Synthetic strategies towards ruthenium-porphyrin conjugates for anticancer activity.

Teresa Gianferrara,^a* Ioannis Bratsos,^b Elisabetta Iengo,^b Barbara Milani,^b Adrian Oštrić,^b Cinzia

Spagnul,^a Ennio Zangrando^b and Enzo Alessio^b*

^a Department of Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy.

^b Department of Chemical Sciences, University of Trieste, 34127 Trieste, Italy. E-mail: alessi@units.it

Supplementary Material

Spectral data for selected *meso-(p*-nitrophenyl)porphyrins $p(NO_2)_n PP$ (n = 1-4) and *meso-(p*-aminophenyl)porphyrins $p(NH_2)_n PP$ (n = 1-4).

 $p(NO_2)PP$. δ_H (CDCl₃): -2.76 (br s, 2H, NH), 7.77 (m, 9H, p+mPh), 8.22 (d, J = 3.2 Hz, 6H, oPh), 8.40 (d, J = 8.7 Hz, 2H, oNO_2Ph), 8.64 (d, J = 8.6 Hz, 2H, mNO_2Ph), 8.75 (d, J = 4.7 Hz, 2H, β H), 8.86 (m, 6H, β H).

p(NH₂)PP. δ_H (CDCl₃): -2.75 (br, 2H, NH), 4.02 (s, 2H, NH₂Ph), 7.07 (d, 2H, J = 8.3 Hz, *m*NH₂Ph), 7.75 (m, 9H, *m*+*p*Ph), 7.98 (d, 2H, J = 8.3 Hz, *o*NH₂Ph), 8.20 (m, 6H, *o*Ph), 8.84 (m, 6H, βH), 8.96 (d, 2H, βH). UV-Vis λ_{max} (CHCl₃)/nm (ε×10⁻³/dm³ mol⁻¹ cm⁻¹): 419.5 (395), 515 (18.7), 551 (10.6), 589 (6.8), 645.5 (5.8).

 $p(\text{NH}_2)_2 cis$ -PP. δ_H (CDCl₃): -2.73 (br, 2H, NH), 4.01 (s, 4H, NH₂Ph), 7.06 (d, 4H, J = 8.3 Hz, *m*NH₂Ph), 7.75 (m, 6H, *m*+*p*Ph), 7.98 (d, 4H, J = 8.3 Hz, *o*NH₂Ph), 8.22 (d, 4H, J = 7.5 Hz, *o*Ph), 8.82 (d, 4H, β H), 8.93 (d, 4H, β H). UV-Vis λ_{max} (CHCl₃)/nm ($\epsilon \times 10^{-3}$ /dm³ mol⁻¹ cm⁻¹): 421.5 (330), 517.5 (15.4), 555 (10.9), 592.5 (6.5) 650 (6.2).

 $p(NH_2)_2 trans-PP$. δ_H (CDCl₃): -2.74 (br, 2H, NH), 4.03 (s, 4H, NH₂Ph), 7.07 (d, 4H, J = 8.3 Hz, *m*NH₂Ph), 7.75 (m, 6H *m*+*p*Ph), 7.99 (d, 4H, J = 8.3 Hz, *o*NH₂Ph), 8.20 (d, 4H, J = 7.5 Hz, 4H, oPh), 8.82 (d, 4H, J = 4.7 Hz, β H), 8.91 (d, 4H, J = 4.6 Hz, β H). UV-Vis λ_{max} (CHCl₃)/nm ($\epsilon \times 10^{-3}$ /dm³ mol⁻¹ cm⁻¹): 421.0 (336), 517 (15.8), 555 (11.0), 592 (6.1), 650 (5.9).

p(NO₂)₃PP. δ_H (CDCl₃): -2.77 (br s, 2H, NH), 7.80 (m, 3H, *p*+*m*Ph), 8.22 (d, 2H *o*Ph), 8.42 (d, 6H *o*NO₂Ph), 8.68 (d, 6H *m*NO₂Ph), 8.81 (d, 2H βH), 8.92 (m, 6H βH).

 $p(NH_2)_3PP$. δ_H (CDCl₃): -2.73 (br, 2H, NH), 4.01 (s, 6H, NH₂Ph), 7.04 (d, 6H, J = 8.1 Hz, *m*NH₂Ph), 7.73 (m, 3H, *m*+*p*Ph), 7.99 (d, 6H, J = 8.1 Hz, *o*NH₂Ph), 8.21 (dd, 2H, *o*Ph), 8.81 (d, 2H, J = 4.7 Hz, βH), 8.92 (m, 6H, βH). UV-Vis λ_{max} (CHCl₃)/nm ($\epsilon \times 10^{-3}$ /dm³ mol⁻¹ cm⁻¹): 424 (311), 518 (13), 558 (10.6), 554 (5.2), 652 (6.1).

 $p(\text{NH}_2)_4\text{PP}$. δ_{H} (CDCl₃): -2.72 (br, 2H, NH), 4.11 (br, 8H, NH₂Ph), 7.05 (d, 8H, J = 8.3 Hz, *m*NH₂Ph), 7.99 (d, 8H, J = 8.3 Hz, *o*NH₂Ph), 8.89 (s, 8H, H β). UV-Vis λ_{max} (CH₂Cl₂)/nm: 424, 516, 552, 592, 645.

Figure 1S. Time-evolution of the Soret band in the electronic absorption spectrum of $[Na]_4[4'TPyP\{trans-RuCl_4(dmso-S)\}_4]$ (2) 1.1×10^{-6} M in phosphate buffer 50 mM, pH 7.4, T = 25.0 °C, scan interval = 30 min.

Figure 2S. ¹H NMR spectrum (upfield region) of $[4'TPyP{Ru([9]aneS3)(en)}_4][CF_3SO_3]_8$ (3) in D₂O.

Figure 3S. Temperature dependence of the ¹H NMR spectrum (downfield region) of $[4'TPyP{Ru([9]aneS3)(en)}_4][CF_3SO_3]_8$ (**3**) in CD₃OD. The asterisk denotes an impurity.

Figure 4S. Schematic drawing and labelling scheme of [4'TPyP{Ru([9]aneS3)(bpy)}4][CF₃SO₃]₈ (4).

Figure 5S. Temperature dependence of the ¹H NMR spectrum (downfield region) of $[4'TPyP{Ru([9]aneS3)(bpy)}_4][CF_3SO_3]_8$ (4) in CD₃OD/CD₃NO₂ (99:1) solution.

Figure 6S. Region of the β H resonances in the ¹H NMR spectra of Bpy₂-*cis*PP (left) and Bpy₂-*trans*PP (right) in CDCl₃.

Scheme 1S. Preparation of $[Bpy-PP{Ru([9]aneS3)(dmso-S)}][CF_3SO_3]_2$ (6).

Figure 7S. Time-evolution of the ¹H NMR spectrum of $[Ru([9]aneS3)(bpyAc)(dmso-S)][CF₃SO₃]₂ (10) in D₂O. In this case the complex had one molecule of dmso of crystallization (see singlet for free dmso at <math>\delta = 2.70$ in the initial spectrum). Peaks marked with an asterisk pertain to the aquated species $[Ru([9]aneS3)(bpyAc)(H_2O)]^{2+}$ that slowly grows with time.

Figure 8S. Fluorescence spectra ($\lambda_{exc} = 425 \text{ nm}$, $\lambda_{em} = 656 \text{ nm}$) of optically matched dmso solutions of Bpy₄-PP (black) and [{Bpy₄-PP} {Ru([9]aneS3)(dmso-S)}_4][CF_3SO_3]_8 (9) (purple).

Figure 9S. Aromatic region of the ¹H NMR spectrum of $[Ru([12]aneS4)(bpyAc)][CF_3SO_3]_2$ (12) in D₂O.

Fable 1S. Selected coordination bond length	ngths (Å) and angles (°) for compound 10.
--	---

Ru–N(1)	2.112(3)	Ru–S(2)	2.341(1)
Ru–N(2)	2.112(3)	Ru–S(3)	2.361(1)
Ru–S(1)	2.334(1)	Ru–S(4)	2.331(1)
N(1)-Ru-N(2) N(1)-Ru-S(1) N(1)-Ru-S(2) N(1)-Ru-S(3) N(1)-Ru-S(4) N(2)-Ru-S(1) N(2)-Ru-S(2) N(2)-Ru-S(3)	77.82(13) 97.72(10) 173.96(10) 88.32(9) 92.74(9) 174.89(9) 97.50(10) 89.22(9)	N(2)-Ru-S(4) S(1)-Ru-S(2) S(1)-Ru-S(3) S(1)-Ru-S(4) S(2)-Ru-S(3) S(2)-Ru-S(4) S(3)-Ru-S(4)	93.14(9) 86.77(4) 88.14(5) 89.55(4) 87.79(4) 91.32(4) 177.57(4)