokuma, *J. Am. Chem. Soc.*, 1998, **120**, 2071-2085.