Supporting information

A multicomponent CuAAC "click" approach to a library of hybrid polydentate 2-pyridyl-1,2,3-triazole ligands: New building blocks for the generation of metallosupramolecular architectures.

James D Crowley,* and Pauline H. Bandeen.

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand

jcrowley@chemistry.otago.ac.nz

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009	
Table of Contents	S2
1. General Experimental Section	S4
2. Experimental Procedures	S 5
2.1. General CuAAC Experimental Procedure for Benzyl Spacers	S6
2.2 General CuAAC Experimental Procedure for Alkyl Spacers	S9
2.3 General CuAAC Experimental Procedure for Aryl Spacers	S11
2.4 General CuAAC Experimental Procedure for methylene bridged ligands	S14
3. General Synthetic Procedures to silver complexes	S18
3.1 Synthesis of silver(I) complexes of the 2-pyridyl-1,2,3-triazole ligands	S18
3.2 Synthesis of silver(I) complexes of the methylene bridged	
2-pyridyl-1,2,3-triazole ligands.	S26
4. Selected ¹ H NMR Spectra of synthesized compounds	S 33
¹ H NMR (CDCl ₃ , 300K) of 1 .	S33
¹ H NMR (CDCl ₃ , 300K) of 2a .	S34
¹ H NMR (CDCl ₃ , 300K) of 2b .	S35
¹ H NMR (CDCl ₃ , 300K) of $2c$.	S36
¹ H NMR (CDCl ₃ , 300K) of 2d .	S 37
H NMR ($CDCl_3$, 300K) of 3a .	538
H NMR (CDCl ₃ , 300K) of 30. ¹ H NMP (CDCl ₂ , 200K) of 4	539
¹ H NMR (D _c -DMSO 300K) of 5_{2}	S40
¹ H NMR (D_c -DMSO, 300K) of 5b .	S42
¹ H NMR (D_6 -DMSO, 300K) of 5c .	S43
1 H NMR (CDCl ₃ , 300K) of 6 .	S44
¹ H NMR (CDCl ₃ , 300K) of 7a .	S45
¹ H NMR (CDCl ₃ , 300K) of 7b.	S46
¹ H NMR (CDCl ₃ , 300K) of 7c.	S47
1 H NMR (CDCl ₃ , 300K) of 8 .	S48
¹ H NMR (CDCl ₃ , 300K) of 9 .	S49
¹ H NMR (d_6 -acetone, 300K) of $[Ag_2(1)_2](SbF_6)_2$.	S50
Figure 1. Partial 'H NMR spectra (300 MHz, CD_3CN , 300 K) of a) Ligand 1, b)	0=0
$[Ag_2(1)_2](SDF_6)_2$	550
± 11 N(N/1) (d. cootomo ()()()() o ± 1 A = () ± 1 (()(± 1))	

Figure 2. Partial ¹ H NMR spectra (300 MHz, CD ₃ CN, 300 K) of a) Ligand 2a , b) $[Ag_2(2a)_2](SbF_6)_2$. ¹ H NMR (<i>d</i> ₆ -acetone, 300K) of $[Ag_3(6)_2](SbF_6)_3$. Figure 3. Partial ¹ H NMR spectra (300 MHz, CD, CN, 300 K) of a) Ligand 6 , b)	S51 S52
[Ag ₃ (6) ₂](SbF ₆) _{3.} ¹ H NMR (d_6 -acetone, 300K) of [Ag ₂ (8) ₂](SbF ₆) ₂ . Figure 4. Partial ¹ H NMR spectra (300 MHz, CD ₃ CN, 300 K) of a) Ligand 8, b)	S52 S53
$[Ag_2(8)_2](SbF_6)_2$	S53
5. Selected HR-ESMS Spectra of the silver complexes.	S55
Figure 5. HR-ESMS (CH ₃ CN) of $[Ag_2(1)_2](SbF_6)_2$.	S55
Figure 6. Observed and Calculated isotopic distributions for the	
$[Ag_2(1)_2](SbF_6)^+$ ion.	S55
Figure 7. Observed and Calculated isotopic distributions for the	
$[Ag(1)]^+$ ion.	S56
Figure 8. HR-ESMS (CH ₃ CN/DMSO) of $[Ag_3(4)_2](SbF_6)_3$.	S 56
Figure 9. Observed and Calculated isotopic distributions for the	
$[Ag_3(4)_2](SbF_6)_2^+$ ion.	S57
Figure 10. HR-ESMS (CH ₃ CN) of [Ag ₃ (7b) ₂](SbF ₆) ₃ .	S58
Figure 11. Observed and Calculated isotopic distributions for the	
$[Ag_2(7b)_2](SbF_6)^+$ ion.	S58
Figure 12. Observed and Calculated isotopic distributions for the	
$[Ag_3(7b)_2](SbF_6)_2^+$ ion.	S59
Figure 13. HR-ESMS (CH ₃ CN/DMSO) of $[Ag_2(7c)_2](SbF_6)_2$.	S 59
Figure 14. Observed and Calculated isotopic distributions for the	
$[Ag_2(7c)_2](SbF_6)^+$ ion.	S60
Figure 115. Observed and Calculated isotopic distributions for the	
$[Ag(7b)]^+$ and $[Ag_2(7b)_2]^{2+}$ ions.	S60
6. References	S60

1. General Experimental Section

Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. Dry CH₂Cl₂ and CH₃CN were obtained by passing the solvents through an activated alumina column on a PureSolvTM solvent purification system (Innovative Technologies, Inc., MA). 2,6-Diethynylpyridine,¹ 4,4'-diiododiphenvlmethane,² were prepared according to literature procedures. Petrol refers to the fraction of petroleum ether boiling in the range 40-60 °C. Flash column chromatography was carried out using Kiesegel C60 (Fisher) as the stationary phase. Analytical TLC was performed on precoated silica gel plates (0.25 mm thick, 60F254, Merck, Germany) and observed under UV light. All melting points were determined using a Sanvo Gallenkamp apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a 300 MHz Varian UNITY INOVA INOVA or 400 MHz Varian 400 MR spectrometer at 298 K. Chemical shifts are reported in parts per million and referenced to residual solvent. Coupling constants (J) are reported in Hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: m = multiplet, quint. = quintet, q = quartet, t = triplet, d = doublet, s = singlet, br = broad. IR spectra were recorded on a Perkin-Elmer Spectrum BX FT-IR spectrometer using KBr discs. Microanalyses were performed at the Campbell Microanalytical Laboratory at the University of Otago. ESI Mass Spectra were collected on a Bruker micro-TOF-Q spectrometer.

Safety Note: Sodium azide is toxic and appropriate precautions should be taken. As low molecular weight organic azides are potential explosives, care must be taken during their handling.³ Generally, when the total number of carbon (C) plus oxygen (O) atoms is less than the total number of nitrogen atoms (N) by a ratio of three, i.e., (C + O) / N < 3, the compound is considered as an

explosive hazard. A standard PVC blast shield was used when necessary. Additionally, copper azides and acetylides are explosive when dry, and their traces should be removed before the CuAAC reaction products are dried. This is achieved by pouring the crude reaction mixture into 100 mL of aqueous EDTA/NH₄OH.

2. Experimental Procedures

2-[1-(pyridin-2-ylmethyl)-1*H***-1,2,3-triazol-4-yl]pyridine (1).** To a stirred solution of 2-(bromomethyl)pyridine hydrobromide (0.554 g, 2.2 mmol, 1.1 eq.) in DMF/H₂O (10 mL, 4:1) was added NaN₃ (0.156 g, 2.4 mmol, 1.2 eq.), Na₂CO₃ (0.312 g, 3.0 mmol, 3.00 eq.), CuSO₄•5H₂O (0.246 g, 1.2 mmol, 0.40 eq.) and ascorbic acid (0.42 g, 2.4 mmol, 0.80 eq). 2-ethynylpyridine (0.206 g, 2.0 mmol, 1.0 eq.) was added and the reaction mixture was stirred at room temperature for 20 h. The suspension was then partitioned between aqueous NH₄OH/EDTA (200 mL) and EtOAc (200 ml) and the layers separated. The organic phase was washed with H₂O (200 mL) and brine (200 mL), dried (MgSO₄) and the solvent removed under reduced pressure. Chromatography (gradient CH₂Cl₂/acetone to 7:3 ratio) gave the product as a colourless solid. Yield: 0.43 g, 91%. Mp 71-73 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.61 (d, *J* = 4.8, 1H, H_j), 8.57 (dd, *J* = 0.8, 4.1, 1H, H_a), 8.27 (s, 1H, H_e), 8.18 (d, *J* = 8.0, 1H, H_d), 7.77 (td, *J* = 1.8, 7.8, 1H, H_c), 7.68 (td, *J* = 1.8, 7.7, 1H, H_h), 7.30–7.18 (m, 3H, H_{b,i.g}), 5.73 (s, 2H, H_f); ¹³C NMR (75 MHz, CDCl₃) δ 154.2, 150.1, 149.8,

149.3, 148.7, 137.3, 136.9, 123.4, 122.9, 122.7, 122.4, 120.3, 55.7; I. R. (KBr): υ (cm⁻¹) 3500-3200 (sb), 3109, 3077, 2925, 1606, 1598, 1569, 1551, 1416, 1314, 1223, 1197, 1152, 1075, 1040, 995, 953, 917, 847, 782, 723. HRESI-MS (CDCl₃/MeOH): $m/z = 238.1028 [1+H]^+$ (calc. for C₁₃H₁₂N₈ 238.1092), 260.0897 [1+Na]⁺ (calc. for C₁₃H₁₂N₈ 238.1092), 260.0897 [1+Na]⁺ (calc. for C₁₃H₁₁N₅Na 260.0907); Anal. calcd for C₁₃H₁₁N₅•0.25H₂O: C, 64.58; H, 4.79; N, 28.97. Found: C, 64.23; H, 4.78; N, 29.25.

2.1 General CuAAC Experimental Procedure for Benzyl Spacer Ligands.

To a stirred solution of either dibromide (3.0 mmol, 1.00 eq.) or tribromide (2.0 mmol, 1.00 eq.) in DMF/H₂O (15 mL, 4:1) was added NaN₃ (0.41 g, 6.2 mmol, either 2.1 eq. or 3.1 eq.), Na₂CO₃ (0.312 g, 3.0 mmol, 1.00 eq.), CuSO₄ (0.246 g, 1.2 mmol, 0.40 eq.) and ascorbic acid (0.42 g, 2.4 mmol, 0.80 eq). 2-ethynylpyridine (0.64 g, 6.0 mmol, either 2.05 eq. or 3.10 eq.) was added and the reaction mixture was stirred at room temperature for 16 h. The suspension was then partitioned between aqueous NH₄OH/EDTA (200 mL) and EtOAc (200 ml) and the layers separated. The organic phase was washed with H₂O (200 mL) and brine (200 mL), dried (MgSO₄) and the solvent removed under reduced pressure. Chromatography (gradient CH₂Cl₂/acetone) gave the products as colourless solids.

Chromatography (gradient CH₂Cl₂/acetone to a ratio 6:4) gave the product **2a** as a colourless solid. Yield: 1.03 g, 88%. Mp 207-208 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.50 (ddd, J = 0.9, 1.7, 4.9, 2H, H_a), 8.14 (dt, J = 0.9, 7.9, 2H, H_g), 8.04 (s, 2H, H_e),

7.75 (td, J = 1.8, 7.8, 2H, H_c), 7.45–7.29 (m, 4H, H_{b,h}), 7.20 (ddd, J = 1.2, 4.9, 7.5, 2H, H_d), 5.73 (s, 4H, H_f); ¹³C NMR (75 MHz, CDCl₃) δ 150.1, 149.4, 148.9, 137.2, 133.3, 130.9, 130.2, 123.1, 122.3, 120.5, 51.6; I. R. (KBr): υ (cm⁻¹) 3109, 3077, 2925, 1606, 1597, 1570, 1551, 1421, 1314, 1228, 1154, 1074, 1051, 996, 861, 786, 727. HRESI-MS (MeOH): m/z = 395.1707 [**2a**+H]⁺ (calc. for C₂₂H₁₉N₈ 395.1733), 417.1523 [**2a**+Na]⁺ (calc. for C₂₂H₁₈N₈Na 417.1552); Anal. calcd for C₂₂H₁₈N₈: C, 66.99; H, 4.60; N, 28.41. Found: C, 66.60; H, 4.58; N, 28.73.

Chromatography (gradient CH₂Cl₂/acetone to a ratio 6:4) gave the product **2b** as a colourless solid. Yield: 0.99 g, 85%. Mp 171-172 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.53 (d, *J* = 4.6, 2H, H_a), 8.24 – 8.12 (m, 4H, H_{e,h}), 7.80 (td, *J* = 1.7, 7.8, 2H, H_c), 7.43–7.20 (m, 6H, H_{b,d,g}), 5.58 (s, 4H, H_f); ¹³C NMR (75 MHz, CDCl₃) δ 150.3, 149.5, 149.0, 137.2, 135.8, 130.4, 128.8, 128.1, 123.1, 122.2, 120.5, 54.1; I.R. (KBr): υ (cm⁻¹) 3108, 3089, 2925, 1603, 1597, 1570, 1547, 1420, 1314, 1248, 1228, 1148, 1083, 1046, 997, 896, 861, 843, 787, 738; HRESI-MS (MeOH): *m/z* = 395.1721 [**2b**+H]⁺ (calc. for C₂₂H₁₉N₈ 395.1733), 417.1539 [**2b**+Na]⁺ (calc. for C₂₂H₁₈N₈Na 417.1552); Anal. calcd for C₂₂H₁₈N₈: C, 66.99; H, 4.60; N, 28.41. Found: C, 66.75; H, 4.57; N, 28.62.

Chromatography (gradient CH₂Cl₂/acetone to a ratio 6:4) gave the product **2c** as a colourless solid. Yield: 1.10 g, 94%. Mp 170-171 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.55 (d, *J* = 4.4, 2H, H_a), 8.26 (s, 2H, H_e), 8.17 (d, *J* = 7.9, 2H, H_d), 7.77 (td, J = 1.8, 7.8, 2H, H_c), 7.68 (t, J = 7.8, 1H, H_h), 7.26–7.18 (m, 4H, H_{b,g}), 5.72 (s, 4H, H_f); ¹³C NMR (75 MHz, CDCl₃) δ 154.9, 150.3, 149.6, 149.1, 138.9, 137.1, 123.1, 122.8, 122.1, 120.5, 55.7; I. R. (KBr): υ (cm⁻¹) 3500-3200 (br), 3145, 3124, 2925, 1605, 1597, 1574, 1548, 1418, 1341, 1306, 1247, 1227, 1193, 1155, 1088, 1074, 1043, 997, 841, 785, 771. HRESI-MS (MeOH): *m/z* = 396.1704 [**2c**+H]⁺ (calc. for C₂₁H₁₈N₉ 396.1685), 418.1515 [**2c**+Na]⁺ (calc. for C₂₁H₁₈N₉Na 418.1505); Anal. calcd for C₂₁H₁₇N₉: C, 63.79; H, 4.33; N, 31.88. Found: C, 63.65; H, 4.39; N, 31.60.

Chromatography (gradient CH₂Cl₂/acetone to a ratio 6:4) gave the product as a colourless solid. X-ray quality colourless crystals were obtained by vapour diffusion of a chloroform solution of **2d** with petrol. Yield: 0.98 g, 85%. Mp 234-235 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.52 (d, *J* = 7.5, 2H, H_a), 8.16 (d, 2H, H_d), 8.06 (s, *J* = 7.5, 2H, H_e), 7.77 (td, *J* = 8.5, 2H, H_c), 7.34 (s, 4H, H_g), 7.20 (m, 2H, H_b), 5.58 (s, 4H, H_f); ¹³C NMR (75 MHz, CDCl₃) δ 150.2, 149.4, 149.0, 137.2, 135.4, 129.2, 123.1, 122.2, 120.5, 54.0; I.R. (KBr): υ (cm⁻¹) 3400-3200 (br), 3119, 3087, 2925, 1606, 1597, 1570, 1546, 1418, 1347, 1315, 1257, 1248, 1223, 1149, 1082, 1046, 1022, 996, 899, 865, 840, 791, 741; HRESI-MS (MeOH): *m*/*z* = 395.1740 [**2d**+H]⁺ (calc. for C₂₂H₁₉N₈

395.1733), 417.1558 $[2d+Na]^+$ (calc. for C₂₂H₁₈N₈Na 417.1552); Anal. calcd for C₂₂H₁₈N₈•0.33(H₂O): C, 66.00; H, 4.70; N, 27.99. Found: C, 66.22; H, 4.60; N, 28.27.

Chromatography (gradient CH₂Cl₂/acetone to a ratio 1:1) gave the product as a colourless solid. Yield: 0.89 g, 82%. Mp 209-210 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.53 (ddd, *J* = 0.9, 1.7, 4.8, 3H, H_a), 8.16 (dt, *J* = 1.0, 8.0, 3H, H_d), 8.09 (s, 3H, H_e), 7.77 (td, *J* = 1.8, 6.0, 7.8, 3H, H_c), 7.26 (s, 3H, H_g), 7.20 (m, 3H, H_b), 5.58 (s, 6H, H_f); ¹³C NMR (75 MHz, CDCl₃) δ 150.1, 149.5, 149.1, 137.2, 137.1, 128.1, 123.2, 122.4, 120.5, 53.7; I.R. (KBr): υ (cm⁻¹) 3400-3200 (br), 3103, 3087, 2924, 1596, 1569, 1544, 1420, 1344, 1311, 1226, 1199, 1168, 1156, 1080, 1045, 996, 977, 890, 846, 826, 791, 775, 755, 741; HRESI-MS (MeOH): *m/z* = 553.2322 [4+H]⁺ (calc. for C₃₀H₂₅N₁₂ 553.2325), 575.2138 [4+Na]⁺ (calc. for C₃₀H₂₅N₁₂Na 575.2145); Anal. calcd for C₃₀H₂₄N₁₂•(H₂O): C, 63.15; H, 4.59; N, 29.46. Found: C, 63.44; H, 4.36; N, 29.37.

2.2 General CuAAC Experimental Procedure for Alkyl Spacers

To a stirred solution of dibromide (1.5 mmol, 1.00 eq.) in DMF/H₂O (15 mL, 4:1) was added NaN₃ (0.410 g, 6.2 mmol, 2.10 eq.), Na₂CO₃ (0.13 g, 1.2 mmol, 0.8 eq.), CuSO₄ (0.150 g, 0.6 mmol, 0.40 eq.) and ascorbic acid (0.21 g, 1.2 mmol, 0.80 eq). 2-ethynylpyridine (0.32 g, 3.1 mmol, 2.05 eq.) was added and the reaction mixture was stirred at room temperature for 24 h. The suspension was then partitioned between

aqueous NH₄OH/EDTA (200 mL) and EtOAc (200 ml) and the layers separated. The organic phase was washed with H_2O (200 mL) and brine (200 mL), dried (MgSO₄) and the solvent removed under reduced pressure. Chromatography gave the ligands as colourless solids.

Chromatography through a short pad of silica (gradient CH₂Cl₂/acetone to a ratio 1:1) gave the product as a colourless solid. Yield: 0.47 g, 82 %. Mp 181-183 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.58 (d, *J* = 4.3, 2H, H_a), 8.18 (d, *J* = 7.9, 2H, H_d), 8.12 (s, 2H, H_e), 7.78 (td, *J* = 1.8, 7.8, 2H, H_c), 7.23 (ddd, *J* = 1.1, 4.9, 7.5, 2H, H_b), 4.42 (t, *J* = 7.0, 4H, H_f), 2.05 – 1.89 (m, 4H, H_h), 1.49 – 1.33 (m, 4H, H_g); ¹³C NMR (75 MHz, CDCl₃) δ : 150.3, 149.4, 148.5, 136.9, 122.8, 121.8, 120.2, 50.2, 30.0, 25.9; I.R. (KBr): υ (cm⁻¹) 3500-3200 (br), 3128, 2724, 1596, 1568, 1544, 1417, 1306, 1264, 1222, 1155, 1137, 1090, 1075, 1047, 1010, 997, 971, 895, 846, 786, 764; HRESI-MS (MeOH): *m*/*z* = 375.2019 [**3**a+H]⁺ (calc. for C₂₀H₂₃N₈ 375.2045), 397.1860 [**3**a+Na]⁺ (calc. for C₂₀H₂₃N₈Na 397.1865); Anal. calcd for C₂₀H₂₃N₈•(H₂O): C, 63.15; H, 4.59; N, 29.46. Found: C, 63.44; H, 4.36; N, 29.37.

Chromatography through a short pad of silica (gradient CH_2Cl_2 /acetone to a ratio 1:1) gave the product as a colourless solid. X-ray quality colorless crystals were obtained by vapour diffusion of chloroform solution of **3b** with petrol. Yield: 0.42 g, 82 %. Mp 184 °C (decomp.); ¹H NMR (300 MHz, CDCl₃) δ 8.61–8.59 (m, 2H, H_a), 8.23 (s, 2H, H_e), 8.16 (d, *J* = 7.9, 2H, H_b), 7.78 (td, *J* = 1.8, 7.8, 2H, H_c), 7.24 (ddd, *J* = 1.2, 4.9, 7.5, 2H, H_b), 4.51 (t, *J* = 6.5, 4H, H_g), 2.67 (p, *J* = 6.5, 2H, H_f); ¹³C NMR (75 MHz, CDCl₃) δ : 150.1, 149.6, 148.8, 137.0, 123.1, 122.7, 120.3, 47.0, 30.7; I.R. (KBr): υ (cm⁻¹) 3500-3200 br, 3120, 3057, 2997, 2947, 1701, 1639, 1595, 1568, 1545, 1463, 1437, 1416, 1363, 1319, 1295, 1276, 1252, 1202, 1188, 1137, 1092, 1080, 1044, 996, 976, 895, 854, 786, 768, 710, 663, 517; HRESI-MS (CDCl₃/MeOH): *m/z* = 333.1551 [**3b**+H]⁺ (calc. for C₁₇H₁₇N₈ 333.1571), 355.1376 [**3b**+Na]⁺ (calc. for C₁₇H₁₆N₈Na 355.1390); Anal. calcd for C₁₇H₁₆N₈: C, 61.43; H, 4.85; N, 33.71. Found: C, 61.41; H, 4.97; N, 33.80.

2.3 General CuAAC Experimental Procedure for Aryl Spacers

To a stirred degassed solution (EtOH/H₂O, 10 mL, 7:3) of diiodide (1.5 mmol, 1.0 eq.) or triiodide (1.0 mmol, 1.0 eq.) was added NaN₃ (0.21 g, 3.1 mmol, 2.2 or 3.1 eq.), CuI (0.06 g, 0.3 mmol, 0.2 or 0.3 eq.), N,N'-dimethylethylenediamine (0.04 g, 0.4 mmol, 0.3 or 0.45 eq.) and sodium ascorbate (0.15 g, 0.75 mmol, 0.5 eq.). The reaction was then heated to reflux under a nitrogen atmosphere for 2 h. After this time had elapsed the reaction mixture was cooled to room temperature and 2-ethynylpyridine (0.31 g, 3.0 mmol, 1 eq.), CuSO₄ (0.10 g, 0.40 mmol, 0.2 or 0.4 eq.), and sodium ascorbate (0.15 g, 0.75 mmol, 0.2 or 0.4 eq.), the resulting suspension was stirred at room temperature for 20 h. The reaction mixture was then poured into aqueous NH₄OH/EDTA (100 mL). The resulting precipitate was isolated by filtration and washed well with H₂O then vacuum dried.

5a was a pale yellow solid. Yield: 0.46 g, 89%. Mp 241-242°C; ¹H NMR (300 MHz, DMSO- d_6) δ 9.58 (s, 2H, H_e), 8.73 (t, $J = 2.0, 1H, H_h$), 8.69 (s, 2H, H_a), 8.22 (dd, $J = 2.0, J = 8.2, 2H, H_f$), 8.16 (m, 2H, H_d), 7.97 (td, $J = 1.5, 7.8, 2H, H_g$), 7.87 (t, $J = 8.2, 1H, H_e$), 7.43 (dd, $J = 5.3, 6.5, 2H, H_b$); ¹³C NMR (75 MHz, DMSO- d_6) δ 150.4, 150.0, 149.1, 138.2, 138.1, 132.4, 124.2, 122.3, 120.5, 120.4, 112.1; I. R. (KBr): υ (cm⁻¹) 3117, 3049, 2725, 1599, 1592, 1567, 1543, 1411, 1353, 1273, 1237, 1146, 1090, 1073, 1036, 993, 842, 794, 758; HRESI-MS (DMSO): m/z = 367.1407 [**5a**+H]⁺ (calc. for C₂₀H₁₅N₈ 367.1414); Anal. calcd for C₂₀H₁₄N₈•(0.25H₂O): C, 64.77; H, 3.94; N, 30.21. Found: C, 64.57; H, 3.87; N, 29.99.

5b was a yellow solid. Yield: 0.45 g, 85%. Mp 266°C (decomp.); ¹H NMR (300 MHz, DMSO- d_6) δ 9.47 (s, 2H, H_e), 8.68 (dd, J = 1.9, J = 2.8, 2H, H_a), 8.30 (s, 4H, H_f), 8.19–8.13 (m, 2H, H_d), 7.97 (td, J = 1.7, J = 7.7, 2H, H_c), 7.42 (ddd, J = 1.2, J = 4.9, J = 7.5, 2H, H_b); ¹³C NMR (75 MHz, DMSO- d_6) δ too insoluble to obtain; I. R. (KBr): υ (cm⁻¹) 3500-3200 (sb), 3117, 2725, 1504, 1596, 1571, 1523, 1407, 1305, 1277, 1238, 1153, 1025, 846, 820, 781; HRESI-MS (DMSO): m/z = 367.1412 [**5b**+H]⁺ (calc. for C₂₀H₁₅N₈ 367.1414), 389.1232 [**5b**+Na]⁺ (calc. for C₂₀H₁₄N₈Na

389.1234); Anal. calcd for C₂₀H₁₄N₈•(0.5H₂O): C, 63.99; H, 4.03; N, 29.85. Found: C, 63.81; H, 4.21; N, 29.98.

5c was obtained as a yellow solid. Yield: 0.49 g, 72%. Mp 223-224°C; ¹H NMR (300 MHz, DMSO- d_6) δ 9.28 (s, 2H, H_e), 8.64 (ddd, J = 0.9, J = 1.7, J = 4.8, 2H, H_a), 8.11 (dt, J = 1.0, 7.9, 2H, H_c), 8.03 – 7.88 (m, 6H, H_d,f), 7.53 (d, J = 8.6, 4H, H_g), 7.39 (ddd, J = 1.2, J = 4.9, J = 7.5, 2H, H_b), 4.15 (s, 2H, H_i); ¹³C NMR (75 MHz, DMSO- d_6) δ 149.6, 149.5, 148.1, 141.7, 137.3, 134.9, 130.1, 123.3, 121.2, 120.4, 119.8, 79.2; I. R. (KBr): υ (cm⁻¹) 3500-3200 (sb), 3049, 2725, 1602, 1592, 1570, 1549, 1405, 1305, 1237, 1150, 1088, 1030, 995, 854, 812, 776; HRESI-MS (CH₂Cl₂/MeOH): m/z = 457.1898 [**5c**+H]⁺ (calc. for C₂₇H₂₁N₈ 457.1884); Anal. calcd for C₂₇H₂₁N₈•(5H₂O): C, 59.33; H, 5.53; N, 20.50. Found: C, 59.42; H, 5.17; N, 20.00.

To a stirred solution of 2-(bromomethyl)pyridine hydrobromide (1.6 g, 6.1 mmol, 2.05 eq.) in DMF/H₂O (15 mL, 4:1) was added NaN₃ (0.41 g, 6.2 mmol, 2.10 or 3.15 eq.), Na₂CO₃ (0.31 g, 3.0 mmol, 1.00 eq.), CuSO₄ (0.30 g, 1.2 mmol, 0.40 eq.), ascorbic acid (0.42 g, 2.4 mmol, 0.80 eq) and AgPF₆ (0.22 g, 0.6 mmol, 0.20 eq). Then 1,4-Bis(trimethylsilyl)-1,3-butadiyne (0.583 g, 3.0 mmol, 1.0 eq.) was added to the reaction mixture and the resulting suspension was stirred at 40 °C for 24 h. The

suspension was then partitioned between aqueous NH₄OH/EDTA (200 mL) and EtOAc (200 ml) and the layers separated. The organic phase was washed with H₂O (200 mL) and brine (200 mL), dried (MgSO₄) and the solvent removed under reduced pressure. Chromatography (gradient CH₂Cl₂/acetone to a ratio 6:4) gave the product as a colourless solid. Yield: 0.75 g, 80%. Mp 161-163 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.62-8.60 (m, 2H, H_a), 8.18 (s, 2H, H_f), 7.68 (td, $J = 1.8, 7.7, 2H, H_c$), 7.30– 7.24 (m, 2H, H_b), 7.19 (d, $J = 7.8, 2H, H_d$), 5.71 (s, 4H, H_e); ¹³C NMR (75 MHz, CDCl₃) δ 154.4, 150.1, 140.6, 137.5, 123.6, 122.5, 121.5, 55.9; I. R. (KBr): υ (cm⁻¹) 3109, 3077, 2725, 1606, 1597, 1570, 1551, 1421, 1314, 1228, 1154, 1074, 1051, 996, 861, 786, 727; HRESI-MS (MeOH): $m/z = 341.1254 [6+Na]^+$ (calc. for C₁₆H₁₄N₈Na 341.1239); Anal. calcd for C₁₆H₁₄N₈: C, 60.37; H, 4.43; N, 35.20. Found: C, 60.35; H, 4.43; N, 35.41.

2.4 General CuAAC Experimental Procedure for methylene bridged ligands.

To a stirred solution of 2-(bromomethyl)pyridine hydrobromide (1.55 g, 6.1 mmol, 2.05 or 3.1 eq.) in DMF/H₂O (15 mL, 4:1) was added NaN₃ (0.41 g, 6.2 mmol, 2.10 or 3.15 eq.), Na₂CO₃ (0.31 g, 3.0 mmol, 1.00 eq.), CuSO₄ (0.30 g, 1.2 mmol, 0.40 eq.) and ascorbic acid (0.42 g, 2.4 mmol, 0.80 eq). Then either a dialkyne (3.0 mmol, 1.0 eq.) or trialkyne (2.0 mmol, 1.0 eq.) was added to the reaction mixture and the resulting suspension was stirred at room temperature for 20 h. The suspension was then partitioned between aqueous NH₄OH/EDTA (200 mL) and EtOAc (200 ml) and the layers separated. The organic phase was washed with H₂O (200 mL) and brine (200 mL), dried (MgSO₄) and the solvent removed under reduced pressure. Chromatography (gradient CH₂Cl₂/acetone) gave the product as a colourless solid.

Chromatography (gradient CH₂Cl₂/acetone to a ratio 6:4) gave the product as a colourless solid. Yield: 0.97 g, 82%. Mp 164-166 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.64-8.62 (m, 2H, H_a), 8.25 (t, *J* = 1.7, 1H, H_i), 8.02 (s, 2H, H_f), 7.83 (dd, *J* = 1.7, 7.8, 2H, H_g), 7.70 (td, *J* = 1.8, 7.7, 2H, H_c), 7.46 (t, *J* = 7.7, 1H, H_h), 7.35-7.20 (m, 4H, H_{b,d}), 5.75 (s, 4H, H_h); ¹³C NMR (75 MHz, CDCl₃) δ 154.4, 150.0, 148.1, 137.7, 131.3, 131.3, 129.6, 125.6, 123.7, 123.1, 122.7, 120.8, 55.9; I. R. (KBr): υ (cm⁻¹) 3109, 3077, 2725, 1606, 1597, 1570, 1551, 1421, 1314, 1228, 1154, 1074, 1051, 996, 861, 786, 727. HRESI-MS (MeOH): *m/z* = 395.1707 [**7a**+H]⁺ (calc. for C₂₂H₁₉N₈ 395.1733), 417.1523 [**7a**+Na]⁺ (calc. for C₂₂H₁₈N₈Na 417.1552); Anal. calcd for C₂₂H₁₈N₈•(0.66H₂O): C, 65.03; H, 4.79; N, 27.58. Found: C, 65.08; H, 4.54; N, 27.80.

Chromatography (gradient CH₂Cl₂/acetone to a ratio 6:4) gave the product as a colourless solid. Yield: 1.05 g, 89%. Mp 173-175 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.65–8.61 (m, 2H, H_a), 8.30 (s, 2H, H_f), 8.11 (d, *J* = 7.8, 2H, H_g), 7.86 (t, *J* = 7.6, 1H, H_h), 7.70 (td, *J* = 1.8, 7.7, 2H, H_c), 7.30–7.23 (m, 4H, H_{b,d}), 5.73 (s, 4H, H_e); ¹³C NMR (75 MHz, CDCl₃) δ 154.4, 149.9, 149.8, 148.8, 137.7, 137.4, 123.5, 122.7, 122.4, 119.3, 55.8; I. R. (KBr): υ (cm⁻¹) 3109, 3077, 2725, 1606, 1597, 1570, 1551, 1421, 1314, 1228, 1154, 1074, 1051, 996, 861, 786, 727; HRESI-MS (MeOH): *m/z* =

418.1503 $[7b+Na]^+$ (calc. for C₂₁H₁₇N₉Na 418.1504); Anal. calcd for C₂₁H₁₇N₉•(1.5H₂O): C, 59.71; H, 4.77; N, 29.84. Found: C, 59.61; H, 4.30; N, 29.93.

Chromatography (gradient CH₂Cl₂/acetone to a ratio 6:4) gave the product as a colourless solid. Yield: 0.99 g, 84%. Mp 207-208 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.63 (d, *J* = 4.4 Hz, 2H, H_a), 7.98 (s, 2H, H_f), 7.90 (s, 4H, H_g), 7.71 (td, *J* = 7.7, 1.7 Hz, 2H, H_c), 7.31-7.25 (m, 4H, H_{b,d}), 5.72 (s, 2H, H_e); ¹³C NMR (75 MHz, CDCl₃) δ 154.6, 150.0, 137.6, 136.8, 130.5, 126.3, 123.7, 122.7, 120.4, 56.0; I. R. (KBr): υ (cm⁻¹) 3109, 3077, 2725, 1606, 1597, 1570, 1551, 1421, 1314, 1228, 1154, 1074, 1051, 996, 861, 786, 727. HRESI-MS (MeOH): *m*/*z* = 395.1707 [**7c**+H]⁺ (calc. for C₂₂H₁₉N₈ 395.1733), 417.1523 [**7c**+Na]⁺ (calc. for C₂₂H₁₈N₈Na 417.1552); Anal. calcd for C₂₂H₁₈N₈: C, 66.99; H, 4.60; N, 28.41. Found: C, 66.72; H, 4.61; N, 28.27.

Chromatography (gradient CH₂Cl₂/acetone to a ratio 1:1) gave the product as a colourless solid. Yield: 0.84 g, 78%. Mp 94-95 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.59$ (d, J = 4.4, 2H, H_a), 7.68 (td, J = 1.8, 7.7, 2H, H_c), 7.47 (s, 2H, H_f), 7.26 (dt, J = 3.3, 5.6, 2H, H_b), 7.15 (d, J = 7.8, 2H, H_d), 5.62 (s, 4H, H_e), 2.78 (t, J = 7.6, 4H, H_g), 2.18 – 1.93 (m, 2H, H_h); ¹³C NMR (75 MHz, CDCl₃) δ : 154.7, 149.7, 148.0, 137.3, 123.3, 122.3, 121.5, 55.5, 28.9, 25.0; I. R. (KBr): υ (cm⁻¹) 3500-3200 (sb), 3136, 3117, 2725, 1654, 1588, 1570, 1551, 1321, 1290, 1214, 1170, 1151, 1122, 1090, 1048, 996, 827, 762, 753. HRESI-MS (MeOH): m/z = 361.1894 [**8**+H]⁺ (calc. for C₁₉H₂₁N₈

361.1889), 383.1723 $[8+Na]^+$ (calc. for $C_{19}H_{20}N_8Na$ 383.1709); Anal. calcd for $C_{19}H_{20}N_8$: C, 63.32; H, 5.59; N, 31.09; Found: C, 63.13; H, 5.59; N, 30.75.

The suspension was then poured into aqueous NH₄OH/EDTA (200 mL) and stirred for 1 h. A tan solid was isolated by filtration and was washed well with H₂O then vaccum dried. Yield: 0.96 g, 84%. Mp 224-225 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 8.80 (s, 3H, H_f), 8.56 (dd, J = 0.9, J = 4.7, 3H, H_a), 8.35 (s, 3H, H_g), 7.84 (td, J =1.5, J = 7.6, 3H, H_c), 7.36 (m, 6H, H_{b,d}), 5.79 (s, 6H, H_e); ¹³C NMR (75 MHz, CDCl₃) δ : 155.5, 150.2, 146.8, 138.1, 132.6, 124.0, 123.5, 123.0, 121.9, 55.4; I. R. (KBr): υ (cm⁻¹) 3300-3200 (sb) 3109, 3077, 2725, 1606, 1597, 1588, 1570, 1306, 1229, 1153, 1093, 1049, 995, 886, 848, 804; HRESI-MS (DMSO/MeOH): m/z = 553.2279[9+H]⁺ (calc. for C₃₀H₂₅N₁₂ 553.2320); Anal. calcd for C₃₀H₂₄N₁₂•(0.75H₂O): C, 65.65; H, 4.54; N, 29.69. Found: C, 63.89; H, 4.58; N, 29.31.

3. Synthesis of silver(I) complexes:

General: All the silver reactions were carried out in the absence of light.

3.1 Synthesis of silver(I) complexes of the 2-pyridyl-1,2,3-triazole ligands.

A solution (acetone, 2.5 mL) of anhydrous AgSbF₆ (0.034 g, 0.1 mmol, 1 eq.) was added dropwise slowly to an acetone (2.5 mL) solution of the ligand **1** (0.023 g, 0.1 mmol, 1 eq.). The resulting clear solution was vapour diffused with MeOH leading to colourless X-ray quality crystals of $[(1)_2Ag_2](SbF_6)_2$, The crystals were isolated by filtration and were washed with MeOH (10 mL), Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.05 g, 86%). Mp 229-230 °C; ¹H NMR (300 MHz, *d*₆-acetone) δ 9.16 (s, 1H, H_c), 8.98 (dd, *J* = 0.8, 5.1, 1H, H_j), 8.84 (d, *J* = 4.9, 1H, H_a), 8.26 (td, *J* = 1.7, 7.7, 1H, H_c), 8.18 – 8.08 (m, 2H, H_hg), 8.03 (d, *J* = 8.0, 1H, H_d), 7.72 (ddd, *J* = 1.3, 5.2, 7.6, 1H, H_i), 7.62 – 7.58 (m, 1H, H_b), 6.26 (s, 2H, H_f); ¹³C NMR (100 MHz, *d*₆-acetone) δ 154.1, 153.8, 152.3, 147.5, 146.9, 141.57, 140.7, 127.5, 126.6, 126.3, 126.0, 123.4, 57.4; I.R. (KBr): υ (cm⁻¹) 3500-3200 br, 3144, 2924, 1601, 1573, 1476, 1451, 1366, 1330, 1293, 1231, 1203, 1158, 1112, 1089, 1062, 1049, 997, 990, 891, 834, 788, 695, 513; HRESI-MS (CH₃CN): m/z = 924.9131 [Ag₂(1)₂](SbF₆)⁺) (calc. for C₂₆H₂₂Ag₂F₆N₁₀Sb 924.9068), 581.1148 [Ag(1)₂]⁺ (calc. for C₂₆H₂₂AgN₁₀ 581.1074), 344.0150 [Ag(1)]⁺ (calc. for C₁₃H₁₁AgN₅ 344.0065), 260.0898 [1+Na]⁺,

(calc. for $C_{13}H_{11}N_5Na$ 260.0907); Anal. calcd for $C_{44}H_{36}Ag_2F_{12}N_{16}Sb_2$: C, 35.80; H,

2.46; N, 15.18. Found: C, 36.05; H, 2.42; N, 15.18

 $[(2a)_2Ag_2](SbF_6)_2$

A solution (acetonitrile, 5 mL) of anhydrous AgSbF₆ (0.034 g, 0.1 mmol, 1 eq.) was added dropwise slowly to an acetonitrile (5 mL) solution of the ligand **2a** (0.039 g, 0.1 mmol, 1 eq.). The resulting suspension was stirred at room temperature for 1 h then warmed with a heat gun until all the solids dissolved. The resulting solution was hot filtered through cotton wool then vapour diffused with MeOH leading to X-ray quality colourless crystals. The crystals were isolated by filtration and were washed with MeOH (10 mL), Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.061 g, 82%). Mp < 300 °C; ¹H NMR (300 MHz, CD₃CN) δ 8.53 (d, *J* = 4.2, 4H, H_a), 7.76 (dd, *J* = 8.1, 12.5, 12H, H_{e,g,h}), 7.62 (t, *J* = 7.6, 4H, H_c), 7.41 (d, *J* = 7.9, 4H, H_d), 7.32–7.16 (m, 4H, H_b), 5.86 (s, 8H, H_f); ¹³C NMR (75 MHz, CD₃CN) δ 150.9, 147.1, 145.2, 138.9, 133.8, 133.3, 131.4, 124.8, 123.4, 121.9, 53.2; I.R. (KBr): υ (cm⁻¹) 3143, 2924, 1603, 1571, 1467, 1432, 1345, 1287, 1237, 1206, 1163, 1105, 1086, 1059, 1049, 1015, 987, 830, 783, 743, 659, 512; HRESI-MS (DMSO/CH₃CN): m/z = 1239.0403 [Ag₂(**2a**)₂](SbF₆)⁺ (calc. for C₄₄H₃₆Ag₂F₆N₁₆Sb 1239.0349), 897.2376 [Ag(**2a**)₂]⁺ (calc. for C₄₄H₃₆AgN₁₆ 897.2359), 503.0860 [Ag₂(**2a**)₂]²⁺ (calc. for

A solution (acetonitrile, 5 mL) of anhydrous AgSbF₆ (0.068 g, 0.2 mmol, 1 eq.) was added dropwise slowly to an acetonitrile (5 mL) solution of the ligand **2b** (0.078 g, 0.2 mmol, 1 eq.). The resulting suspension was stirred at room temperature for 1 h then warmed with a heat gun until all the solids dissolved. The resulting solution was hot filtered through cotton wool then vapour diffused with MeOH. A colourless solid slowly precipitated over one day. The solid was isolated by filtration and was washed with MeOH (10 mL), Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.120 g, 85%). Mp < 300 °C; ¹H NMR (300 MHz, *d*₆-DMSO) δ 8.79 (s, 4H, H_e), 8.63 (sb, 4H, H_a), 8.06–7.89 (m, 8H, H_{c,d}), 7.53–7.33 (m, 10H, H_{b,g,h}), 7.28 (s, 2H, H_i), 5.72 (s, 8H, H_f); ¹³C NMR (75 MHz, *d*₆-DMSO) δ 150.9, 148.8, 146.7, 139.1, 137.1, 130.1, 128.6, 127.8, 125.1, 124.7, 121.7, 53.8; I.R. (KBr): υ (cm⁻¹) 3140, 2926, 1602, 1571, 1474, 1449, 1431, 1342, 1319, 1255, 1238, 1206, 1158, 1107, 1090, 1059, 1049, 1008, 986, 899, 844, 816, 786, 746, 668, 571; HRESI-MS (DMSO/CH₃CN): m/z = 1239.0425 [Ag₂(**2b**)₂](SbF₆)⁺ (calc. for C₄₄H₃₆Ag₂F₆N₁₆Sb 1239.0349), 502.0715 [Ag₂(**2b**)₂]²⁺ (calc. for C₄₄H₃₆Ag₂N₁₆ 502.0700), 501.0839 [Ag(1)]⁺ (calc. for C₂₂H₁₈AgN₈

S20

501.0700), 395.1730 $[2b+H]^+$, (calc. for C₂₂H₁₉N₈ 395.1733). Anal. calcd for C₄₄H₃₆Ag₂F₁₂N₁₆Sb₂: C, 35.80; H, 2.46; N, 15.18. Found: C, 35.63; H, 2.51; N, 14.94

A solution (acetone, 5 mL) of AgSbF₆ (0.069 g, 0.2 mmol, 1 eq.) was added dropwise slowly to an acetone (5 mL) solution of the ligand 2c (0.080 g, 0.2 mmol, 1 eq.). A colourless solid precipitated slowly over ten minutes and the resulting suspension was stirred at room temperature for 1 h. The volume of solvent was reduced by half and the colourless solid isolated by filtration and was washed with Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.086 g, 58%). Mp 190-192 °C; ¹H NMR (400 MHz, CD₃CN) δ 8.59 (d, J = 4.9, 4H, H_a), 8.24 (s, 4H, H_e), 7.89 (t, J = 7.8, 2H, H_h), 7.80 (dd, J = 10.9, 4.6, 4H, H_c), 7.70 (d, J = 7.9, 4H, H_d), 7.42 (d, J = 7.7, 4H, H_g), 7.39–7.30 (m, 4H, H_b), 5.72 (s, 8H, H_f); ¹³C NMR (100 MHz, CD₃CN) δ 156.6, 154.6, 150.8, 148.4, 146.0, 138.7, 138.5, 124.6, 124.3, 121.6, 54.8; I.R. (KBr): υ (cm⁻¹) 3500-3200 br, 3148, 2925, 1598, 1581, 1477, 1456, 1351, 1315, 1253, 1241, 1163, 1114, 1095, 1065, 1054, 1018, 994, 834, 775, 757, 662, 538; HRESI-MS (CH₃CN): $m/z = 1241.0354 [Ag_2(2c)_2](SbF_6)^+$ (calc. for $C_{42}H_{34}Ag_2F_6N_{18}Sb = 1241.0349$), 895.2380 $[Ag(2c)_2]^+$ (calc. for C₄₄H₃₆AgN₁₆ 895.2354), 504.0750 $[Ag_2(2c)_2]^{2+}$ (calc. for $C_{42}H_{34}Ag_2N_{18}$ 502.0700), 501.0768 $[Ag(2c)]^+$ (calc. for $C_{21}H_{17}AgN_9$ 501.0700), 396.1738 $[2c+H]^+$, (calc.) for $C_{21}H_{18}N_9$ 396.1733). Anal. calcd for

S21

16.83

A solution (acetone, 5 mL) of AgSbF₆ (0.117 g, 0.34 mmol, 1 eq.) was added dropwise slowly to a CH₂Cl₂ (5 mL) solution of the ligand 2d (0.134 g, 0.34 mmol, 1 eq.). A colourless solid precipitated slowly over ten minutes and the resulting suspension was stirred at room temperature for 1 h. The volume of solvent was reduced by half and the colourless solid isolated by filtration and washed with Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.240 g, 90%). Mp 293°C (decomp.); ¹H NMR (300 MHz, d_6 -DMSO) δ 8.91 (s, 4H, H_e), 8.60 (d, $J = 4.8, 4H, H_a$), 8.06– 7.90 (m, 8H, H_{cd}), 7.49 – 7.37 (m, 12H, H_{bg}), 5.71 (s, 8H, H_f); ¹³C NMR (75 MHz, *d*₆-DMSO) δ 150.7, 148.9, 146.7, 138.9, 136.3, 129.3, 124.9, 124.5, 121.4, 53.7; I.R. (KBr): v (cm⁻¹) 3141, 2925, 1705, 1601, 1571, 1301, 1257, 1239, 1201, 1157, 1104, 1088, 1059, 989, 836, 786, 770, 748, 721. HRESI-MS (DMSO/CH₃CN): m/z = 1239.0383 $[Ag_2(2d)_2](SbF_6)^+$ (calc. for $C_{44}H_{36}Ag_2F_6N_{16}Sb$ 1239.0349), 895.2380 $[Ag(2d)_2]^+$ (calc. for C₄₄H₃₆AgN₁₆ 895.2354), 502.0750 $[Ag_2(2d)_2]^{2+}$ (calc. for $C_{44}H_{36}Ag_2N_{16}$ 502.0700), 501.0768 $[Ag(2d)]^+$ (calc. for $C_{22}H_{18}AgN_8$ 501.0700), 395.1738 $[2d+H]^+$, (calc. for C₂₂H₁₉N₈ 395.1733). calcd for Anal. C₄₄H₃₆Ag₂F₁₂N₁₆Sb₂: C, 35.80; H, 2.46; N, 15.18. Found: C, 35.77; H, 2.82; N, 15.17

 $[(4)_2Ag_3](SbF_6)_3$

The ligand 4 (0.055 g, 0.1 mmol, 2 eq.) was added as a solid to a solution (acetonitrile, 8 mL) of AgSbF₆ (0.053 g, 0.15 mmol, 3 eq.). All the solids dissolved and a colourless solid precipitated slowly over ten minutes. The resulting suspension was stirred at room temperature for 1 h then was warmed with a heat gun until all the solids dissolved and hot filtered through cotton wool. The resulting colourless acetonitrile solution was vapour diffused with MeOH. The colourless solid which slowly precipitated over one day was isolated by filtration and was washed with MeOH (10 mL), Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.080 g, 80%). Mp 274°C (decomp.); ¹H NMR (300 MHz, d_6 -DMSO) δ 8.84 (s, 6H, H_e), 8.66 (d, J =4.9, 6H, H_a), 7.97 (d, J = 3.6, 12H, H_{cd}), 7.46 (dd, J = 4.6, 9.1, 6H, H_b), 7.18 (s, 6H, H_f), 5.73 (s, 12H, H_g); ¹³C NMR (75 MHz, d_6 -DMSO) δ 150.2, 148.5, 146.4, 138.2, 137.2, 126.5, 124.4, 123.8, 120.8, 52.7; I.R. (KBr): υ (cm⁻¹) 3144, 2928, 1602, 157, 1452, 1424, 1355, 1319, 1275, 1255, 1236, 1205, 1160, 1106, 1089, 1058, 1048, 1007, 989, 890, 835, 786, 758, 744, 662, 512; HRESI-MS (DMSO/CH₃CN): m/z = 1898.9519 $[Ag_3(4)_2](SbF_6)_2^+$ (calc. for $C_{60}H_{48}Ag_3F_{12}N_{24}Sb_2$ 1898.9532), 1002.9299 $[Ag_{2}(4)](SbF_{6})^{+}$ (calc. for $C_{30}H_{24}Ag_{2}F_{6}N_{12}Sb$ 1002.9988), 659.1389 $[Ag(4)]^{+}$ (calc.

for C₃₀H₂₄AgN₁₂ 659.1298). Anal. calcd for C₆₀H₄₈Ag₃F₁₈N₂₄Sb₃: C, 33.74; H, 2.26; N, 15.74. Found: C, 33.89; H, 2.62; N, 15.70.

 $[(3a)_2Ag_2](SbF_6)_2$

A solution (acetonitrile, 5 mL) of AgSbF₆ (0.034 g, 0.1 mmol, 1 eq.) was added dropwise slowly to an acetonitrile (2.5 mL) solution of the ligand 3a (0.037 g, 0.1 mmol. 1 eq.). A colourless solid precipitated slowly over ten minutes and the resulting suspension was stirred at room temperature for 1 h. The volume of solvent was reduced by half and the colourless solid isolated by filtration and washed with Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.044 g, 62%). Mp 252-253 °C; ¹H NMR (300 MHz, CD₃CN) δ 8.66 (d, $J = 4.6, 4H, H_a$), 8.36 (s, 4H, H_e), 7.95 (td, J $= 1.7, 7.8, 4H, H_c$, 7.86 (d, $J = 7.9, 4H, H_d$), 7.50–7.40 (m, 4H, H_b), 4.40 (t, J = 6.5, 8H, H_f), 1.98–1.86 (m, 8H, H_g), 1.22 (d, J = 3.1, 8H, H_h); ¹³C NMR (75 MHz, CD₃CN) δ 150.9, 148.8, 146.3, 139.1, 124.6, 123.7, 122.0, 50.8, 29.6, 25.4; I.R. (KBr): v (cm⁻¹) 3146, 2920, 2860, 1599, 1569, 1522, 1446, 1422, 1373, 1254, 1233, 1198, 1157, 1106, 1089, 1060, 1008, 996, 831, 783, 744, 707, 658, 515; HRESI-MS (CH_3CN) : m/z = 1199.0946 $[Ag_2(3a)_2](SbF_6)^+$ (calc. for $C_{40}H_{44}Ag_2F_6N_{16}Sb$ 1199.0976), 855.2946 $[Ag(3a)_2]^+$ (calc. for C₄₀H₄₄AgN₁₆ 855.2986), 481.1042 $[Ag(3a)]^+$ (calc. for C₂₀H₂₂AgN₈ 481.1018), 375.2057 $[3a+H]^+$, (calc. for C₂₀H₂₂N₈

375.1967). Anal. calcd for C₄₀H₄₄Ag₂F₁₂N₁₆Sb₂•(C₂H₆O): C, 34.03; H, 3.40; N, 15.12. Found: C, 34.33; H, 3.29; N, 15.49.

 $[(3b)_2Ag_2](SbF_6)_2$

A solution (acetonitrile, 5 mL) of AgSbF₆ (0.072 g, 0.2 mmol, 1 eq.) was added dropwise slowly to an acetonitrile (5 mL) solution of the ligand **3b** (0.069 g, 0.2 mmol, 1 eq.). The resulting solution was stirred at room temperature for 1 h then was filtered through cotton wool and vapour diffused with MeOH. A colourless solid slowly precipitated over one day. This solid was isolated by filtration and was washed with MeOH (10 mL), Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.090 g, 64%). Mp 283°C (decomp.); ¹H NMR (300 MHz, CD₃CN) δ 8.52 (d, *J* = 4.4, 4H, H_a), 8.25 (s, 4H, H_e), 7.75 (td, *J* = 7.8, 1.7, 4H, H_c), 7.61 (dd, *J* = 7.0, 1.0, 4H, H_d), 7.31 (ddd, *J* = 7.5, 5.0, 1.2, 4H, H_b), 4.83–4.64 (m, 8H, H_f), 2.84–2.66 (m, 4H, H_g); ¹³C NMR (75 MHz, CD₃CN) δ 150.9, 148.8, 146.1, 139.0, 124.7, 124.0, 121.7, 49.8, 29.2; I.R. (KBr): υ (cm⁻¹) 3143, 3089, 2958, 1603, 1570, 1473, 1446, 1422, 1365, 1350, 1257, 1231, 1213, 1159, 1111, 1090, 1080, 1044, 1008, 997, 988, 833, 785, 742, 723, 659, 514; HRESI-MS (CH₃CN): m/z = 1115.0046 [Ag₂(**3b**)₂](SbF₆)⁺ (calc. for C₃₄H₃₂Ag₂F₆N₁₆Sb 1115.0037), 964.1234 [Ag₂(**3b**)₂](CH₃CN)(CO₂H)⁺ (calc. for C₃₇H₃₆Ag₂N₁₇O₂ 964.1340), 439.0672 [Ag(**3a**)]⁺ (calc. for C₁₇H₁₆AgN₈ 439.0549);

Anal. calcd for C₃₄H₃₂Ag₂F₁₂N₁₆Sb₂•3(CH₃CN): C, 32.57; H, 2.80; N, 18.04. Found: C, 32.61; H, 2.69; N, 17.68.

3.2 Synthesis of silver(I) complexes of the methylene bridged 2-pyridyl-1,2,3-triazole ligands.

 $[(6)_2Ag_3](SbF_6)_3$

A solution (acetone, 5 mL) of anhydrous AgSbF₆ (0.102 g, 0.3 mmol, 3 eq.) was added dropwise slowly to an acetone (5 mL) solution of the ligand 6 (0.064 g, 0.2 mmol, 2 eq.). The resulting solution was stirred at room temperature for 1 h then was filtered through cotton wool and vapour diffused with MeOH. A colourless solid slowly precipitated over one day. The solid was isolated by filtration and was washed with MeOH (10 mL), Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.100 g, 60%). Mp 280 °C (decomp.); ¹H NMR (300 MHz, CD₃CN) δ 8.55 (d, J = 4.2, 4H, H_a), 8.27 (s, 4H, H_f), 7.82 (td, $J = 7.7, 1.8, 4H, H_c$), 7.44 – 7.32 (m, 8H, $H_{b,d}$), 5.73 (s, 8H, H_e); ¹³C NMR (75 MHz, CD₃CN) δ 154.6, 150.7, 139.3, 138.4, 124.3, 123.6, 123.2, 56.0; I.R. (KBr): υ (cm⁻¹) 3136, 3103, 2926, 2106, 1596, 1569, 1477, 1436, 1356, 1321, 1278, 1256, 1236, 1223, 1150, 1083, 1047, 1011, 952, 844, 802, 756, 706, 659, 512; HRESI-MS (CH₃CN): $m/z = 1430.7821 [Ag_3(6)_2](SbF_6)^+$ (calc. for $C_{32}H_{28}Ag_3F_{12}N_{16}Sb_2$ 1430.7716), 1324.8825 [Ag₂(**6**)₂](SbF₆)₂+H⁺ (calc. for $C_{32}H_{29}Ag_{3}F_{12}N_{16}Sb_{2}$ 1324.8748), 1086.9722 $[Ag_2(6)_2](SbF_6)^+$ (calc. for $C_{32}H_{29}Ag_{3}F_{6}N_{16}Sb$ 1086.9787), 743.1779 $[Ag(6)_{2}]^{+}$ (calc. for $C_{32}H_{29}AgN_{16}$

743.1728), 425.0392 $[Ag(6)]^+$ (calc. for C₁₆H₁₄AgN₈ 425.0392); Anal. calcd for C₃₄H₂₈Ag₃F₁₈N₁₆Sb₃•(CH₃CN): C, 23.90; H, 1.83; N, 13.94. Found: C, 23.91; H, 1.78; N, 13.62

[(7a)₂Ag₃](SbF₆)₃

A solution (acetonitrile, 5 mL) of anhydrous AgSbF₆ (0.102 g, 0.3 mmol, 3 eq.) was added dropwise slowly to an acetonitrile (5 mL) solution of the ligand **7a** (0.078 g, 0.2 mmol, 2 eq.). A colourless solid precipitated slowly over ten minutes and the resulting suspension was stirred at room temperature for 1 h. The volume of solvent was reduced by half and the colourless solid isolated by filtration and washed with Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.081 g, 86%). Mp 181 °C (decomp.); ¹H NMR (400 MHz, CD₃CN) δ 8.55 (dd, *J* = 4.9, 0.7, 4H, H_a), 8.24 (d, *J* = 2.7, 8H, H_{f,i}), 7.83 (td, *J* = 7.7, 1.7, 4H, H_e), 7.73 (dd, *J* = 7.8, 1.7, 4H, H_g), 7.45 (d, *J* = 7.7, 2H, H_h), 7.41 (d, *J* = 7.9, 4H, H_d), 7.39–7.32 (m, 4H, H_b), 5.70 (s, 8H, H_e); ¹³C NMR (100 MHz, CD₃CN) δ 155.6, 151.7, 148.5, 139.5, 132.5, 130.9, 126.8, 125.2, 124.6, 124.1, 123.6, 56.8; I.R. (KBr): υ (cm⁻¹) 3145, 2924, 2101, 1601, 1573, 1558, 1479, 1443, 1347, 1315, 1226, 1158, 1096, 1056, 1013, 976, 899, 800, 766, 696, 660, 511; HRESI-MS (CH₃CN): m/z = 1582.8453 [Ag₃(**7a**)₂](SbF₆)⁺ (calc. for

 $[Ag_2(7a)_2](SbF_6)^+$ $C_{44}H_{36}Ag_{3}F_{12}N_{18}Sb_{2}$ 1584.8248), 1239.0418 (calc. for $C_{44}H_{36}Ag_{2}F_{6}N_{16}Sb$ 1239.0349), 897.2393 $[Ag(7a)_{2}]^{+}$ (calc. for $C_{44}H_{36}AgN_{16}$ 502.0741 $[Ag_2(7a)_2]^{2+}$ (calc. for C₄₄H₃₆Ag₂N₁₆ 502.0700), 501.0743 897.2359), $[Ag(7a)]^{+}$ (calc. for $C_{22}H_{18}AgN_8$ 501.0700); Anal. calcd for C₄₄H₃₆Ag₂F₁₂N₁₆Sb₂·(2CH₃CN): C, 30.31; H, 2.23; N, 13.26. Found: C, 30.39; H, 2.18; N, 13.07.

 $[(7b)_2Ag_2](SbF_6)_2$

A solution (acetone, 5 mL) of anhydrous AgSbF₆ (0.051 g, 0.15 mmol, 3 eq.) was added dropwise slowly to a CH₂Cl₂ (5 mL) solution of the ligand **7b** (0.040 g, 0.1 mmol, 2 eq.). A colourless solid precipitated slowly over ten minutes and the resulting suspension was stirred at room temperature for 1 h. The volume of solvent was reduced by half and the colourless solid isolated by filtration and washed with Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.060 g, 65%). Mp 282 °C (decomp.); ¹H NMR (300 MHz, *d*₆-DMSO) δ 9.09 (s, 4H, H_f), 8.55 (d, *J* = 4.0, 4H, H_a), 8.13 (t, *J* = 7.6, 2H, H_h), 7.99 (d, *J* = 7.7, 4H, H_g), 7.88 (t, *J* = 7.3, 4H, H_c), 7.51 – 7.33 (m, 8H, H_b, 5.88 (s, 8H, H_e); ¹³C NMR (75 MHz, *d*₆-DMSO) δ 154.2, 149.7, 147.0, 144.6, 139.9, 137.6, 125.6, 123.6, 122.7, 120.7, 55.0; I.R. (KBr): ν (cm⁻¹)

3148, 3106, 2924, 1598, 1581, 1477, 1456, 1440, 1351, 1315, 1253, 1241, 1198, 1163, 1095, 1065, 1054, 1018, 994, 834, 813, 775, 757, 662, 538; HRESI-MS (CH₃CN): $m/z = 1584.8274 [Ag_3(7b)_2](SbF_6)_2^+$ (calc. for $C_{42}H_{34}Ag_3F_{12}N_{18}Sb_2$ 1584.8248), 1241.0250 $[Ag_2(7b)_2](SbF_6)^+$ (calc. for $C_{42}H_{34}Ag_2F_6N_{18}Sb$ 1241.0254), 899.2243 $[Ag_2(7b)_2](SbF_6)^+$ (calc. for $C_{42}H_{34}Ag_2F_6N_{18}Sb$ 1241.0254), (calc. for $C_{21}H_{17}AgN_{18}$ 502.0652), 396.1717 $[7b+H]^+$, (calc. for $C_{21}H_{18}N_8$ 396.1685). Anal. calcd for $C_{42}H_{34}Ag_2F_{12}N_{18}Sb_2$: C, 34.13; H, 2.33; N, 16.78. Found: C, 34.08; H, 2.33; N, 16.78.

A solution (acetone, 5 mL) of anhydrous AgSbF₆ (0.117 g, 0.34 mmol, 1 eq.) was added dropwise slowly to a CH₂Cl₂ (5 mL) solution of the ligand **7c** (0.135 g, 0.34 mmol, 1 eq.). A colourless solid precipitated slowly over ten minutes and the resulting suspension was stirred at room temperature for 1 h. The volume of solvent was reduced by half and the colourless solid isolated by filtration and washed with Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.245 g, 97%). Mp 270-271°C; ¹H NMR (300 MHz, d_6 -DMSO) δ 8.71 (s, 4H, H_f), 8.62–8.53 (m, 4H, H_a), 7.94 (s, 8H, H_g), 7.86 (td, *J* = 7.7, 1.8, 4H, H_d), 7.41–7.37 (m, 8H, H_{b,c}), 5.79 (s, 8H, H_e); ¹³C NMR (75 MHz, d_6 -DMSO) δ 155.4, 150.4, 146.9, 138.4, 130.7, 126.4, 124.2, 123.2, 123.1, 55.4; I.R. (KBr): υ (cm⁻¹) 3142, 2924, 1502, 1571, 1472, 1423, 1346, 1322, 1297, 1237, 1213, 1201, 1159, 1104, 1088, 1058, 1048, 1009, 988, 834, 785, 771,

748, 659, 511; HRESI-MS (DMSO/CH₃CN): $m/z = 1239.0291 [Ag_2(7c)_2](SbF_6)^+$ (calc. for C₄₄H₃₆Ag₂F₆N₁₆Sb 1239.0349), 897.2317 [Ag(7c)_2]⁺ (calc. for C₄₄H₃₆AgN₁₆ 897.2359), 502.0725 [Ag_2(7c)_2]²⁺ (calc. for C₄₄H₃₆Ag₂N₁₆ 502.0700), 501.0721 [Ag(7c)]⁺ (calc. for C₂₂H₁₈AgN₈ 501.0700), 395.1717 [7c+H]⁺, (calc. for C₂₂H₁₉N₈ 395.1733); Anal. calcd for C₄₄H₃₆Ag₂F₁₂N₁₆Sb₂: C, 35.80; H, 2.46; N, 15.18. Found: C, 36.05; H, 2.42; N, 15.18

 $[(8)_2Ag_2](SbF_6)_2$

A solution (acetonitrile, 5 mL) of anhydrous AgSbF₆ (0.034 g, 0.1 mmol, 1 eq.) was added dropwise slowly to an acetonitrile (5 mL) solution of the ligand **8** (0.036 g, 0.1 mmol, 1 eq.) and the resulting solution was stirred at room temperature for 1 h. The solution was filtered through a plug of cotton wool and vapour diffused with methanol to yield colourless crystals. The colourless crystals were isolated by filtration and were washed with Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.058 g, 82%). Mp 183 °C (decomp.); ¹H NMR (400 MHz, CD₃CN) δ 8.49 (d, *J* = 4.7, 4H, H_a), 7.82 (m, 8H, H_{d,f}), 7.39 (d, *J* = 7.8, 4H, H_c), 7.34 (dd, *J* = 7.2, 5.3, 4H, H_b), 5.64 (s, 8H, H_e), 2.63 (t, *J* = 6.8, 8H, H_g), 1.91–1.81 (m, 4H, H_h); ¹³C NMR (100 MHz, CD₃CN) δ 154.2, 150.6, 148.6, 138.3, 124.2, 124.2, 123.6, 55.9, 30.4, 23.6; I.R. (KBr): v (cm⁻¹) 3142, 2946, 2924, 1595, 1572, 1525, 1477, 1457, 1439, 1256, 1217,

1133, 1096, 1053, 997, 874, 759, 628; HRESI-MS (CH₃CN): m/z = 1171.0650[Ag₂(**8**)₂](SbF₆)⁺ (calc. for C₃₈H₄₀Ag₂F₆N₁₆Sb 1171.0661), 897.2317 [Ag(**8**)₂]⁺ (calc. for C₄₄H₃₆AgN₁₆ 897.2359), 829.2628 [Ag(**8**)₂]⁺ (calc. for C₃₈H₄₀AgN₁₆ 829.2669), 467.0960 [Ag(**8**)]⁺ (calc. for C₁₉H₂₀AgN₈ 467.0862), 383.1717 [**8**+Na]⁺, (calc. for C₁₉H₂₀NaN₈ 383.1709); Anal. calcd for C₃₈H₄₀Ag₂F₁₂N₁₆Sb₂: C, 32.41; H, 2.86; N, 15.92. Found: C, 32.31; H, 2.90; N, 15.67

A solution (acetonitrile, 5 mL) of anhydrous $AgSbF_6$ (0.103 g, 0.3 mmol, 3 eq.) was added dropwise slowly to an acetonitrile (5 mL) solution of the ligand **9** (0.110 g, 0.2 mmol, 2 eq.). A colourless solid precipitated slowly over ten minutes and the resulting suspension was stirred at room temperature for 1 h. The volume of solvent was reduced by half and the colourless solid isolated by filtration and washed with

Et₂O (10 mL) and petrol (10 mL) then vacuum dried (0.093 g, 64%). Mp 160-161°C; ¹H NMR (400 MHz, d_6 -DMSO) δ 8.82 (s, 6H, H_f), 8.58 (d, J = 4.2, 6H, H_a), 8.36 (s, 6H, H_g), 7.86 (td, $J = 7.7, 1.7, 6H, H_c$), 7.41-7.37 (m, 12H, H_{b,d}), 5.81 (s, 12H, H_e); ¹³C NMR (100 MHz, d_6 -DMSO) δ 155.2, 150.1, 146.6, 138.0, 132.4, 123.85, 123.3, 122.8, 121.7, 55.2; I.R. (KBr): υ (cm⁻¹) 3113, 3076, 2938, 2924, 1613, 1593, 1571, 1477, 1434, 1337, 1272, 1230, 1198, 1146, 1093, 1052, 1014, 996, 945, 886, 849, 825, 805, 760, 748, 690, 625, 594; HRESI-MS (DMSO/CH₃CN): m/z = 1213.3512 $[Ag(9)_2](SbF_6)^+$ (calc. for $C_{60}H_{48}AgN_{24}$ 1213.3541), 936.2417 $[Ag(9)(CH_3CN)H](SbF_6)^+$ (calc. for $C_{30}H_{24}AgF_6N_{13}Sb$ 936.0584), 553.2285 $[9+H]^+$ (calc. for C₃₀H₂₄N₁₂ 553.2235); Anal. calcd for C₆₀H₄₈AgF₆N₂₄Sb: C, 49.74; H, 3.34; N, 23.20. Found: C, 49.81; H, 3.41; N, 23.08

4. Selected ¹H NMR Spectra of synthesized compounds.

¹H NMR (CDCl₃, 300K) of **1.**

¹H NMR (CDCl₃, 300K) of **2a**.

¹H NMR (CDCl₃, 300K) of **2b.**

¹H NMR (CDCl₃, 300K) of **2c.**

¹H NMR (CDCl₃, 300K) of **2d.**

2d

¹H NMR (CDCl₃, 300K) of **3a.**

¹H NMR (CDCl₃, 300K) of **3b.**

¹H NMR (CDCl₃, 300K) of **4.**

¹H NMR (D₆-DMSO, 300K) of **5a.**

¹H NMR (D₆-DMSO, 300K) of **5b.**

¹H NMR (D₆-DMSO, 300K) of **5c.**

¹H NMR (CDCl₃, 300K) of **6.**

¹H NMR (CDCl₃, 300K) of 7a.

¹H NMR (CDCl₃, 300K) of **7b.**

¹H NMR (CDCl₃, 300K) of 7c.

¹H NMR (CDCl₃, 300K) of **8.**

¹H NMR (CDCl₃, 300K) of **8.**

¹H NMR Spectra of selected silver complexes.

¹H NMR (d_6 -acetone, 300K) of $[Ag_2(1)_2](SbF_6)_2$.

Figure 1. Partial ¹H NMR spectra (300 MHz, d_6 -acetone, 300 K) of a) Ligand 1, b) $[Ag_2(1)_2](SbF_6)_2$

 $[(2a)_2Ag_2](SbF_6)_2$

¹H NMR (CD₃CN, 300K) of [Ag₂(**2a**)₂](SbF₆)₂.

Figure 2. Partial ¹H NMR spectra (300 MHz, CD₃CN, 300 K) of a) Ligand 2a, b) [Ag₂(2a)₂](SbF₆)₂.

¹H NMR (CD₃CN, 300K) of [Ag₃(6)₂](SbF₆)₃.

Figure 3. Partial ¹H NMR spectra (300 MHz, CD₃CN, 300 K) of a) Ligand 6, b) $[Ag_3(6)_2](SbF_6)_{3.}$

 $[(8)_2Ag_2](SbF_6)_2$

Figure 4. Partial ¹H NMR spectra (300 MHz, CD₃CN, 300 K) of a) Ligand **8**, b) $[Ag_2(8)_2](SbF_6)_{2.}$

¹H NMR (CD₃CN, 300K) of [Ag(9)₂](SbF₆).

5. Selected HR-ESMS Spectra of the silver complexes.

Figure 5. HR-ESMS (CH₃CN) of $[Ag_2(1)_2](SbF_6)_2$: $m/z = 924.9131 [Ag_2(1)_2](SbF_6)^+$ (calc. for $C_{26}H_{22}Ag_2F_6N_{10}Sb 924.9068$), 581.1148 $[Ag(1)_2]^+$) (calc. for $C_{26}H_{22}AgN_{10} 581.1074$), 344.0150 $[Ag(1)]^+$ (calc. for $C_{13}H_{11}AgN_5 344.0065$).

Figure 6. Observed and Calculated isotopic distribution for the $[Ag_2(1)_2](SbF_6)^+$ ion.

Figure 7. Observed and Calculated isotopic distribution for the $[Ag(1)_2]$ ion.

Figure 8. HR-ESMS (DMSO/CH₃CN): $m/z = 1898.9519 [Ag_3(4)_2](SbF_6)_2^+$ (calc. for $C_{60}H_{48}Ag_3F_{12}N_{24}Sb_2$ 1898.9532), 1002.9299 [Ag₂(4)](SbF₆)⁺ (calc. for $C_{30}H_{24}Ag_2F_6N_{12}Sb$ 1002.9988), 659.1389 [Ag(4)]⁺ (calc. for $C_{30}H_{24}AgN_{12}$ 659.1298).

Figure 9. Observed and Calculated isotopic distribution for the $[Ag_3(4)_2](SbF_6)_2^+$ and $[Ag_6(4)_4](SbF_6)_4^{2+}$ ion.

Figure 10. HR-ESMS (CH₃CN): $m/z = 1584.8274 [Ag_3(7b)_2](SbF_6)_2^+$ (calc. for C₄₂H₃₄Ag₃F₁₂N₁₈Sb₂ 1584.8248), 1241.0250 [Ag₂(7b)₂](SbF₆)⁺ (calc. for C₄₂H₃₄Ag₂F₆N₁₈Sb 1241.0254), 899.2243 [Ag₂(7b)₂](SbF₆)⁺ (calc. for C₄₂H₃₄AgN₁₈ 899.2261), 502.0737 [Ag(7b)]⁺ (calc. for C₂₁H₁₇AgN₁₈ 502.0652).

Figure 11. Observed and Calculated isotopic distribution for the $[Ag_2(7b)_2](SbF_6)^+$ ion.

Figure 12. Observed and Calculated isotopic distribution for the $[Ag_3(7b)_2](SbF_6)_2^+$ ion.

Figure 13. HR-ESMS (DMSO/CH₃CN): $m/z = 1239.0291 [Ag_2(7c)_2](SbF_6)^+$) (calc. for $C_{44}H_{36}Ag_2F_6N_{16}Sb 1239.0349$), 897.2317 $[Ag(7c)_2]^+$) (calc. for $C_{44}H_{36}AgN_{16} 897.2359$), 502.0725 $[Ag_2(7c)_2]^{2+}$ (calc. for $C_{44}H_{36}Ag_2N_{16} 502.0700$), 501.0721 $[Ag(7c)]^+$ (calc. for $C_{22}H_{18}AgN_8 501.0700$), 395.1717 $[L+H]^+$,

Figure 15. Observed and Calculated isotopic distribution for the $[Ag(7a)]^+$ and $[Ag_2(7a)_2]^{2+}$ ions.

References

- B. H. Dana, B. H. Robinson and J. Simpson, J. Organomet. Chem., 2002, 648, 251-269. 1.
- 2. 3. W. B. Austin, N. Bilow, W. J. Kelleghan and K. S. Y. Lau, J. Org. Chem., 1981, 46, 2280-2286.
- S. Braese, C. Gil, K. Knepper and V. Zimmermann, Angew. Chem., Int. Ed., 2005, 44, 5188-5240.