Supporting Information

For

$(\mu - \eta^2 : \eta^2$ -Disulfido)dinickel(II) complexes supported by 6-methyl-TPA ligands

Atsushi Kunisita,[†] Masayuki Inosako,[‡] Minoru Kubo,[§] Takashi Ogura,[§] Hideki Sugimoto,[†] and Shinobu Itoh^{†,*}

[†]Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871,

Japan

 *Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
*Research Institute of Picobiology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

Fig S1. ¹H NMR spectrum of **1**⁰ in CD₃CN at 25 °C. Spectrum is referenced to the residual proton of solvent CHD₂CN at 1.94 ppm.

Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry 2009

Fig. S2

Fig S2. ¹H NMR spectrum of 1^1 in CD₃CN at 25 °C. Spectrum is referenced to the residual proton of solvent CHD₂CN at 1.94 ppm.

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

Fig S3. ¹H NMR spectrum of 1^2 in CD₃CN at 25 °C. Spectrum is referenced to the residual proton of solvent CHD₂CN at 1.94 ppm.

Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry 2009

Fig. S4

Fig S4. ¹H NMR spectrum of **1**³ in CD₃CN at 25 °C. Spectrum is referenced to the residual proton of solvent CHD₂CN at 1.94 ppm.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Fig. S5 Spectral changes for the reaction of 2^o (1.0 x 10⁻⁴ M) and PPh₃ (1.0 x 10⁻⁴ M) in CH₂Cl₂ at 30 °C. Inset: Second–order plot based on the absorption change at 359 nm.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Fig. S6 (A) Spectral changes of the reaction of 2^2 (1.0 x 10^{-4} M) and PPh₃ (1.5 x 10^{-2} M) in CH₂Cl₂ at 30 °C. Inset: first–order plot based on the absorption change at 360 nm. (B) Plot of k_{obs} vs [PPh₃]

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Fig. S7 (A) Spectral changes of the reaction of 2³ (1.0 x 10⁻⁴ M) and PPh₃ (1.0 x 10⁻³ M) in CH₂Cl₂ at 30 °C. Inset: first–order plot based on the absorption change at 360 nm. (B) Plot of k_{obs} vs [PPh₃]