Synthesis and structural characterisation of germanium(II) halide complexes with neutral N-donor ligands

Fei Cheng, John M. Dyke, Francesco Ferrante, Andrew L. Hector, William Levason, Gillian Reid,^{*} Michael Webster and Wenjian Zhang

Supplementary Data

Table S1 Comparison of some selected bond lengths (Å) and angles (°) of $[GeCl_2\{Me_2N(CH_2)_2NMe_2\}]$ computed for the molecular unit and measured for the crystal structure in this work (in brackets)

Ge-N1	2.333 (2.157)	N1-Ge-N2	71.2 (78.5)
Ge–N2	3.003 (2.458)	Cl1–Ge–Cl2	99.2 (89.9)
Ge-Cl1	2.322 (2.526)	Cl1-Ge-N1	91.2 (89.1)
Ge–Cl2	2.289 (2.260)	Cl2-Ge-N1	92.0 (94.9)

Atom	Mulliken Charge	Natural Charge
Ge	0.501 (0.535)*	0.796 (0.874)*
C11	-0.419 (0.268)*	-0.522 (-0.437)*
Cl2	-0.395	-0.507
N1	-0.177	-0.561
N2	-0.171	-0.534

Computed charges

* computed values in isolated GeCl₂

Table S2 Comparison of some selected bond lengths (Å) and angles (°) of [GeCl₂(2,2'-bipy)] computed for the global minimum monomer unit and measured for the crystal structure in this work (in brackets)

Ge-N1	2.315 ^a / 2.346 ^b (2.074)	N1-Ge-N2	64.6 / 65.5 (77.5)
Ge–N2	2.816 / 2.690 (2.067)	Cl1–Ge–Cl2	98.4 / 98.1 (191.1 ^c)
Ge-Cl1	2.274 / 2.285 (2.453)	Cl1-Ge-N1	93.8 / 91.0 (86.6)
Ge-Cl2	2.326 / 2.352 (2.719)	Cl2–Ge–N1	90.1 / 91.2 (82.9)

^a opt B3LYP/cc-pvTZ; ^b opt B3LYP/cc-pvDZ. Frequencies are those of the B3LYP/cc-pvTZ optimized geometry; ^c The angle in the crystal structure is 168.9° , corresponding to $360 - 168.9 = 191.1^{\circ}$.

Computed Charges

Atom	Mulliken Charge	Natural charge ^c
Ge	0.517 ^a / 0.538 ^b	0.822
Cl1	-0.391 / -0.381	-0.491
Cl2	-0.427 / -0.420	-0.533
N1	-0.164 / -0.225	-0.521
N2	-0.186 / -0.298	-0.480

^aopt B3LYP/cc-pvTZ; ^bopt B3LYP/cc-pvDZ; ^cComputed from Natural Orbital Analysis on ridft optimized geometry.

Table S3 Comparison of some selected bond lengths (Å) and angles (°) of the higher energy conformation of the [GeCl₂(2,2'-bipy)] monomer and measured from the crystal structure in this work (in brackets). This conformation has a C_{2v} structure.

Ge–N	2.139 ^a / 2.174 ^b (2.074, 2.067)	N-Ge-N	75.3 / 74.4 (77.5)
Ge–Cl	2.520 / 2.509 (2.453, 2.719)	Cl–Ge–Cl	198.4 / 198.6 ^d (191.1 ^c)
		Cl–Ge–N	82.7 / 82.6 (86.6, 82.9, 89.6, 84.6)
	Mulliken charge	Natural charge ^e	
Ge	0.441 / 0.583	0.923	
N	-0.072 / -0.297	-0.538	
Cl	-0.571 / -0.551	-0.602	

^a opt B3LYP/cc-pvTZ; ^bopt B3LYP/cc-pvDZ; ^c The angle in the crystal structure is 168.9° , corresponding to $360 - 168.9 = 191.1^{\circ}$; ^d These angles correspond to the Cl–Ge–Cl angle in the input monomer model increasing progressively beyond 180° ; ^e Computed from Natural Orbital Analysis on ridft optimized geometry.

Energy difference between the axial and the angular form, calculated as E(axial) - E(angular); energy values are zero point corrected:

+50.1 kJ/mol at B3LYP/cc-pvDZ level +41.6 kJ/mol at B3LYP/cc-pvTZ level **Table S4** Comparison of some selected bond lengths [Å] and angles [°] of $[GeCl_2(2,2'-bipy)]_2$ and measured for the crystal structure in this work (in brackets). Comparison has been made between the Cl–Ge–Cl 'linear' part in the computed structure and the monomer unit in the crystal structure (see text).

1-2 (Ge-Cl)	2.42 (2.45)	2–1–6 (Cl–Ge…Ge)	141.3
1-3 (Ge-Cl)	2.75 (2.72)	1-6-7 (Ge…Ge-Cl)	50.6
1-4 (Ge-N)	2.17 (2.07)	7-6-8 (Cl-Ge-Cl)	93.3
1-5 (Ge-N)	2.19 (2.07)	9-6-10 (N-Ge···N)	66.0
3-6 (Ge…Cl)	3.12	2-1-3 (Cl-Ge-Cl)	197.6 ^b (191.1 ^a)
6-7 (Ge-Cl)	2.35	4-1-5 (N-Ge-N)	74.4 (77.5)
1-7 (Ge…Cl)	3.42		
1–6 (Ge…Ge)	4.39		
6-8 (Ge-Cl)	2.48		
6-10 (Ge-N)	2.54		
6-9 (Ge-N)	2.41		

^a The angle in the crystal structure is 168.9° , corresponding to $360 - 168.9 = 191.1^{\circ}$; ^b These angles correspond to the Cl–Ge–Cl angle in the input monomer model increasing progressively beyond 180° .

Mulliken charges:

1: 0.627	2: -0.494	3: -0.581	4: -0.318	5: -0.300
6: 0.636	7: -0.416	8: -0.513	9: -0.289	10: -0.260

Fig. S1. Computed B3LYP/cc-pvDZ structure of [GeCl₂(2,2'-bipy)]₃

Table S5 Comparison of some selected bond lengths (Å) and angles (°) of $[GeCl_2(2,2'-bipy)]_3$ and measured for the crystal structure in this work (in brackets). Comparison has been made between the Cl–Ge–Cl 'linear' part in the computed structure and the monomer unit in the crystal structure (see text).

1-2 (Ge-Cl)	2.42 (2.45)	2–1–6 (Cl–Ge…Ge)	127.7
1-3 (Ge-Cl)	2.69 (2.72)	1-6-7 (Ge…Ge-Cl)	76.4
1-4 (Ge-N)	2.14 (2.07)	7-6-8 (Cl-Ge-Cl)	94.7
1-5 (Ge-N)	2.16 (2.07)	9-6-10 (N-Ge…N)	69.2
3-6 (Ge…Cl)	4.75	2-1-3 (Cl-Ge-Cl)	196.3 ^b (191.1 ^a)
6-7 (Ge-Cl)	2.31	4-1-5 (N-Ge-N)	75.1 (77.5)
1-7 (Ge…Cl)	5.86		
1–6 (Ge…Ge)	5.96		
6-8 (Ge-Cl)	2.45		
6-10 (Ge…N)	2.45		
6-9 (Ge-N)	2.25		

^a The angle in the crystal structure is 168.9° , corresponding to $360 - 168.9 = 191.1^{\circ}$; ^b These angles correspond to the Cl–Ge–Cl angle in the input monomer model increasing progressively beyond 180° .

Mulliken charges:

1: 0.598	2: -0.489	3: -0.608	4: -0.314	5: -0.303
6: 0.560	7: -0.410	8: -0.496	9: -0.318	10: -0.276

Fig. S2 Computed RIDFT/BP86 structure of [GeCl₂(2,2'-bipy)]₄

Fig. S3 Mullikan (top) and Natural (bottom) charges computed for the $[GeCl_2(2,2'-bipy)]_4$ tetramer unit.

Natural charges 0.853 -0.501 -0.532 -0.579 0.843 -0.552 -0.493 -0.526 -0.532 -0.499 -0.496 -0.523 -0.531 -0.492 0.858 -0.501 -0.532 -0.570 0.843 -0.549

Compound	[GeBr(pmdta)][GeBr ₃]
Formula	$C_9H_{23}Br_4Ge_2N_3$
M	638.12
Crystal system	Monoclinic
Space group	$P2_1/n$ (no. 14)
a /Å	6.6108(5)
b/Å	14.143(3)
c/Å	20.132(4)
$\alpha / ^{\circ}$	90
β /°	91.332(10)
γ/°	90
$U/\text{\AA}^3$	1881.8(6)
Ζ	4
μ (Mo-K α) /mm ⁻¹	11.678
Total no. reflections	17148
R _{int}	0.0
Unique reflections	17148
No. of parameters	169
$R_1\left[I_o > 2\sigma(I_o)\right]$	0.096
R_1 [all data]	0.166
$wR_2\left[I_o > 2\sigma(I_o)\right]$	0.185
w R_2 [all data]	0.225

Table S6 [GeBr(pmdta)][GeBr3] crystallographic data

The crystals of [GeBr(pmdta)][GeBr₃] were twinned. A structure solution was obtained ignoring the twinning problem that looked chemically correct but the difference electron-density map showed a few large peaks (ca. 6 e Å⁻³) close (ca. 1 Å) to the heavy atoms. The diffractometer software was used to index the twin with two components allowing for overlapping and non-overlapping reflections to produce an HKLF 5 type file for use with SHELXL. Use of this and a BASF command gave a better fit to the data and much reduced peaks in the e/d map.

Fig. S5. Histogram summarising Δ (M–N) in structurally characterised complexes containing a 1st row transition metal or an element from Groups 13–15 with a chelating Me₂N(CH₂)₂NMe₂ ligand from the CSD

