Equations Supplementary Information

 $[Pd(PP_{3})_{2}]Cl_{2} + AgNO_{3} \xrightarrow{DMSO-d_{6}+CD_{3}OD} [PdAg(NO_{3})(PP_{3})_{2}]Cl_{2} \quad (S1)$ $g \qquad I$ $3 [Pt(PP_{3})_{2}]Cl_{2} + 3 AgNO_{3} \xrightarrow{DMSO-d_{6}+CD_{3}OD} \rightarrow 2 [Pt(PP_{3})_{2}]Cl_{2} + [PtAg(NO_{3})(PP_{3})_{2}](NO_{3})_{2} + 2 AgCl_{4}$ $(S2) \qquad I2 \qquad I$

$$2 [M(PP_3)_2]Cl_2 + 4 AgNO_3 \xrightarrow{DMSO-d_6+CD_3OD} \\ 9/12 \longrightarrow [MAgCl(PP_3)_2]Cl_2 + [MAg_2(NO_3)_4(PP_3)_2] + AgCl \downarrow (S3) \\ I III$$

$$2[Pd(PP_{3})_{2}]Cl_{2} + 6AgNO_{3} \xrightarrow{DMSO-d_{6}+CD_{3}OD} \\ \rightarrow [PdAg_{2}(NO_{3})_{2}(PP_{3})_{2}]Cl_{2} + [PdAg_{2}(NO_{3})_{4}(PP_{3})_{2}] + 2 AgCl \downarrow$$
(S4)
$$II III$$

$$2[Pd(PP_{3})_{2}]Cl_{2} + 8AgNO_{3} \xrightarrow{DMSO-d_{6}+CD_{3}OD}$$
9
$$\rightarrow [PdAg_{2}(NO_{3})_{2}(PP_{3})_{2}](NO_{3})_{2}+[PdAg_{2}(NO_{3})_{4}(PP_{3})_{2}]+4AgCl\downarrow$$
(S5)
II III

$$[Pt(PP_3)_2]Cl_2 + 3 \text{ AgNO}_3 \xrightarrow{\text{DMSO-d}_6 + CD_3 \text{OD}} [PtAg_2Cl(NO_3)_3 (PP_3)_2] + AgCl\downarrow (S6)$$
12
III

$$[Pt(PP_3)_2]Cl_2 + 4 \text{ AgNO}_3 \xrightarrow{\text{DMSO-d}_6 + CD_3OD} [PtAg_2(NO_3)_4(PP_3)_2] + 2 \text{ AgCl} \downarrow (S7)$$
12
III

1

Reaction ^a	∂P^{A} , ∂P^{B} , ∂P^{C}	<i>δ</i> P for 1/2/5	$\partial \mathbf{P}^{\mathrm{L}}/(\mathbf{P}^{\mathrm{T}},\mathbf{P}^{\mathrm{M}})$	${}^{1}J({}^{31}\mathrm{P},{}^{195}\mathrm{Pt})$	Solvent
1 + 1 eq NP ₃	17.6s, -20.7s	35.0m, 23.1s (1)	-19.5		$\begin{array}{c} CD_3OD\\ +CD_2Cl_2 \end{array}$
1 + 2 eq NP ₃	17.5s, -20.5s	36.0m, 23.5br (1)	-19.3s		
2 + 1 eq PP ₃	56.0s, 52.1br, -14.6br	134.0s, 29.4s (2)	- 14.8d, -19.1q		CDCl ₃
2 + 2 eq PP ₃	56.1s, 52.2br, -14.6br	134.0s, 29.4s (2)	- 14.8d, -19.1q		
5 + 1 eq PP ₃	47.9s ^b , - <u>12.0</u> br, - <u>12.0</u> br	118.3s ^c , 25.0s ^d (5)	- 14.6d	2259 ^b ,2503 ^c , 2591 ^d	CDCl ₃
5 + 1.5 eq PP ₃	47.9s ^b , - <u>12.5</u> br, - <u>12.5</u> br		- 14.6d, -19.1q	2258 ^b	

Table S1. ${}^{31}P{}^{1}H$ NMR data at room temperature for reactions of 1, 2 and 5 with ligand

 $^{\rm a}$ See Scheme 1 for labels in P atoms. The underlined broad signals include $P^{\rm B}$ and $P^{\rm c}$

Compound ^a	$\partial P^{A}, \partial P^{B}, \partial P^{c}$	∂PHomo ^b	¹ <i>J</i> (³¹ P- ¹⁹⁵ Pt)	${}^{1}J({}^{31}P - {}^{107/109}Ag)$
15+1eqPP ₃	58.5br, 13.6 d ^e <u>8.9</u> br (15*)			528°
15+2eqPP ₃	61.0br, 31.9br, -11.9br (17)	16.2d ^e , 8.1br, 0.4d ^e ,-0.5br		376°,176°
15+3eqPP ₃	60.9s, 32.2br, -7.2br (17)	16.1d ^e ,0.5d ^e , -4.3br		384°,202°
16+1eqPP ₃	56.6s ^c , <u>14.4</u> brd ^e , <u>14.4</u> br (16*)		2280°	496 ^e
16+2eqPP ₃	56.8s ^c , <u>13.0</u> br, -7.1br (18)	19.8d ^e , <u>13.0</u> d ^e 5.3d,1.0b	2284°	378°,369°

Table S2 ${}^{31}P{}^{1}H$ NMR data at room temperature for reactions of 15 and 16 with ligand in CDCl₃

^a See Scheme 1 for labels in P atoms. The underlined broad peaks include two resonances. ^b ∂ PHomo = ∂ P for the homonuclear complex [Ag₂(μ - PP₃)₂](NO₃)₂

Reaction ^a	$\partial \!\!\!\!/ P^{\rm D} / P^{\rm H} / P^{\rm P} / P^{\rm S}$	$\partial \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\partial \!\!\!\!\!\!\!\!\!\!P^U/P^Q/P^I/P^E$	$\partial \!$	$\partial P^{G}/P^{N}/P^{R}$	$\partial P^{V}/P^{Y}/P^{X}/P^{Z}$	$^{1}J(^{31}P,^{195}Pt)$	$^{1}J(^{31}\mathrm{P},^{107/109}\mathrm{Ag})$	Solvent
9+1eqCuCl → I	138.0br	37.4br	-6.9br	14.5br				DMSO-d ₆
9+2eqCuCl → II	128.0br	50.0br	15.0br	-4.9br				
12+1eqCuCl→I 12+2eqCuCl→III	129.2s ^b 61.3m ^b	34.3s ^c 58.6m ^{d,e}	-6.0br	14.9br -5.3br		2487 ^b /2565 ^c 2169 ^b /2272 ^d		DMSO-d ₆
9+1eqAgCl→I+III 9+2eqAgCl→II	142.6br, <u>66.0</u> m 127.4br	<u>66.0</u> m,37.5br 65.0br	<u>3.3</u> br ^f 7.6brd ^g	10.0d ^g 10.4br			4 23 ^g 160 ^g	DMSO-d ₆
12+1eqAgCl→I+III 12+2eqAgCl→II	135.0 br,57.0m 84.0 br	$\frac{57.0}{57.8}$ m ^d ,34.3s ^c 57.8br ^h	$\frac{5.1}{10.3} \text{br}^{\text{f}}$	9.8d ^g		2573 ^c ,2315 ^d 2310 ^h	423 ^g	DMSO-d ₆
9+1eqAgNO ₃ →I	143.0br	37.4s	$\underline{6.6}\mathrm{br}^{\mathrm{e,f,g}}$				335 ^g	DMSO-d ₆
9+2eqAgNO ₃ →I+III	143.0br, <u>66.4</u> m	<u>66.4</u> m,37.6br	$\underline{5.4}brd^{f, g}$	10.9d ^g			334 ^g ,434 ^g	+CD ₃ OD
9+3eqAgNO ₃ →II+III	123.0br, <u>67.0</u> m	<u>67.0</u> m,52.3br	<u>7.1</u> br ^{g, i}	13.6br			218 ^g	
12+1eqAgNO ₃ →I ^j	129.1s ^b	34.2s ^c	<u>5.1</u> br ^f			2398 ^b /2570 ^c		DMSO-d ₆
12+2eqAgNO ₃ →I+III	128.0br,58.1s ^e	57.2s ^d ,34.1s ^c	5.1br ^f	10.6d ^g		2578°, 2255 ^d	428 ^g	+CD ₃ OD
12+3eqAgNO ₃ →III	58.2br ^{b,e}	57.4br		13.0br		2103 ^b		
12+4eqAgNO₃→III	58.4br ^{b,e}	57.4br		14.5d ^g		2266 ^b	482 ^g	
9+1eqAuCl(tdg)→ →II '+IV	123.0br, <u>78.0</u> br	<u>78.0</u> br,53.0br			$\frac{40.1}{39.1} br^k,$			DMSO-d ₆ +CD ₃ OD
9+2eqAuCl(tdg) → IV	90.2br	74.3s			$\frac{38.0}{36.0}$ m ^{e, m} ,			
12+1eqAuCl(tdg)→ → II [^] +IV	96.5s ^p ,62.9br ^q	51.0s ^r ,49.0s ^s			$\frac{39.0}{37.0}$ s ¹ , k,	2963 ^p ,3389 ^q 3660 ^r , 2507 ^s		DMSO-d ₆ +CD ₃ OD
12+2eqAuCl(tdg)→IV	63.0br ^q	51.0s ^r			<u>39.0</u> s ^m <u>37.0</u> s ⁿ	3378 ^q , 3641 ^r		

Table S3. ${}^{31}P{}^{1}H$ NMR data at room temperature for reactions of 9 and 12 with Cu(I), Ag(I) and Au(I).

^a See Scheme 3 for structures **I** -**I**V. The underlined signals include 2 or more resonances. ^e $J({}^{31}P, {}^{31}P)$ in Hz: 126 [**I** (P^{F}, P^{G})], 281 [**III** (P^{P}, P^{Q})], 157 [**III** (P^{P}, P^{R})], 53 [**IV** (P^{X}, P^{Y}). ^f P^{F} and P^{G} . ⁱ P^{J} , P^{K} and P^{N} . ^j **I** is coexisting with unreacted complex **12** [δ 56.7(¹J(${}^{31}P, {}^{195}Pt$) = 2168 Hz), 37.2, 12.0]. ^k P^{N}, P^{V} and P^{Y} . ¹ P^{J}, P^{K}, P^{X} and P^{Z} . ^m P^{V} and P^{Y} . ⁿ P^{X} and P^{Z} .

Supplementary Information

Equations S1-S7

Tables S1-S3

Figure Captions

Figure S1. ³¹P{¹H}NMR spectra at room temperature for : (a) 1 in CD₃OD; (b) or (c) 1+1 or 2 eq NP₃ in CD₃OD+ CD₂Cl₂ affording 8 in coexistence with 1 (•) and free PP₃; (d) 5 + 1.5 eq PP₃ in CDCl₃ affording 12 in coexistence with free PP₃.

Figure S2. (a) ORTEP diagram for 10; (b)View of the unit cell for 10. 4CHCl₃. Phenyl rings omitted for clarity.

- Figure S3. (a) ORTEP diagram for 18; (b)View of the unit cell for 18. 2CHCl₃. Phenyl rings omitted for clarity
- Figure S4. ³¹P{¹H}NMR spectra (r.t) for : (a) 12+1 eq AgCl in DMSO-d₆ affording I+III and (b) 9+1eq AgNO₃ in DMSO-d₆ + CD₃OD affording I.

Figure S1

(a)

Figure S2

Figure S3

Figure S4