Supporting information belonging to the paper

"A new hexakis(isocyanato)silicate(IV) and the first neutral Lewis-base adducts of silicontetraisocyanate"

Content:

- 1) General experimental conditions
- 2) Syntheses and full spectroscopic data
- 3) Single crystal X-ray diffraction analyses
- 4) Crystallographic information files for compounds 1a, 2a,b and 4
- 5) Variable temperature NMR spectra of compound **3**

1) General

KNCO and KNCS (Aldrich) were dried at 105°C and 130°C, respectively, in high vacuum. SiCl₄ was treated with K₂CO₃, trap-to-trap condensed and degassed prior to use. (PPN)NCO, m.p. 212-214°C and (PPN)NCS, m.p. 186-189°C were prepared according to published procedures.²⁸ 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) were sublimed. Solvents were obtained from a Grubbs column, stirred over CaH₂ and trap-to-trap condensed prior to use. Schlenk tube and Glove box techniques were used under Argon throughout. Fourier transform infrared (FTIR) spectra were obtained from a Galaxy 2000 spectrometer at 4 cm⁻¹ resolution between NaCl (nujol suspension) or CaF_2 (solution, d = 0.2 mm) windows. NMR spectra were recorded at r.t. on Bruker spectrometers and are calibrated against the signal of the residual proton content (¹H, 1.94 ppm and 5.32 ppm) or natural abundance (¹³C, 53.8 ppm) of the solvents CD₃CN and CD₂Cl₂. Thermogravimetry (TGA) and differential scanning calorimetry (DSC) were performed under N₂ using the Perkin Elmer Pyris 1 apparatus at a heating rate of 10 K min⁻¹. Elemental analyses were obtained from the Centre for chemical instrumentation and analytical services at Sheffield. Mass spectra were recorded on a VG Autospec, calibrated against PFK. The positive ion current was recorded between 50 < m/z < 700 at temperatures of ca. 200°C. Peaks below 10% of base intensity are omitted for m/z < 200. Fragmentation indicated as bpy and phen closely resembles published data on genuine samples of the diimines.

2) Syntheses and full spectroscopic data

Preparation of **1b**. KNCS (2.385 g, 24.54 mmol) was suspended in MeCN at 0°C. Under stirring SiCl₄ (0.20 ml, 1.7 mmol) were added using a syringe upon which the suspension turned cloudy immediately. The reaction mixture was stirred at r.t. for 4 d, during which the reaction solution, obtained upon sedimentation, was monitored by IR spectroscopy. The diluted, supernatant, clear and colourless solution revealed the presence of two bands in the NCS stretch region at 2101 and 2058 cm⁻¹ which arise from the presence of Si(NCS)₆²⁻ and KNCS, respectively. Afterwards the reaction mixture was filtered (0.203 g residue). The filter solution collected in a new Schlenk tube and diminished three times to ca. one half of the respective original volume which caused precipitation each time, while the ratio of Si(NCS)₆²⁻ over NCS⁻ increased. A total of 1.38 g filter residues were obtained, IR spectra of which feature

mainly KNCS. Evaporation of the final filter solution resulted in oily slush (nujol: 2257 (MeCN), 2099 ($v_{as}(NC)$), 910 (v(CS))cm⁻¹), which was dried until mass remained almost constant, resulting in 1.297 g of white powder that still contains MeCN.

IR (nujol, cm⁻¹): 2297vw (MeCN), 2263vw (MeCN), 2130vs (v(CN)), 2093vw, sh, 907w (v(CS)).

IR (MeCN, cm^{-1}): 2101, v(CN).

IR (THF, cm^{-1}): 2105, v(CN).

Preparation of (PPN)₂[Si(NCS)₄]·2MeCN, 2b·2MeCN. A Schlenk tube was charged with 1b (0.228 g) and (PPN)NCS (0.430 g, 0.721 mmol). MeCN (50 ml) was added at -20°C and the resulting suspension was rapidly stirred and allowed to warm to r.t., after which the suspension was left to settle. An IR spectrum of the colourless supernatant solution in the region of the NCS stretch showed the presence of only two bands at 2101 cm⁻¹ (weak) and 2059 cm⁻¹ (very strong) due to the presence of $[Si(NCS)_6]^{2-}$ and NCS⁻ ions, respectively. The solution, containing mainly (PPN)NCS and KNCS, was filtered off and discarded (0.290 g non-volatile content). The white filter residue was dried, resulting in a raw product (0.364 g) which was dissolved in MeCN (55 ml) at 50°C and filtered at this temperature, which afforded a clear solution. Cooling to -30° C caused the formation of crystals, which were filtered off in the cold and dried *in vacuo*. Recrystallisation was repeated using slightly less solvent, which afforded 0.294 g of colourless, sparkling crystals (0.191 mol, 53% with respect to (PPN)NCS), mp. 257 - 261°C. Anal. calcd. for C₈₂H₆₆N₁₀P₄S₆Si (1535.87 g mol⁻¹): C, 64.13; H, 4.33; N, 9.12%. Found: C, 63.97; H, 4.22; N, 9.00 %. IR (nujol, cm⁻¹) v = 3086, 3056, 2286 and 2249vw, MeCN, 2098vs, v(CN), 1588, 1572, 1481, 1467, 1437, 1314, 1302, 1284, 1268, 1181, 1160, 1116, 1071, 1025, 998, 916, 797, 760, 745, 724, 691, 617, 549; THF: 2105; CH₂Cl₂: 2106; MeCN: 2101. DSC $T_{on} = 83^{\circ}C$ (MeCN loss), 256°C (melting). TGA $T_{on} = 82^{\circ}C$ (MeCN loss, $\Delta m/m_0$ found 5.4%, calcd. 5.3% for loss of two equivalents of MeCN), 223 °C (dec.).

Si(NCO)₄(phen)·MeCN (4·MeCN). A Schlenk tube was charged with 1a (0.200 g) and phen (0.100 g, 0.554 mmol). The tube was immersed in a cold bath (-40°C) and MeCN (ca. 35 ml) was added via cannula transfer. Upon rapid stirring a mixture of fully dissolved 1a and crystalline phen resulted. The cold bath was removed and phen completely dissolved while the temperature of the reaction mixture approached ambient conditions. The resulting clear reaction solution turned cloudy within several minutes. Stirring was continued for 24 h after which the white suspension was allowed to settle. An IR spectrum of an evaporated sample of the reaction solution (nujol) showed the presence of 4 (2318 cm⁻¹ m, 2260 cm⁻¹ vs). The white precipitate (66 mg), consisting mainly of KNCO (IR: 2161 cm⁻¹), was filtered off and the filtrate diminished to ca. 3 ml causing crystallisation, which was completed at -28 °C for 2 h. The supernatant was filtered off and the remainder, 0.215 g, raw off-white 4, recrystallised from a minimal volume of warm MeCN (ca. 50°C) at -28 °C over-

night, and washed in the cold (3.5 ml MeCN). The residue was dried in vacuo at the same temperature, which afforded fine, colourless and electrostatic sheets (0.151 g, 66% with respect to phen) mp 224 °C (DSC). Anal. calcd. for C₁₆H₈N₆O₄Si (376.36 g mol⁻¹): C, 51.06; H, 2.14; N, 22.33%. Found C, 50.59; H, 2.35; N, 22.82%. IR (nujol, cm^{-1}) v = 3645vw, 2334, 2329, 2279, 2261, 2242, 1456, 1436, 1413, 1318, 1229, 1208, 1151, 1114, 1114, 1062, 1042, 881, 853, 752, 7, 660, 615; THF: 2311m, 2255vs; CH₂Cl₂: 2315m, 2283w, sh, 2256vs. ¹H NMR (250 MHz, CD₃CN, ppm): *d* = 1.94 (s, CH_3), 8.25 (dd, 2H), 8.37 (s, 2H), 9.01 (dd, 2H), 9.70 (dd, 2H); ${}^{3}J(H2,H3) =$ 5.4, ${}^{4}J(H2,H4) = 1.3$, ${}^{3}J(H3,H4) = 8.3$ Hz; CD₂Cl₂ (400 MHz) d = 1.97 (s, CH₃), 8.21 (dd, 2H), 8.28 (s, 2H), 8.86 (dd, 2H), 9.70 (dd, 2H); ${}^{3}J(H2,H3) = 5.3$, ${}^{4}J(H2,H4) =$ 1.3, ${}^{3}J(H3,H4) = 8.3 \text{ Hz}; {}^{13}C{}^{1}H{} (100 \text{ MHz}, CD_{2}Cl_{2}) d = 126.8, 127.8, 129.5, 134.0,$ 141.4, 144.4 (resonances due to carbon in NCO could not be observed as a result of insufficient solubility). EI MS $m/z = 196 (40) [M^+ - phen], 181 (27) [phen], 180 (100)$ [phen], 179 (37) [phen], 155 (14) [phen], 154 (73) [M⁺ – phen – NCO], 153 (23) [phen], 152 (14) [phen], 127 (13) [phen], 112 (13) [M⁺ - phen - 2NCO], 90 (29)[*phen*], 76 (20) [*phen*], 70 (56) [M⁺ – phen – 3NCO], 63 (14) [*phen*].

3) Single crystal X-ray diffraction analyses of 1a, 2a,b and 4

Single crystals were grown from acetonitrile solution of pure 1a, 2a,b and 4 upon cooling saturated solutions in MeCN to -28°C. Diffraction data were collected on a Bruker Smart CCD area detector²⁸ with an Oxford Cryosystems low temperature unit and Mo-K_{α} radiation ($\bar{l} = 0.71073$ Å). Crystallographic and experimental details are summarized in Table 3. All measured reflections were corrected for Lorentz and polarisation effects and for absorption by semi empirical methods based on symmetry-equivalent and repeated reflections. The structures were solved by direct methods and refined by full matrix least squares methods on F^2 . H atoms were placed geometrically and refined with a riding model and with $U_{\rm iso}$ constrained to be 1.2 times (1.5 for CH_3 groups) U_{eq} of the carrier atom. Complex scattering factors were taken from the program package SHELXTL as implemented on a Viglen Pentium computer.²⁹ The weighting schemes $w = 1/[s^2(F_0^2) + (a \cdot P)^2 + b \cdot P], P = (F_0^2 + 2F_c^2)/3$, a = 0.0485, b = 3.0619 (**1**a), 0.0498, 1.1541 (**2**a), 0.0440, 0.7175 (**2**b), 0.0499, 0.0291 (4), were used in the later stages of refinement. Mean and max. δ / σ were 0.000 / 0.000 throughout. Plots were created with SHELX XP and are set at the 50% probability level. **2a** has a residual electron density peak of 1.317 e·Å⁻³ at a distance of 0.71 Å from O2. All structures were investigated for $\kappa N / \kappa O$ NCO bond isomerism. Alternative solutions were invariably associated with an increase of R₁ and wR₂ values.

Structure of the asymmetric unit in a single crystal of **2a**·**2MeCN**, Ph hydrogen atoms are omitted. Selected bond lengths [Å] and angles [°]: Si-N1 1.823(2), Si-N2 1.829(2), Si-N3 1.831(2), N1-C1 1.170(2), N2-C2 1.168(2), N3-C3 1.170(2), C1-S1 1.607(2), C2-S2 1.608(2), C3-S3 1.611(2), N1-Si-N2 90.41(6), N1-Si-N3 90.11(6), N2-Si-N3 90.06(7), P2-N4-P1 139.97(9), Si-N1-C1 168.20(14), Si-N2-C2 170.13(15), Si-N3-C3 175.12(15), N1-C1-S1 179.03(15), N2-C2-S2 178.44(17), N3-C3-S3 179.53(18).

Complex	Si-N [Å]	N-C [Å]	С-Е [Å]	Si-N-C [°]	N-С-Е [°]	Ref.	
[K(MeCN) ₂] ₂ [Si(NCO) ₆	₅](1a)	1.81-1.84	1.14-1.16	1.19-1.20	171-173	178-179	a
(PPN) ₂ [Si(NCO) ₆] (2a)		1.83-1.86	1.16-1.17 1.19-1.20		155-162	177-178	a
[K(crown)] ₂ [Si(NCO) ₆)	1.82-1.83	1.15	1.18	157-165	177-179	b	
[Si(NCO)] (phop)] (1)	eq.	1.78-1.79	1.15-1.17	1.18-1.20	178-179	178-179	0
	ax.	1.82-1.83	1.18-1.19	1.19	177-178	177-178	a
(PPN) ₂ [Si(NCS) ₆]·2Me	1.82-1.83	1.17	1.61	168-175	178-180	a	
$(NEt_4)_2[Si(NCS)_6]$	1.82-1.83	1.17	1.59-1.60	170-180	179-180	b	
[K(crown)] ₂ [Si(NCS) ₆]·	2MeCN	1.82-1.84	1.16-1.17	1.59-1.61	159-171	177-180	b

Table 1 A selection of recently published structural data on related silicon complexes in relation to **1a**, **2a**,**b** and **4**.

a) this paper, b) Seiler, O.; Burschka, C.; Goetz, K.; Kaupp, M.; Metz, S.; Tacke, R., Z. Anorg. Allg. Chem. **2007**, 633, 2667-2670.

4a) Crystallographic information file for compound 1a (data_chppx55m)

data_chppx55m	
_audit_creation_method	SHELXL-97
_chemical_name_systematic	
;	
?	
;	
_chemical_name_common	?
_chemical_melting_point	?
_chemical_formula_moiety	'C14 H12 K2 N10 O6 Si'
_chemical_formula_sum	
'C14 H12 K2 N10 O6 Si'	
_chemical_formula_weight	522.63
<pre>loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'H' 'H' 0.0000 0.0000 'International Tables Vol C Table 'C' 'C' 0.0033 0.0016 'International Tables Vol C Table 'N' 'N' 0.0061 0.0033 'International Tables Vol C Table 'O' 'O' 0.0106 0.0060 'International Tables Vol C Table 'Si' 'Si' 0.0817 0.0704 'International Tables Vol C Table 'K' 'K' 0.2009 0.2494 'International Tables Vol C Table Symmetry_cell_setting _symmetry_space_group_name_H-M loop</pre>	es 4.2.6.8 and 6.1.1.4' es 4.2.6.8 and 6.1.1.4' Monoclinic P2(1)/n
symmetry equiv pos as XV7	
'X, Y, Z'	

$ _{x+1/2} = _{x+1/2} = _{x+1/2}$	
X = 1/2, Y = 1/2, Z = 1/2	
$x_1 y_1 z_1$	
$x \perp z, y \perp z, z \perp z$	0 107 (2)
a	12 522(3)
	$11 \ A \cap A (A)$
angle_alpha	102 048(4)
_cell_angle_beta	102.948(4)
_cell_angle_gamma	90.00
_cell_volume	11/2.8(7)
_cell_formula_units_2	2
_cell_measurement_temperature	120(2)
_cell_measurement_reflns_used	2797
_cell_measurement_theta_min	3.399
_cell_measurement_theta_max	26.16
_exptl_crystal_description	block
_exptl_crystal_colour	colourless
_exptl_crystal_size_max	0.32
_exptl_crystal_size_mid	0.28
_exptl_crystal_size_min	0.27
_exptl_crystal_density_meas	?
_exptl_crystal_density_diffrn	1.480
_exptl_crystal_density_method	'not measured'
_exptl_crystal_F_000	532
_exptl_absorpt_coefficient_mu	0.506
exptl absorpt correction type	multi-scan
exptl absorpt correction T min	0.8547
exptl absorpt correction T max	0.8754
exptl absorpt process details	sadabs
expt] special details	
;	
2	
?	
? ; diffrn ambient temperature	120(2)
? ; _diffrn_ambient_temperature diffrn_radiation_wavelength	120(2)
? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength diffrn_radiation_ture	120(2) 0.71073
? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source	120(2) 0.71073 MoK\a
? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator	120(2) 0.71073 MoK\a 'fine-focus sealed tube'
? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite
? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector'
? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans'
? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100
? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number _diffrn_standards_interval_count</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ?
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number _diffrn_standards_interval_count _diffrn_standards_interval_time</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ?
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number _diffrn_standards_interval_count _diffrn_standards_interval_time _diffrn_standards_decay_%</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number _diffrn_standards_interval_count _diffrn_standards_interval_time _diffrn_standards_decay_% _diffrn_reflns_number</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number _diffrn_standards_interval_count _diffrn_standards_decay_% _diffrn_reflns_number _diffrn_reflns_av_R_equivalents</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number _diffrn_standards_interval_count _diffrn_standards_decay_% _diffrn_reflns_number _diffrn_reflns_av_R_equivalents _diffrn_reflns_av_sigmaI/netI</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_interval_count _diffrn_standards_interval_time _diffrn_reflns_number _diffrn_reflns_av_R_equivalents _diffrn_reflns_limit_h_min</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635 -8
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_interval_count _diffrn_standards_interval_time _diffrn_reflns_number _diffrn_reflns_av_R_equivalents _diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635 -8 10
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_interval_count _diffrn_standards_interval_time _diffrn_reflns_number _diffrn_reflns_av_R_equivalents _diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_min</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635 -8 10 -15
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_interval_count _diffrn_standards_interval_time _diffrn_reflns_number _diffrn_reflns_av_R_equivalents _diffrn_reflns_limit_h_min _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635 -8 10 -15
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_interval_count _diffrn_standards_interval_time _diffrn_reflns_number _diffrn_reflns_av_R_equivalents _diffrn_reflns_limit_h_min _diffrn_reflns_limit_h_max _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635 -8 10 -15 15 -14
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_interval_count _diffrn_standards_interval_time _diffrn_reflns_number _diffrn_reflns_av_R_equivalents _diffrn_reflns_limit_h_min _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635 -8 10 -15 15 -14 14
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_interval_count _diffrn_standards_interval_time _diffrn_reflns_number _diffrn_reflns_av_R_equivalents _diffrn_reflns_limit_h_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635 -8 10 -15 15 -14 14 3.40
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_interval_count _diffrn_standards_interval_time _diffrn_reflns_number _diffrn_reflns_av_R_equivalents _diffrn_reflns_limit_h_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635 -8 10 -15 15 -14 14 3.40 26.80
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number _diffrn_standards_interval_count _diffrn_standards_decay_% _diffrn_reflns_av_R_equivalents _diffrn_reflns_limit_h_min _diffrn_reflns_limit_k_min _diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_theta_max _reflns_number_total</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635 -8 10 -15 15 -14 14 3.40 26.80 2291
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number _diffrn_standards_interval_count _diffrn_standards_decay_% _diffrn_reflns_av_R_equivalents _diffrn_reflns_limit_h_min _diffrn_reflns_limit_k_min _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt</pre>	120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635 -8 10 -15 15 -14 14 3.40 26.80 2291 1713
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number _diffrn_standards_interval_count _diffrn_standards_decay_% _diffrn_reflns_number _diffrn_reflns_av_R_equivalents _diffrn_reflns_limit_h_min _diffrn_reflns_limit_k_min _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_theta_back_ave_signal_number_count _diffrn_reflns_theta_max _reflns_number_cotal _reflns_number_gt _reflns_theta_back_ave_signal_number_gtdiffrn_reflns_limet_count_cou</pre>	<pre>120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635 -8 10 -15 15 -14 14 3.40 26.80 2291 1713 >2sigma(I)</pre>
<pre>? ; _diffrn_ambient_temperature _diffrn_radiation_wavelength _diffrn_radiation_type _diffrn_radiation_source _diffrn_radiation_monochromator _diffrn_measurement_device_type _diffrn_measurement_method _diffrn_detector_area_resol_mean _diffrn_standards_number _diffrn_standards_interval_count _diffrn_standards_decay_% _diffrn_reflns_av_R_equivalents _diffrn_reflns_limit_h_min _diffrn_reflns_limit_k_min _diffrn_reflns_limit_l_max _diffrn_reflns_limit_l_max _diffrn_reflns_theta_max _reflns_number_total _reflns_threshold_expression _computing_data_collection</pre>	<pre>120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635 -8 10 -15 15 -14 14 3.40 26.80 2291 1713 >2sigma(I) 'Bruker SMART'</pre>
<pre>? ;diffrn_ambient_temperaturediffrn_radiation_wavelengthdiffrn_radiation_sourcediffrn_radiation_monochromatordiffrn_measurement_device_typediffrn_measurement_methoddiffrn_detector_area_resol_meandiffrn_standards_interval_countdiffrn_standards_interval_countdiffrn_standards_decay_%diffrn_reflns_av_R_equivalentsdiffrn_reflns_limit_h_mindiffrn_reflns_limit_k_mindiffrn_reflns_limit_l_mindiffrn_reflns_limit_l_mindiffrn_reflns_limit_l_maxdiffrn_reflns_limit_l_mindiffrn_reflns_limit_l_mindiffrn_reflns_limit_l_mindiffrn_reflns_limit_l_maxdiffrn_reflns_limit_l_maxdiffrn_reflns_theta_mindiffrn_reflns_theta_maxreflns_number_totalreflns_threshold_expressioncomputing_data_collection computing_call_refirement </pre>	<pre>120(2) 0.71073 MoK\a 'fine-focus sealed tube' graphite 'CCD area detector' 'omega scans' 100 0 ? ? 0 6946 0.0572 0.0635 -8 10 -15 15 -14 14 3.40 26.80 2291 1713 >2sigma(I) 'Bruker SMART' 'Bruker SMAPT'</pre>

_computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'Bruker SHELXTL' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Bruker SHELXTL' _computing_publication_material 'Bruker SHELXTL' _refine_special_details Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2^ > 2sigma(F^2^)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd full _refine_ls_matrix_type _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[$s^2^{(Fo^2^)+(0.0485P)^2^+3.0619P}$] where $=(Fo^{2}+2Fc^{2})/3'$ _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens qeom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 2291 _refine_ls_number_parameters 153 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.1018 _refine_ls_R_factor_gt 0.0729 _refine_ls_wR_factor_ref 0.1495 _refine_ls_wR_factor_gt 0.1395 _refine_ls_goodness_of_fit_ref 1.081 refine ls restrained S all 1.081 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group K1 K 0.65538(11) 0.01626(7) 0.41452(8) 0.0218(3) Uani 1 1 d . . . Sil Si 1.0000 0.0000 1.0000 0.0170(4) Uani 1 2 d S . .

02 0 0.6107(4) -0.0035(3) 0.1690(3) 0.0348(8) Uani 1 1 d . . . O3 O 0.6907(4) -0.0203(3) 0.6603(3) 0.0441(10) Uani 1 1 d . . . 01 0 0.5009(4) -0.1691(3) 0.4675(3) 0.0410(9) Uani 1 1 d . . . N3 N 0.8683(4) 0.0002(3) 0.8483(3) 0.0270(9) Uani 1 1 d . . . N1 N 0.5109(4) -0.3547(3) 0.4972(4) 0.0283(9) Uani 1 1 d . . . C3 C 0.7817(5) -0.0103(4) 0.7569(4) 0.0229(10) Uani 1 1 d . . . N2 N 0.8206(4) -0.0078(3) 0.0627(3) 0.0284(9) Uani 1 1 d . . N4 N 0.7924(5) 0.2063(3) 0.3542(4) 0.0404(11) Uani 1 1 d . . . Cl C 0.5067(5) -0.2634(4) 0.4826(4) 0.0221(10) Uani l l d . . . C4 C 0.9183(5) 0.2361(4) 0.3510(4) 0.0272(10) Uani 1 1 d . . . C2 C 0.7192(5) -0.0057(3) 0.1164(3) 0.0211(9) Uani 1 1 d . . . N5 N 0.9119(6) -0.1133(4) 0.3927(4) 0.0584(15) Uani 1 1 d . . . C6 C 0.9853(6) -0.1779(4) 0.3606(4) 0.0323(11) Uani 1 1 d . . . C5 C 1.0815(5) 0.2743(4) 0.3495(5) 0.0364(12) Uani 1 1 d . . . H5A H 1.1150 0.3280 0.4128 0.055 Uiso 1 1 calc R . . H5B H 1.0811 0.3062 0.2710 0.055 Uiso 1 1 calc R . . H5C H 1.1580 0.2142 0.3639 0.055 Uiso 1 1 calc R . . C7 C 1.0806(5) -0.2607(4) 0.3219(4) 0.0373(12) Uani 1 1 d . . . H12A H 1.1932 -0.2565 0.3686 0.056 Uiso 1 1 calc R . . H12B H 1.0785 -0.2514 0.2363 0.056 Uiso 1 1 calc R . . H12C H 1.0349 -0.3306 0.3345 0.056 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 K1 0.0267(5) 0.0180(5) 0.0230(5) 0.0008(4) 0.0101(4) 0.0005(4) Sil 0.0155(7) 0.0164(9) 0.0193(8) -0.0011(7) 0.0042(6) -0.0024(6) 02 0.0251(15) 0.048(2) 0.0357(18) -0.0060(17) 0.0168(14) -0.0035(15) 03 0.0302(17) 0.078(3) 0.0211(17) 0.0038(18) -0.0008(15) -0.0017(18) $01 \ 0.054(2) \ 0.019(2) \ 0.058(2) \ -0.0041(17) \ 0.030(2) \ -0.0060(16)$ N3 0.0230(18) 0.034(2) 0.0220(19) 0.0022(18) 0.0000(15) -0.0013(16)N1 0.032(2) 0.017(2) 0.036(2) 0.0002(18) 0.0069(16) 0.0019(16) C3 0.019(2) 0.028(3) 0.024(2) 0.001(2) 0.0106(19) 0.0016(19) N2 0.0235(18) 0.033(2) 0.030(2) 0.0027(18) 0.0097(16) -0.0027(17) $N4 \ 0.028(2) \ 0.038(3) \ 0.050(3) \ 0.010(2) \ -0.0005(19) \ -0.0086(19)$ $C1 \quad 0.019(2) \quad 0.026(3) \quad 0.023(2) \quad -0.006(2) \quad 0.0097(17) \quad -0.0032(18)$ $C4 \ 0.027(2) \ 0.025(3) \ 0.026(2) \ 0.004(2) \ -0.0011(19) \ 0.001(2)$ $C2 \ 0.023(2) \ 0.026(3) \ 0.0141(19) \ 0.0017(19) \ 0.0036(17) \ -0.0031(18)$ N5 0.072(3) 0.064(4) 0.037(3) 0.000(3) 0.008(2) 0.040(3) C6 0.030(2) 0.044(3) 0.022(2) 0.002(2) 0.003(2) 0.004(2) $\texttt{C5} \hspace{0.1in} 0.027(2) \hspace{0.1in} 0.038(3) \hspace{0.1in} 0.046(3) \hspace{0.1in} 0.004(2) \hspace{0.1in} 0.011(2) \hspace{0.1in} -0.002(2)$ $C7 \ 0.024(2) \ 0.048(3) \ 0.038(3) \ -0.013(3) \ 0.004(2) \ 0.003(2)$ _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s.

```
planes.
loop_
 _geom_bond_atom_site_label_1
 _geom_bond_atom_site_label_2
 _geom_bond_distance
 _geom_bond_site_symmetry_2
 _geom_bond_publ_flag
K1 O2 2.752(3) . ?
K1 N5 2.758(5) . ?
K1 O3 2.789(3) . ?
K1 O1 2.793(3) . ?
K1 N4 2.798(4) . ?
K1 O1 2.829(3) 3_656 ?
K1 O3 2.850(3) 3 656 ?
Si1 N2 1.814(3) 1 556 ?
Sil N2 1.814(3) 3_756 ?
Sil N1 1.822(4) 4_656 ?
Sil N1 1.822(4) 2_656 ?
Sil N3 1.834(4) 3_757 ?
Sil N3 1.834(4) . ?
O2 C2 1.201(5) . ?
O3 C3 1.200(5) . ?
O3 K1 2.850(3) 3_656 ?
O1 C1 1.192(6) . ?
O1 K1 2.829(3) 3_656 ?
N3 C3 1.139(5) . ?
N1 C1 1.155(6) . ?
N1 Sil 1.822(4) 2_646 ?
N2 C2 1.157(5) . ?
N2 Sil 1.814(3) 1_554 ?
N4 C4 1.133(6) . ?
C4 C5 1.460(6) . ?
N5 C6 1.128(6) . ?
C6 C7 1.440(7) . ?
C5 H5A 0.9800 . ?
C5 H5B 0.9800 . ?
C5 H5C 0.9800 . ?
C7 H12A 0.9800 . ?
C7 H12B 0.9800 . ?
C7 H12C 0.9800 . ?
loop_
 _geom_angle_atom_site_label_1
 _geom_angle_atom_site_label_2
 _geom_angle_atom_site_label_3
 _geom_angle
 _geom_angle_site_symmetry_1
 _geom_angle_site_symmetry_3
 _geom_angle_publ_flag
O2 K1 N5 77.67(12) . . ?
O2 K1 O3 165.30(11) . . ?
N5 K1 O3 94.85(12) . . ?
O2 K1 O1 100.46(10) . . ?
                       ?
N5 K1 O1 86.74(15) . .
O3 K1 O1 66.17(11) . . ?
O2 K1 N4 78.23(12) . . ?
N5 K1 N4 95.93(16) . . ?
O3 K1 N4 115.46(12) . . ?
O1 K1 N4 176.66(12) . . ?
```

02	к1	01	124	. 97	3 (11)		3	6	56	5 5	?		
NE	v 1	01	15/		$\frac{1}{1}$	12	ì	•	2	_° 	56		>		
202	1.1	01	TDT	.00) (/ 1	1 V	,	•	- J -	_0	20	, , _	•		
03	ΚL	OT	65.	18(ι Τ	I)		•	3_	65	6	?			
01	K1	01	99.	81((1	0)		•	3_	65	6	?			
N4	К1	01	78.	64((1	2)		•	3_	65	6	?			
02	K1	03	78.	45 (9)		3	_6	56	3	2			
N5	K1	03	138	.91	L(15)		3	6	56	5 5	?		
03	к1	03	100	10)(8)			3		6	2			
01	к1	03	65	44	1	0) 1 \		•	22	65	6	• >			
NT 4	171	03	111	211	、 上) /	エノ 1つ	`	•	ر_ د	ر ں ء		•	`		
N4	NI TI	03		. 43) (/ 1	1 Z)		3 7 -	_0	50		- ~	~	
01	Κ⊥	03	64.	90(ι <u>Γ</u>	1) 2)		3_	65	6	3_	_6:	00	?	
02	Κl	KΊ	125	.9	/ (8)		•	3_	65	6	?			
Ν5	К1	К1	131	.17	7 (12)	•	3	_6	56	5 5	?		
03	К1	К1	50.	79((7)	•	3	_6	56	3	2			
01	К1	K1	50.	34((7)	•	3	_6	56	3				
N4	K1	К1	128	.04	1(10)		3	_6	56	5 5	?		
01	К1	K1	49.	47 (7)	3	б	56	3	6	556	5 3	\$	
03	К1	К1	49.	31(7)	3	6	56	3	-6	556	5 3	b	
N2	Si1	N2	18	0 0		οı	1)	1	55	6	3	75	56	2
N2	ci1	. 112 N1	 	19	21	17	۲ ۱	, . 1	±	55	2	1 4		; 0	。 ?
NT 2	011	. INI NT1	00) () (エ / 1 ワ) \		 7	50		۲(۱ ۵	550	;	• n
	011	. IN L	. 09	.04	2 () /	17 17	,	ے 1	-'	50	-	±() -	۲ ۲
IN Z	SII	. NI	. 89	. 84	2(1 / 1 P)	т. С	_⊃	50	4	<u>_</u>) -	?
N2	Sil	. N1	90	.18	3 (1.7)	3	_'/	56	2	2_6	556)	?
N1	Si1	. N1	18	0.0) (3)	4	4_	65	6	2_	_65	56	?	
N2	Si1	. N3	90	.56	5(16)	1	_5	56	3	3_'	757	/	?
N2	Si1	N3	89	.44	1(16)	3	_7	56	3	3_'	757	/	?
N1	Si1	N3	89	.60) (17)	4	_6	56	3	3_'	757	1	?
N1	Si1	N3	90	.40) (17)	2	б	56	3	3 '	757	1	?
N2	Si1	N3	89	. 44	1(16)	1	5	56			?		
N2	Si1	N3	90	.56	5(16)	3	7	56			?		
N1	C i 1	N3	90) (17	ì	Δ	_, 	56	•		>		
1N 1 NT 1	011	כזג. כזג	00	. 10) () /	エ / 1 ワ) \	 2	_0 	50	•		• ר		
	011	C 141 .	10	.00) (т / О /	/	、 <u> </u>	_0 2	50			r O		
20	STT	. IN 3 77 1	104	0.0	10	0(Ŧ)	د_ _	15	/	•	:		
CZ	02	K.L	124	.4(3)	•	·	?						
C3	03	K1	143	.9(3)	•	•	?						
C3	03	К1	132	.3(3)	•	3	_6	56	3				
К1	03	К1	79.	90(8)	•	3	_6	56	3	2			
C1	01	K1	148	.0(3)	•		?						
C1	01	К1	127	.6(3)		3	_6	56	7	2			
К1	01	K1	80.	19(1	0)			3	65	б	?			
C3	N3	Si1	17	2.7	7 (4)			. –	?					
C1	N1	Si1	17	2.3	3(4)			2	64	6	?			
N3	C3	03	179	31	5)		•	- <u>-</u> ?		Ŭ	•			
C2	N2	ci1	17	0 5	51	ر م	•	•	1 ·	55	4	2			
C1	NI	v1	126	Q 1	у (1 Л	1)		•	+	55	-	·			
	01	01	170	.00	. -)	•	•	: 2						
		OI ar	170	.4(4)	•	•	:						
N4	C4	C5	1/8	.8(5)	•	·	?						
N2	C2	02	T.18	. 1 (4)	•	•	?						
C6	N5	Κl	161	.6(5)	•	•	?						
Ν5	C6	C7	178	.9(5)	•	•	?						
C4	C5	H5A	. 10	9.5	5	•	•	?							
C4	C5	H5B	10	9.5	5	•	•	?							
H5A	A C5	Н5	в 1	09.	. 5			•	?						
C4	C5	H5C	10	9.5	5			?							
н5д	A C5	Н5	C 1	09.	. 5				?						
H5F	3 C5	Н5	C 1	09	. 5				?						
CG	C7	H12	A 1	09	5	•			?						
CF	C7	H12	B 1	09	5	•			?						
н1 С		ידידי יד די	120	10) a	۲		•	•	2					
 C K	יה נ ריז	., ก นาว	1 1	ο <u>τ</u> ί	יי ה	• •		•	• ?	•					
		יי רי		109.		•		•	÷	S					
пт	ас	. / Н	LLL	. <u>т</u> (צו	. ว		•	•	:					

```
H12B C7 H12C 109.5 . . ?

_diffrn_measured_fraction_theta_max 0.913

_diffrn_reflns_theta_full 25.00

_diffrn_measured_fraction_theta_full 0.996

_refine_diff_density_max 0.542

_refine_diff_density_min -0.467

_refine_diff_density_rms 0.090
```

4b) Crystallographic information file for compound 2a (data_chppx69_0m)

data_ch1ppx69_0m SHELXL-97 _audit_creation_method _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? '2(C36 H30 N P2), C6 N6 O6 Si1' _chemical_formula_moiety _chemical_formula_sum 'C78 H60 N8 O6 P4 Si' 1357.31 _chemical_formula_weight loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' '0' '0' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Si' 'Si' 0.0817 0.0704 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'P' 'P' 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' symmetry cell setting Triclinic _symmetry_space_group_name_H-M P-1 loop _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 11.6037(5) _cell_length_b 12.9974(5) _cell_length_c 13.4729(6) _cell_angle_alpha 63.885(2) 70.577(2) _cell_angle_beta 75.503(2) _cell_angle_gamma 1707.67(12) _cell_volume _cell_formula_units_Z 1 120(2) _cell_measurement_temperature

```
_cell_measurement_reflns_used
                                  9886
_cell_measurement_theta_min
                                  2.19
_cell_measurement_theta_max
                                  27.20
_exptl_crystal_description
                                 block
_exptl_crystal_colour
                                 colourless
_exptl_crystal_size_max
                                  0.29
_exptl_crystal_size_mid
                                 0.23
_exptl_crystal_size_min
                                 0.22
_exptl_crystal_density_meas
                                  ?
_exptl_crystal_density_diffrn
                                 1.320
_exptl_crystal_density_method
                                  'not measured'
_exptl_crystal_F_000
                                  706
_exptl_absorpt_coefficient_mu
                                  0.190
_exptl_absorpt_correction_type
                                 multi-scan
_exptl_absorpt_correction_T_min
                                0.9471
_exptl_absorpt_correction_T_max 0.9595
_exptl_absorpt_process_details
                                  sadabs
_exptl_special_details
;
 ?
;
_diffrn_ambient_temperature
                                  120(2)
_diffrn_radiation_wavelength
                                  0.71073
_diffrn_radiation_type
                                  MoK\a
_diffrn_radiation_source
                                  'fine-focus sealed tube'
_diffrn_radiation_monochromator
                                 graphite
_diffrn_measurement_device_type
                                  'CCD area detector'
_diffrn_measurement_method
                                 'omega scans'
_diffrn_detector_area_resol_mean 100
_diffrn_standards_number
                                  0
_diffrn_standards_interval_count
                                  ?
_diffrn_standards_interval_time
                                  ?
_diffrn_standards_decay_%
                                  0
_diffrn_reflns_number
                                  34308
_diffrn_reflns_av_R_equivalents
                                0.0296
                                 0.0282
_diffrn_reflns_av_sigmaI/netI
_diffrn_reflns_limit_h_min
                                 -15
diffrn reflns limit h max
                                 15
_diffrn_reflns_limit_k_min
                                 -16
_diffrn_reflns_limit_k_max
                                 16
diffrn reflns limit l min
                                 -17
diffrn reflns limit l max
                                 17
_diffrn_reflns_theta_min
                                 1.74
_diffrn_reflns_theta_max
                                 27.50
_reflns_number_total
                                 7811
_reflns_number_gt
                                 6570
_reflns_threshold_expression
                                >2sigma(I)
_computing_data_collection
                                 'Bruker SMART'
                                  'Bruker SMART'
_computing_cell_refinement
                                  'Bruker SAINT'
_computing_data_reduction
                                  'Bruker SHELXTL'
_computing_structure_solution
_computing_structure_refinement
                                  'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics
                                  'Bruker SHELXTL'
_computing_publication_material
                                  'Bruker SHELXTL'
_refine_special_details
 Refinement of F^2^ against ALL reflections. The weighted R-factor
wR and
```

goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2^ > 2sigma(F^2^)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. The residual electron density (1.317) was found to be 0.71 Angstroms from O2. DFIX Restraints were applied to atoms N2 C2 and C2 O2 and refinement converged successfully. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0498P)^2^+1.1541P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef 2 _refine_ls_number_reflns 7811 _refine_ls_number_parameters 440 _refine_ls_number_restraints 2 _refine_ls_R_factor_all 0.0520 _refine_ls_R_factor_gt 0.0423 _refine_ls_wR_factor_ref 0.1118 _refine_ls_wR_factor_gt 0.1046 _refine_ls_goodness_of_fit_ref 1.030 _refine_ls_restrained_S_all 1.030 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop atom site label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Sil Si 0.0000 1.0000 0.0000 0.02593(16) Uani 1 2 d S . P1 P 0.19131(4) 0.30352(3) 0.26845(4) 0.01753(10) Uani 1 1 d . . . P2 P 0.36555(4) 0.40965(3) 0.30098(3) 0.01587(10) Uani 1 1 d . . . N1 N 0.04729(15) 0.84553(14) 0.07263(15) 0.0327(4) Uani 1 1 d . . . N2 N -0.02516(15) 1.02014(14) 0.13406(10) 0.0345(4) Uani 1 1 d D . . N3 N 0.16025(14) 1.02722(15) -0.04307(16) 0.0351(4) Uani 1 1 d . . .

N4 N 0.24460(12) 0.39925(12) 0.27821(12) 0.0198(3) Uani 1 1 d . . Ol O 0.04718(15) 0.64924(12) 0.19769(14) 0.0452(4) Uani 1 1 d . O2 O -0.0564(2) 0.96685(19) 0.33178(10) 0.0811(7) Uani 1 1 d D . O3 O 0.33921(13) 1.06520(13) -0.02469(15) 0.0443(4) Uani 1 1 d . . C1 C 0.04622(16) 0.74906(16) 0.13546(17) 0.0276(4) Uani 1 1 d . . -0.0428(2) 0.99279(17) 0.23222(10) 0.0389(5) Uani 1 1 d D . . C2 C C3 C 0.24770(16) 1.04556(15) -0.03170(16) 0.0280(4) Uani 1 1 d . . C4 C 0.17353(15) 0.35139(14) 0.12660(14) 0.0205(3) Uani 1 1 d . . . C5 C 0.19124(15) 0.46389(15) 0.04856(14) 0.0234(3) Uani 1 1 d . . H5 H 0.2166 0.5145 0.0688 0.028 Uiso 1 1 calc R . C6 C 0.17154(16) 0.50194(17) -0.05949(15) 0.0290(4) Uani 1 1 d . . . H6 H 0.1833 0.5787 -0.1129 0.035 Uiso 1 1 calc R . C7 C 0.13483(17) 0.42783(18) -0.08911(17) 0.0329(4) Uani 1 1 d . . . H7 H 0.1223 0.4538 -0.1630 0.040 Uiso 1 1 calc R . C8 C 0.11635(18) 0.31594(18) -0.01121(18) 0.0344(4) Uani 1 1 d . . . H8 H 0.0909 0.2657 -0.0319 0.041 Uiso 1 1 calc R . . C9 C 0.13492(17) 0.27725(16) 0.09653(17) 0.0293(4) Uani 1 1 d . . H9 H 0.1216 0.2008 0.1500 0.035 Uiso 1 1 calc R . C10 C 0.03900(15) 0.28493(14) 0.36265(14) 0.0217(3) Uani 1 1 d . . . Cl1 C -0.01050(17) 0.18216(16) 0.40452(18) 0.0325(4) Uani 1 1 d . . . H11 H 0.0383 0.1181 0.3885 0.039 Uiso 1 1 calc R . Cl2 C -0.13183(18) 0.17362(19) 0.4700(2) 0.0415(5) Uani 1 1 d . . . H12 H -0.1656 0.1034 0.4994 0.050 Uiso 1 1 calc R . C13 C -0.20308(17) 0.26736(19) 0.49228(18) 0.0379(5) Uani 1 1 d . . . H13 H -0.2858 0.2612 0.5371 0.045 Uiso 1 1 calc R . . C14 C -0.15474(17) 0.37023(18) 0.44972(17) 0.0349(4) Uani 1 1 d . . . H14 H -0.2047 0.4345 0.4648 0.042 Uiso 1 1 calc R . . C15 C -0.03356(16) 0.37989(16) 0.38510(15) 0.0270(4) Uani 1 1 d . . . H15 H -0.0002 0.4503 0.3564 0.032 Uiso 1 1 calc R . . C16 C 0.28510(14) 0.16518(13) 0.30269(14) 0.0197(3) Uani 1 1 d . . . C21 C 0.36531(17) 0.12816(16) 0.21757(16) 0.0276(4) Uani 1 1 d . . H21 H 0.3617 0.1699 0.1402 0.033 Uiso 1 1 calc R . . C20 C 0.45023(18) 0.03011(17) 0.24656(19) 0.0351(4) Uani 1 1 d . . . H20 H 0.5038 0.0044 0.1891 0.042 Uiso 1 1 calc R . . C19 C 0.45672(18) -0.02997(16) 0.35905(19) 0.0354(5) Uani 1 1 d . . . H19 H 0.5161 -0.0958 0.3782 0.042 Uiso 1 1 calc R . . C18 C 0.37686(18) 0.00552(16) 0.44393(18) 0.0313(4) Uani 1 1 d . . . H18 H 0.3814 -0.0364 0.5210 0.038 Uiso 1 1 calc R . . C17 C 0.29037(16) 0.10209(14) 0.41650(15) 0.0240(4) Uani 1 1 d . . . H17 H 0.2348 0.1253 0.4750 0.029 Uiso 1 1 calc R . . C22 C 0.35121(15) 0.36343(13) 0.45169(13) 0.0185(3) Uani 1 1 d . . . C23 C 0.24970(16) 0.30930(15) 0.53244(15) 0.0242(4) Uani 1 1 d . . . H23 H 0.1875 0.2985 0.5078 0.029 Uiso 1 1 calc R . . C24 C 0.23941(18) 0.27119(17) 0.64867(15) 0.0305(4) Uani 1 1 d . . . H24 H 0.1709 0.2333 0.7032 0.037 Uiso 1 1 calc R . . C25 C 0.32889(18) 0.28836(16) 0.68517(15) 0.0295(4) Uani 1 1 d . . . H25 H 0.3217 0.2619 0.7646 0.035 Uiso 1 1 calc R . . C26 C 0.42918(17) 0.34424(15) 0.60584(15) 0.0252(4) Uani 1 1 d . . . H26 H 0.4898 0.3567 0.6312 0.030 Uiso 1 1 calc R . . C27 C 0.44061(15) 0.38184(14) 0.48945(14) 0.0209(3) Uani 1 1 d . . . H27 H 0.5090 0.4201 0.4353 0.025 Uiso 1 1 calc R . C28 C 0.39065(15) 0.55890(13) 0.23677(13) 0.0179(3) Uani 1 1 d . C29 C 0.29125(15) 0.64149(15) 0.25535(15) 0.0228(3) Uani 1 1 d . . H29 H 0.2125 0.6183 0.3006 0.027 Uiso 1 1 calc R . . C30 C 0.30849(17) 0.75740(15) 0.20721(16) 0.0276(4) Uani 1 1 d . . . H30 H 0.2412 0.8134 0.2196 0.033 Uiso 1 1 calc R . . C31 C 0.42378(17) 0.79198(15) 0.14097(15) 0.0269(4) Uani 1 1 d . . . H31 H 0.4349 0.8713 0.1079 0.032 Uiso 1 1 calc R . . C32 C 0.52237(16) 0.71020(15) 0.12336(14) 0.0239(4) Uani 1 1 d . . . H32 H 0.6011 0.7337 0.0785 0.029 Uiso 1 1 calc R . . C33 C 0.50633(15) 0.59379(14) 0.17120(14) 0.0208(3) Uani 1 1 d . . .

H33 H 0.5741 0.5381 0.1592 0.025 Uiso 1 1 calc R . C34 C 0.50304(14) 0.33274(13) 0.24089(14) 0.0182(3) Uani 1 1 d . . C35 C 0.52368(15) 0.35012(15) 0.12614(14) 0.0218(3) Uani 1 1 d . . H35 H 0.4661 0.4003 0.0840 0.026 Uiso 1 1 calc R . C36 C 0.62811(16) 0.29419(15) 0.07406(15) 0.0251(4) Uani 1 1 d . . H36 H 0.6418 0.3062 -0.0036 0.030 Uiso 1 1 calc R . C37 C 0.71231(17) 0.22086(16) 0.13533(16) 0.0293(4) Uani 1 1 d . . H37 H 0.7834 0.1824 0.0997 0.035 Uiso 1 1 calc R . . C38 C 0.69292(18) 0.20358(16) 0.24856(16) 0.0321(4) Uani 1 1 d . . . H38 H 0.7512 0.1537 0.2901 0.039 Uiso 1 1 calc R . . C39 C 0.58810(16) 0.25918(15) 0.30190(15) 0.0255(4) Uani 1 1 d . . . H39 H 0.5749 0.2468 0.3796 0.031 Uiso 1 1 calc R . . qool _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Sil 0.0187(3) 0.0229(3) 0.0350(4) -0.0122(3) -0.0049(3) -0.0014(3) P1 0.01709(19) 0.0169(2) 0.0200(2) -0.00753(16) -0.00591(16) -0.00220(15)P2 0.01621(19) 0.0162(2) 0.0161(2) -0.00680(16) -0.00464(15) -0.00189(15)N1 0.0316(8) 0.0236(8) 0.0407(9) -0.0117(7) -0.0105(7) 0.0003(6)N2 0.0333(9) 0.0345(9) 0.0363(10) -0.0172(8) -0.0079(7) -0.0004(7)N3 0.0221(8) 0.0343(9) 0.0475(10) -0.0164(8) -0.0054(7) -0.0049(7)N4 0.0201(7) 0.0182(7) 0.0240(7) -0.0091(6) -0.0087(6) -0.0012(5) $01 \quad 0.0489(9) \quad 0.0281(8) \quad 0.0554(10) \quad -0.0017(7) \quad -0.0292(8) \quad -0.0055(7)$ $02 \ 0.141(2) \ 0.0795(14) \ 0.0251(9) \ -0.0245(9) \ -0.0035(10) \ -0.0342(14)$ 03 0.0306(8) 0.0329(8) 0.0692(11) -0.0125(8) -0.0190(7) -0.0090(6) $C1 \quad 0.0216(8) \quad 0.0315(10) \quad 0.0351(10) \quad -0.0165(9) \quad -0.0115(7) \quad 0.0002(7)$ C2 0.0405(11) 0.0329(11) 0.0477(13) -0.0170(10) -0.0203(10) 0.0028(9) $C3 \quad 0.0243(9) \quad 0.0179(8) \quad 0.0335(10) \quad -0.0052(7) \quad -0.0044(7) \quad -0.0023(7)$ C4 0.0187(8) 0.0233(8) 0.0220(8) -0.0107(7) -0.0076(6) 0.0000(6) C5 0.0192(8) 0.0276(9) 0.0234(8) -0.0105(7) -0.0050(6) -0.0025(7)C6 0.0231(9) 0.0338(10) 0.0231(9) -0.0073(8) -0.0050(7) -0.0001(7) $C7 \quad 0.0281(9) \quad 0.0466(12) \quad 0.0273(10) \quad -0.0183(9) \quad -0.0140(8) \quad 0.0066(8)$ $\texttt{C8} \ \texttt{0.0350(10)} \ \texttt{0.0400(11)} \ \texttt{0.0428(11)} \ \texttt{-0.0254(10)} \ \texttt{-0.0221(9)} \ \texttt{0.0052(8)}$ $C9 \quad 0.0321(10) \quad 0.0268(9) \quad 0.0354(10) \quad -0.0132(8) \quad -0.0170(8) \quad -0.0014(7)$ $C10 \ 0.0187(8) \ 0.0229(8) \ 0.0228(8) \ -0.0077(7) \ -0.0055(6) \ -0.0033(6)$ $C11 \ 0.0225(9) \ 0.0261(9) \ 0.0472(12) \ -0.0133(9) \ -0.0060(8) \ -0.0060(7)$ C12 0.0261(10) 0.0355(11) 0.0559(14) -0.0106(10) -0.0052(9) -0.0130(8)C13 0.0199(9) 0.0484(12) 0.0387(11) -0.0141(10) -0.0015(8) -0.0066(8) C14 0.0255(9) 0.0395(11) 0.0365(11) -0.0186(9) -0.0024(8) 0.0012(8) C15 0.0265(9) 0.0260(9) 0.0268(9) -0.0105(8) -0.0049(7) -0.0028(7) $\texttt{C16} \quad \texttt{0.0180(7)} \quad \texttt{0.0159(7)} \quad \texttt{0.0264(8)} \quad \texttt{-0.0079(7)} \quad \texttt{-0.0075(6)} \quad \texttt{-0.0024(6)}$ C21 0.0281(9) 0.0256(9) 0.0301(9) -0.0132(8) -0.0063(7) -0.0019(7) $\texttt{C20} \ \texttt{0.0284(9)} \ \texttt{0.0301(10)} \ \texttt{0.0483(12)} \ \texttt{-0.0230(9)} \ \texttt{-0.0051(9)} \ \texttt{0.0021(8)}$ $C19 \quad 0.0282(9) \quad 0.0210(9) \quad 0.0538(13) \quad -0.0121(9) \quad -0.0147(9) \quad 0.0035(7)$ $C18 \quad 0.0325(10) \quad 0.0199(9) \quad 0.0374(11) \quad -0.0027(8) \quad -0.0152(8) \quad -0.0043(7)$ $\texttt{C17} \ \texttt{0.0244(8)} \ \texttt{0.0202(8)} \ \texttt{0.0269(9)} \ \texttt{-0.0068(7)} \ \texttt{-0.0072(7)} \ \texttt{-0.0053(7)}$ $C22 \ 0.0219(8) \ 0.0169(7) \ 0.0163(7) \ -0.0070(6) \ -0.0052(6) \ -0.0004(6)$ $\texttt{C23 } 0.0232(8) \ 0.0277(9) \ 0.0232(9) \ -0.0115(7) \ -0.0037(7) \ -0.0056(7)$ C24 0.0315(9) 0.0361(10) 0.0203(9) -0.0102(8) 0.0016(7) -0.0110(8) $\texttt{C25} \ \texttt{0.0396(10)} \ \texttt{0.0307(10)} \ \texttt{0.0181(8)} \ \texttt{-0.0099(7)} \ \texttt{-0.0072(7)} \ \texttt{-0.0037(8)}$ C26 0.0311(9) 0.0255(9) 0.0239(9) -0.0118(7) -0.0115(7) -0.0020(7)C27 0.0228(8) 0.0194(8) 0.0204(8) -0.0077(7) -0.0048(6) -0.0037(6)

 $\texttt{C28} \hspace{0.1in} 0.0214(8) \hspace{0.1in} 0.0177(7) \hspace{0.1in} 0.0173(7) \hspace{0.1in} -0.0066(6) \hspace{0.1in} -0.0077(6) \hspace{0.1in} -0.0039(6)$ $C29 \ 0.0212(8) \ 0.0233(8) \ 0.0253(9) \ -0.0105(7) \ -0.0070(7) \ -0.0018(6)$ $\texttt{C30} \ \texttt{0.0305(9)} \ \texttt{0.0201(8)} \ \texttt{0.0349(10)} \ \texttt{-0.0118(8)} \ \texttt{-0.0138(8)} \ \texttt{0.0019(7)}$ C31 0.0391(10) 0.0176(8) 0.0272(9) -0.0049(7) -0.0159(8) -0.0063(7) $\texttt{C32 } 0.0277(9) \ 0.0271(9) \ 0.0196(8) \ -0.0064(7) \ -0.0080(7) \ -0.0105(7)$ $\texttt{C33} \quad \texttt{0.0213(8)} \quad \texttt{0.0234(8)} \quad \texttt{0.0193(8)} \quad \texttt{-0.0084(7)} \quad \texttt{-0.0064(6)} \quad \texttt{-0.0036(6)}$ $\texttt{C34} \hspace{0.1in} 0.0185(7) \hspace{0.1in} 0.0167(7) \hspace{0.1in} 0.0198(8) \hspace{0.1in} -0.0082(6) \hspace{0.1in} -0.0039(6) \hspace{0.1in} -0.0024(6)$ C35 0.0221(8) 0.0242(8) 0.0207(8) -0.0093(7) -0.0065(6) -0.0033(6)C36 0.0278(9) 0.0293(9) 0.0213(8) -0.0142(7) -0.0026(7) -0.0055(7)C37 0.0266(9) 0.0270(9) 0.0294(9) -0.0140(8) -0.0014(7) 0.0027(7) $\texttt{C38} \quad \texttt{0.0298(9)} \quad \texttt{0.0288(10)} \quad \texttt{0.0280(10)} \quad \texttt{-0.0087(8)} \quad \texttt{-0.0089(8)} \quad \texttt{0.0100(8)}$ $\texttt{C39} \hspace{0.1in} 0.0275(9) \hspace{0.1in} 0.0249(9) \hspace{0.1in} 0.0194(8) \hspace{0.1in} -0.0076(7) \hspace{0.1in} -0.0056(7) \hspace{0.1in} 0.0021(7)$ _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Sil N3 1.8305(16) . ? Sil N3 1.8305(16) 2_575 ? Sil N1 1.8345(16) . ? Sil N1 1.8345(16) 2_575 ? Sil N2 1.8556(12) 2 575 ? Sil N2 1.8556(12) . ? P1 N4 1.5910(14) . ? P1 C4 1.7982(17) . ? P1 C10 1.8013(17) . ? P1 C16 1.8040(16) . ? P2 N4 1.5811(14) . ? P2 C28 1.7984(16) . ? P2 C34 1.8042(16) . ? P2 C22 1.8064(16) . ? N1 C1 1.164(2) . ? N2 C2 1.1661(17) . ? N3 C3 1.169(2) . ? O1 C1 1.195(2) . ? O2 C2 1.1940(18) . ? O3 C3 1.194(2) . ? C4 C5 1.392(2) . ? C4 C9 1.405(2) . ? C5 C6 1.395(2) . ? С5 Н5 0.9500 . ? C6 C7 1.388(3) . ? С6 Н6 0.9500 . ?

C7	C8	1.	3	8	8	(3)		•	?	
C7	Н7	0.	9	5	0	0		•		?		
C8	C9	1.	3	8	5	(3)		•	?	
C8	Н8	0.	9	5	0	0		•		?		
C9	Н9	0.	9	5	0	0	_	•	_	?		
C10	C1	1	1	•	3	9	2	(2)	•	?
C10	C1	5	1	•	4	0	1	(2)	•	?
C11	C1	2	1	•	3	9	2	(3)	•	?
C11	. H1	1	0	•	9	5	0	0	_	•	?	
C12	C1	3	1	•	3	8	2	(3)	·	?
C12	HI	2	0	•	9	5	0	Û	~	•	?	_
CT3	CL	4	T	•	3	8	5	(3)	•	3
CI3	HI	3	0	•	9	5	0	Ů	2	•	2	~
CI4	: CI	5	Ţ	•	3	8	9	(3)	•	2
	: H1	4	0	•	9	5	0	0		•	?	
CLD		כ ד	1	•	9 2	с 0	0	0 7	S	•	?	2
CIO		/	1	•	כ ∧	9	צ ר	(ム つ)	•	: 2
CIO		_ ⊥	⊥ 1	•	4 つ	0	ム つ	(ム つ)	•	: ?
C21	. CZ บว	1		•	s a	ש ה	⊿ ∩	ر م	З)	•	f
C21	. пд 1 С1	ц а	1	•	פ ג	2 Q	5	<i>i</i>	2	•	•	2
C20	, ст н ц 2	0		•	g	5	0 0	\ ۱	5	,	• ?	·
C19		8	1	•	ר 2	8	7	<i>i</i>	z	•	•	2
C19	ст н1	9	0	•	g	5	'n	` 0	5	'	?	•
C18	C1	7	1	•	2 3	8	8	(2)	·	2
C18	н1	, 8	0		9	5	0	ò	-		• ?	•
C17	'н1	7	0		9	5	0	0			?	
C22	C2	3	1		3	9	8	(2)	•	?
C22	C2	7	1		4	0	5	(2)		?
C23	C2	4	1		3	9	1	(2)		?
C23	Н2	3	0		9	5	0	Ò			?	
C24	C2	5	1		3	8	6	(3)		?
C24	н2	4	0		9	5	0	0		•	?	
C25	C2	6	1		3	9	2	(3)		?
C25	Н2	5	0		9	5	0	0			?	
C26	C2	7	1		3	9	1	(2)		?
C26	Н2	6	0	•	9	5	0	0			?	
C27	Н2	7	0	•	9	5	0	0		•	?	
C28	C3	3	1	•	3	9	7	(2)		?
C28	C2	9	1	•	4	0	4	(2)		?
C29	C3	0	1	•	3	9	1	(2)	•	?
C29	Н2	9	0	•	9	5	0	0		•	?	
C30	C3	1	1	•	3	9	4	(3)	•	?
C30	Н3	0	0	•	9	5	0	0		•	?	
C31	C3	2	1	•	3	8	8	(3)	•	?
C31	. НЗ	1	0	•	9	5	0	0	_	•	?	
C32	C3	3	1	•	3	9	4	(2)	·	?
C32	H3	2	0	•	9	5	0	0		•	?	
C33	H3	3	0	•	9	5	0	Û	~	•	.2	_
C34	: C3	9	1	•	3	9	2	(2)	•	3
C34	: C3	5	1	•	4	0	4	(2)	•	?
C35	0 C3	ю Б	T T	•	ک م	9 F	0	(2)	•	?
C35	н3 сл	с 7	1	•	ソっ	с 0	U E	7	ว	•	?	S
C30	ັ U 3	, 6	⊥ ⊥	•	с о	0	0	י ר	د)	•	:
C30	сл и сл и	0 Q	1	•	ココ	с Q	U 7	1	2	•	:	2
(12)	נט נעי	0 7	⊥ ⊥	•	د م	5	′ ∩	י ה	د	,	• >	ſ
C21	בה גיק	9	1	•	ע ר	с q	о 8	(2	•	:	ç
C20	с.) Ц	8	_ _	•	g	ン ら	0	` n	2	'	• ?	·
C30	. Н <i>З</i>	9	0	•	9	5	0 0	0 0		•	• ?	
		-	-	•	-	-	-	-		-	•	

loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_ 2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N3 Si1 N3 180.000(1) . 2_575 ? N3 Sil N1 89.65(7) . . ? N3 Si1 N1 90.35(7) 2_575 . ? N3 Si1 N1 90.35(7) . 2_575 ? N3 Si1 N1 89.65(7) 2_575 2_575 ? N1 Si1 N1 180.0 . 2_575 ? N3 Si1 N2 89.75(8) . 2_575 ? N3 Si1 N2 90.25(8) 2_575 2_575 ? N1 Si1 N2 90.26(7) . 2_575 ? N1 Si1 N2 89.74(7) 2_575 2_575 ? N3 Si1 N2 90.25(8) . . ? N3 Sil N2 89.75(8) 2_575 . ? N1 Si1 N2 89.74(7) . . ? N1 Si1 N2 90.26(7) 2_575 . ? N2 Si1 N2 180.00(10) 2_575 . ? N4 P1 C4 110.15(8) . . ? N4 P1 C10 109.35(8) . . ? C4 P1 C10 105.89(8) . . ? N4 P1 C16 113.67(7) . . ? C4 P1 C16 108.83(8) . . ? C10 P1 C16 108.65(8) . . ? N4 P2 C28 109.16(7) . . ? N4 P2 C34 114.00(7) . . ? C28 P2 C34 106.48(7) . . ? N4 P2 C22 111.82(8) . . ? C28 P2 C22 105.86(7) . . ? C34 P2 C22 109.06(7) . . ? C1 N1 Si1 162.35(16) . . ? C2 N2 Sil 156.63(17) . . ? C3 N3 Si1 155.37(17) . . ? P2 N4 P1 136.83(9) . . ? N1 C1 O1 178.3(2) . . ? N2 C2 O2 177.1(3) . . ? N3 C3 O3 177.3(2) . . ? C5 C4 C9 119.87(16) . . ? C5 C4 P1 120.13(12) . . ? C9 C4 P1 119.90(13) . . ? C4 C5 C6 119.72(16) . ? . C4 C5 H5 120.1 . . ? C6 C5 H5 120.1 . . ? C7 C6 C5 120.11(18) . . ? С7 С6 Н6 119.9 . . ? . ? С5 С6 Н6 119.9 . C6 C7 C8 120.26(17) . . ? C6 C7 H7 119.9 . . ? С8 С7 Н7 119.9 . . ? C9 C8 C7 120.23(18) . . ? C9 C8 H8 119.9 . . ? C7 C8 H8 119.9 . . ? C8 C9 C4 119.81(18) . . ? C8 C9 H9 120.1 . . ? С4 С9 Н9 120.1 . . ? C11 C10 C15 120.08(16) . . ?

C11	C10	P1 121.21(13) ?
C15	C10	P1 118.47(13) ?
C10	C11	C12 119.77(18) ?
C10	C11	H11 120.1 ?
C12	C11	H11 120.1 ?
C13	C12	$C_{11} 120 00(19) 2$
C13	C12	H12 120 0 2
011	C12	
		H12 120.0 :
CIZ	CT3	C14 120.46(18) ?
CT5	CT3	HI3 119.8 ?
C14	C13	H13 119.8 ?
C13	C14	C15 120.27(18) ?
C13	C14	H14 119.9 ?
C15	C14	H14 119.9 ?
C14	C15	C10 119.41(17) ?
C14	C15	H15 120.3 ?
C10	C15	н15 120.3 ?
C17	C16	$C_{21} 119 48(15) 2$
		$C_{21} 119.40(15)$. :
	CIG	PI 117.91(12) ?
CZT	CT6	PI 121.92(13) ?
C20	C21	Cl6 119.91(18) ?
C20	C21	H21 120.0 ?
C16	C21	H21 120.0 ?
C19	C20	C21 120.11(18) ?
C19	C20	H20 119.9 ?
C21	C20	H20 119.9 ?
C20	C19	C18 120 30(17) 2
C20		110 110 0 2
	C19	
CT8	CT3	H19 119.8 ?
GT/	G18	C19 120.19(18) ?
C17	C18	H18 119.9 ?
C19	C18	H18 119.9 ?
C18	C17	C16 119.99(17) ?
C18	C17	H17 120.0 ?
C16	C17	H17 120.0 ?
C23	C22	C27 119.15(15) ?
C23	C22	P2 119 98(13) 2
C27	C22	$D_{2} = 120 - 86(12)$
C27	C22 000	r_{2} r_{20} $r_$
	C23	(22 120.30(10)).
C24	C23	H23 119.8 ?
C22	C23	H23 119.8 ?
C25	C24	C23 120.13(17) ?
C25	C24	H24 119.9 ?
C23	C24	H24 119.9 ?
C24	C25	C26 120.26(16) ?
C24	C25	H25 119.9 ?
C26	C25	H25 119 9 2
C20	C26	$C_{25} 110 95(16) 2$
027	C20	(25 119.95(10) :
C27	C26	H20 120.0 ?
C25	C26	H26 120.0 ?
C26	C27	C22 120.18(16) ?
C26	C27	H27 119.9 ?
C22	C27	H27 119.9 ?
C33	C28	C29 119.65(15) ?
C33	C28	P2 121.72(12) ?
C29	C28	P2 118 62(12) ?
020	C29	$C_{28} 119 72(16)$
020	C 2 2	120 120 1 20 1 20 1 20 1 20 1 20 1 20 1
C30	C29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C28	C29	$H \angle Y \perp Z \cup . \downarrow$
C29	C30	C31 120.46(16) ?
C29	C30	H30 119.8 ?

```
СЗ1 СЗО НЗО 119.8 . . ?
C32 C31 C30 119.85(16) . . ?
C32 C31 H31 120.1 . . ?
C30 C31 H31 120.1 . . ?
C31 C32 C33 120.25(16) . . ?
С31 С32 Н32 119.9 . . ?
C33 C32 H32 119.9 . . ?
C32 C33 C28 120.07(15) . . ?
C32 C33 H33 120.0 . . ?
C28 C33 H33 120.0 . . ?
C39 C34 C35 119.45(15) . . ?
C39 C34 P2 123.47(12) . . ?
C35 C34 P2 117.08(12) . . ?
C36 C35 C34 120.20(16) . . ?
СЗ6 СЗ5 НЗ5 119.9 . . ?
C34 C35 H35 119.9 . . ?
C37 C36 C35 120.07(16) . . ?
C37 C36 H36 120.0 . . ?
СЗ5 СЗ6 НЗ6 120.0 . . ?
C36 C37 C38 120.11(16) . . ?
C36 C37 H37 119.9 . . ?
C38 C37 H37 119.9 . . ?
C37 C38 C39 120.32(17) . . ?
СЗ7 СЗ8 НЗ8 119.8 . . ?
C39 C38 H38 119.8 . . ?
C34 C39 C38 119.84(16) . . ?
C34 C39 H39 120.1 . . ?
C38 C39 H39 120.1 . . ?
                                      0.996
_diffrn_measured_fraction_theta_max
_diffrn_reflns_theta_full
                                       25.00
_diffrn_measured_fraction_theta_full
                                       0.997
_refine_diff_density_max 1.320
_refine_diff_density_min
                          -0.500
_refine_diff_density_rms
                           0.056
```

4c) Crystallographic information file for compound 2b (data_chppx75_0m)

data_ch1ppx75_0m _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? '2(C36 H30 N P2), C6 N6 S6 Si, 2(C2 _chemical_formula_moiety H3 N)' _chemical_formula_sum 'C82 H66 N10 P4 S6 Si' chemical formula weight 1535.78 loop _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source

```
'C' 'C' 0.0033 0.0016
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'H' 'H' 0.0000 0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'N' 'N' 0.0061 0.0033
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'Si' 'Si' 0.0817 0.0704
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'P' 'P' 0.1023 0.0942
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'S' 'S' 0.1246 0.1234
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting
                                 Triclinic
_symmetry_space_group_name_H-M
                                 P-1
loop
 _symmetry_equiv_pos_as_xyz
 'x, y, z'
 '-x, -y, -z'
                                10.7540(4)
_cell_length_a
_cell_length_b
                                13.4160(6)
                                14.4498(5)
_cell_length_c
_cell_angle_alpha
                                100.540(2)
_cell_angle_beta
                                102.120(2)
_cell_angle_gamma
                                96.806(2)
_cell_volume
                                1977.01(13)
_cell_formula_units_Z
                                1
_cell_measurement_temperature
                               100(2)
_cell_measurement_reflns_used
                               9985
_cell_measurement_theta_min
                                2.16
_cell_measurement_theta_max
                                27.33
                              Block
_exptl_crystal_description
_exptl_crystal_colour
                                colourless
_exptl_crystal_size_max
                                0.19
_exptl_crystal_size_mid
                                0.16
_exptl_crystal_size_min
                                0.14
_exptl_crystal_density_meas
                                ?
_exptl_crystal_density_diffrn
                               1.290
_exptl_crystal_density_method
                                'not measured'
exptl crystal F 000
                                798
_exptl_absorpt_coefficient_mu
                               0.320
_exptl_absorpt_correction_type multi-scan
_exptl_absorpt_correction_T_min 0.9417
_exptl_absorpt_correction_T_max 0.9566
_exptl_absorpt_process_details
                                sadabs
_exptl_special_details
;
?
;
_diffrn_ambient_temperature
                               100(2)
                               0.71073
_diffrn_radiation_wavelength
_diffrn_radiation_type
                                MoK∖a
_diffrn_radiation_source
                                'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
```

_diffrn_measurement_device_type 'Bruker APEX-II CCD' _diffrn_measurement_method '\f and \w scans' _diffrn_detector_area_resol_mean 100 _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 33304 _diffrn_reflns_av_R_equivalents 0.0356 _diffrn_reflns_av_sigmaI/netI 0.0367 _diffrn_reflns_limit_h_min -13 _diffrn_reflns_limit_h_max 13 _diffrn_reflns_limit_k_min -17 _diffrn_reflns_limit_k_max 17 _diffrn_reflns_limit_l_min -18 _diffrn_reflns_limit_l_max 18 _diffrn_reflns_theta_min 1.48 27.45 _diffrn_reflns_theta_max 8974 _reflns_number_total 7406 _reflns_number_gt _reflns_threshold_expression >2sigma(I) 'Bruker APEX2' _computing_data_collection _computing_cell_refinement 'Bruker SAINT' _computing_data_reduction 'Bruker SAINT' 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_solution _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Bruker SHELXTL' _computing_publication_material 'Bruker SHELXTL' _refine_special_details ; Refinement of F^2[^] against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2^* > 2sigma(F^2^*)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type f11]] _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0440P)^2^+0.7175P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens qeom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 8974 _refine_ls_number_parameters 467

_refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0482 _refine_ls_R_factor_gt 0.0372 _refine_ls_wR_factor_ref 0.0968 _refine_ls_wR_factor_gt 0.0905 _refine_ls_goodness_of_fit_ref 1.051 _refine_ls_restrained_S_all 1.051 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Sil Si 0.5000 1.0000 0.0000 0.02045(14) Uani 1 2 d S . P1 P 0.31840(4) 0.68070(3) 0.34130(3) 0.01538(9) Uani 1 1 d . . . P2 P 0.08796(4) 0.78241(3) 0.29552(3) 0.01475(9) Uani 1 1 d . . . S1 S 0.86494(4) 1.23891(3) 0.06448(3) 0.02817(11) Uani 1 1 d . . . S2 S 0.37092(7) 1.30078(5) 0.12107(4) 0.05078(17) Uani 1 1 d . . . S3 S 0.62359(5) 0.94311(4) 0.30871(3) 0.03425(12) Uani 1 1 d . . . N1 N 0.65492(13) 1.08199(11) 0.01900(10) 0.0245(3) Uani 1 1 d . . . N2 N 0.43045(13) 1.11319(11) 0.04125(10) 0.0248(3) Uani 1 1 d . . . N3 N 0.54388(14) 0.98198(11) 0.12461(10) 0.0256(3) Uani 1 1 d . . . N4 N 0.23412(12) 0.76877(10) 0.32877(9) 0.0184(3) Uani 1 1 d . . . N5 N 0.2588(2) 0.56236(19) 0.65821(13) 0.0547(5) Uani 1 1 d . . . C1 C 0.74334(15) 1.14802(13) 0.03735(11) 0.0204(3) Uani 1 1 d . . . C2 C 0.40439(17) 1.19218(15) 0.07365(12) 0.0262(4) Uani 1 1 d . . . C3 C 0.57710(15) 0.96524(13) 0.20195(12) 0.0233(4) Uani 1 1 d . . . C4 C 0.23049(14) 0.55580(12) 0.33733(11) 0.0173(3) Uani 1 1 d . . . C5 C 0.20931(15) 0.47607(13) 0.25557(11) 0.0198(3) Uani 1 1 d . . . H5 H 0.2446 0.4861 0.2023 0.024 Uiso 1 1 calc R . . C6 C 0.13624(15) 0.38191(14) 0.25244(13) 0.0240(4) Uani 1 1 d . . . H6 H 0.1209 0.3280 0.1967 0.029 Uiso 1 1 calc R . . C7 C 0.08589(16) 0.36676(14) 0.33052(13) 0.0268(4) Uani 1 1 d . . . H7 H 0.0360 0.3025 0.3280 0.032 Uiso 1 1 calc R . . C8 C 0.10805(17) 0.44525(15) 0.41253(13) 0.0285(4) Uani 1 1 d . . . H8 H 0.0747 0.4341 0.4663 0.034 Uiso 1 1 calc R . . C9 C 0.17876(16) 0.53985(14) 0.41584(12) 0.0227(3) Uani 1 1 d . . . H9 H 0.1921 0.5939 0.4713 0.027 Uiso 1 1 calc R . . C10 C 0.43220(14) 0.71870(13) 0.45743(11) 0.0182(3) Uani 1 1 d . C11 C 0.48420(16) 0.64533(14) 0.50481(12) 0.0248(4) Uani 1 1 d . . H11 H 0.4572 0.5742 0.4768 0.030 Uiso 1 1 calc R . . C12 C 0.57520(16) 0.67641(15) 0.59272(12) 0.0288(4) Uani 1 1 d . . . H12 H 0.6102 0.6266 0.6247 0.035 Uiso 1 1 calc R . . C13 C 0.61460(16) 0.77976(15) 0.63349(12) 0.0264(4) Uani 1 1 d . . . H13 H 0.6769 0.8007 0.6935 0.032 Uiso 1 1 calc R . . C14 C 0.56391(16) 0.85354(15) 0.58746(12) 0.0257(4) Uani 1 1 d . . . H14 H 0.5915 0.9245 0.6161 0.031 Uiso 1 1 calc R . . C15 C 0.47243(15) 0.82317(13) 0.49917(11) 0.0214(3) Uani 1 1 d . . . H15 H 0.4376 0.8734 0.4676 0.026 Uiso 1 1 calc R . . C16 C 0.40912(14) 0.66232(12) 0.24983(11) 0.0174(3) Uani 1 1 d . . .

C17 C 0.51261(16) 0.60794(14) 0.26247(13) 0.0266(4) Uani 1 1 d . . . H17 H 0.5367 0.5833 0.3202 0.032 Uiso 1 1 calc R C18 C 0.57983(17) 0.59010(16) 0.19064(14) 0.0332(4) Uani 1 1 d . . H18 H 0.6491 0.5521 0.1987 0.040 Uiso 1 1 calc R . C19 C 0.54620(17) 0.62765(15) 0.10671(13) 0.0309(4) Uani 1 1 d . . H19 H 0.5931 0.6158 0.0580 0.037 Uiso 1 1 calc R . C20 C 0.44455(17) 0.68219(14) 0.09419(12) 0.0271(4) Uani 1 1 d . . H20 H 0.4221 0.7080 0.0369 0.033 Uiso 1 1 calc R . C21 C 0.37500(15) 0.69941(13) 0.16523(11) 0.0210(3) Uani 1 1 d . . . H21 H 0.3047 0.7362 0.1562 0.025 Uiso 1 1 calc R . C22 C 0.08693(15) 0.89299(12) 0.24079(11) 0.0177(3) Uani 1 1 d . . . C23 C 0.19877(16) 0.93684(13) 0.21945(11) 0.0214(3) Uani 1 1 d . . . H23 H 0.2776 0.9125 0.2387 0.026 Uiso 1 1 calc R . C24 C 0.19447(18) 1.01672(13) 0.16960(12) 0.0265(4) Uani 1 1 d . . . H24 H 0.2704 1.0465 0.1545 0.032 Uiso 1 1 calc R . C25 C 0.07960(19) 1.05259(14) 0.14207(13) 0.0308(4) Uani 1 1 d . . . H25 H 0.0770 1.1067 0.1078 0.037 Uiso 1 1 calc R . . C26 C -0.03166(18) 1.00994(15) 0.16429(13) 0.0311(4) Uani 1 1 d . . . H26 H -0.1098 1.0355 0.1458 0.037 Uiso 1 1 calc R . C27 C -0.02925(16) 0.92999(13) 0.21347(12) 0.0238(4) Uani 1 1 d . . . H27 H -0.1055 0.9006 0.2285 0.029 Uiso 1 1 calc R . C28 C -0.01296(14) 0.67712(12) 0.20528(11) 0.0173(3) Uani 1 1 d . . . C29 C -0.02909(16) 0.68146(14) 0.10721(12) 0.0246(4) Uani 1 1 d . . . H29 H 0.0058 0.7419 0.0898 0.030 Uiso 1 1 calc R . C30 C -0.09596(18) 0.59759(15) 0.03586(12) 0.0305(4) Uani 1 1 d . . . H30 H -0.1070 0.6007 -0.0305 0.037 Uiso 1 1 calc R . . C31 C -0.14695(16) 0.50896(14) 0.06078(13) 0.0265(4) Uani 1 1 d . . . H31 H -0.1925 0.4517 0.0115 0.032 Uiso 1 1 calc R . . C32 C -0.13158(15) 0.50388(13) 0.15761(12) 0.0222(3) Uani 1 1 d . . . H32 H -0.1663 0.4430 0.1744 0.027 Uiso 1 1 calc R . . C33 C -0.06537(14) 0.58789(13) 0.23006(12) 0.0190(3) Uani 1 1 d . . . H33 H -0.0558 0.5847 0.2963 0.023 Uiso 1 1 calc R . . C34 C 0.01524(15) 0.80780(12) 0.39729(11) 0.0180(3) Uani 1 1 d . . . C35 C -0.11777(15) 0.78501(13) 0.38744(12) 0.0216(3) Uani 1 1 d . . . H35 H -0.1726 0.7507 0.3266 0.026 Uiso 1 1 calc R . . C36 C -0.16967(16) 0.81296(14) 0.46741(12) 0.0256(4) Uani 1 1 d . . . H36 H -0.2598 0.7965 0.4612 0.031 Uiso 1 1 calc R . . C37 C -0.09035(17) 0.86452(14) 0.55565(12) 0.0253(4) Uani 1 1 d . . . H37 H -0.1264 0.8839 0.6096 0.030 Uiso 1 1 calc R . . C38 C 0.04187(17) 0.88818(14) 0.56581(12) 0.0254(4) Uani 1 1 d . . . H38 H 0.0959 0.9239 0.6265 0.031 Uiso 1 1 calc R . . C39 C 0.09495(16) 0.85937(13) 0.48694(11) 0.0222(3) Uani 1 1 d . . . H39 H 0.1854 0.8747 0.4940 0.027 Uiso 1 1 calc R . . C40 C 0.3116(2) 0.76076(18) 0.71762(16) 0.0443(5) Uani 1 1 d . . . H40A H 0.3137 0.7927 0.6621 0.067 Uiso 1 1 calc R . . H40B H 0.3957 0.7798 0.7640 0.067 Uiso 1 1 calc R . H40C H 0.2450 0.7846 0.7491 0.067 Uiso 1 1 calc R . C41 C 0.2826(2) 0.6499(2) 0.68462(14) 0.0384(5) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Sil 0.0195(3) 0.0177(3) 0.0231(3) 0.0055(3) 0.0034(2) 0.0000(3) P1 0.01434(19) 0.0166(2) 0.01457(18) 0.00273(16) 0.00197(14) .00346(15)P2 0.01480(19) 0.0148(2) 0.01475(18) 0.00333(15) 0.00315(14)

0.00338(15)S1 0.0229(2) 0.0201(2) 0.0384(3) 0.00701(19) 0.00325(18) -0.00292(17) S2 0.0872(5) 0.0430(3) 0.0428(3) 0.0181(3) 0.0360(3) 0.0412(3) S3 0.0393(3) 0.0359(3) 0.0256(2) 0.0108(2) 0.00031(19) 0.0048(2) N1 0.0224(7) 0.0218(8) 0.0279(8) 0.0055(6) 0.0043(6) 0.0004(6)N2 0.0232(7) 0.0217(8) 0.0299(8) 0.0069(6) 0.0069(6) 0.0021(6)N3 0.0259(7) 0.0229(8) 0.0259(8) 0.0062(6) 0.0031(6) 0.0001(6)N4 0.0170(6) 0.0172(7) 0.0200(7) 0.0028(5) 0.0029(5) 0.0034(5) N5 0.0688(14) 0.0618(15) 0.0312(10) 0.0158(10) 0.0108(9) -0.0053(11) C1 0.0223(8) 0.0206(9) 0.0203(8) 0.0077(7) 0.0049(6) 0.0070(7) $C2 \ 0.0281(9) \ 0.0312(11) \ 0.0263(9) \ 0.0149(8) \ 0.0122(7) \ 0.0085(8)$ $\texttt{C3} \ \texttt{0.0197(8)} \ \texttt{0.0192(9)} \ \texttt{0.0299(9)} \ \texttt{0.0040(7)} \ \texttt{0.0052(7)} \ \texttt{0.0015(7)}$ C4 0.0143(7) 0.0187(8) 0.0189(7) 0.0060(6) 0.0011(6) 0.0048(6) $C5 \ 0.0172(7) \ 0.0214(9) \ 0.0198(8) \ 0.0037(7) \ 0.0020(6) \ 0.0053(6)$ $C6 \quad 0.0191(8) \quad 0.0204(9) \quad 0.0276(9) \quad 0.0012(7) \quad -0.0015(7) \quad 0.0027(7)$ C7 0.0187(8) 0.0210(9) 0.0399(10) 0.0108(8) 0.0028(7) 0.0007(7) C8 0.0270(9) 0.0317(11) 0.0305(9) 0.0138(8) 0.0097(7) 0.0028(8) C9 0.0233(8) 0.0247(9) 0.0204(8) 0.0044(7) 0.0057(7) 0.0043(7) C10 0.0147(7) 0.0230(9) 0.0159(7) 0.0028(6) 0.0025(6) 0.0038(6) $\texttt{C11} \quad \texttt{0.0249(9)} \quad \texttt{0.0216(9)} \quad \texttt{0.0244(8)} \quad \texttt{0.0037(7)} \quad \texttt{-0.0017(7)} \quad \texttt{0.0044(7)}$ $\texttt{C12} \hspace{0.1in} 0.0250(9) \hspace{0.1in} 0.0355(11) \hspace{0.1in} 0.0237(9) \hspace{0.1in} 0.0103(8) \hspace{0.1in} -0.0022(7) \hspace{0.1in} 0.0047(8)$ $\texttt{C13} \hspace{0.1in} 0.0187(8) \hspace{0.1in} 0.0385(11) \hspace{0.1in} 0.0171(8) \hspace{0.1in} 0.0025(7) \hspace{0.1in} -0.0008(6) \hspace{0.1in} 0.0003(8)$ $C14 \ 0.0229(8) \ 0.0269(10) \ 0.0222(8) \ -0.0032(7) \ 0.0038(7) \ 0.0001(7)$ C15 0.0193(8) 0.0231(9) 0.0212(8) 0.0040(7) 0.0045(6) 0.0036(7) C16 0.0153(7) 0.0174(8) 0.0179(7) 0.0011(6) 0.0038(6) 0.0011(6) $\texttt{C17} \ \texttt{0.0232(8)} \ \texttt{0.0334(11)} \ \texttt{0.0280(9)} \ \texttt{0.0120(8)} \ \texttt{0.0086(7)} \ \texttt{0.0102(8)}$ C18 0.0250(9) 0.0422(12) 0.0398(11) 0.0121(9) 0.0148(8) 0.0171(9) $C19 \ 0.0286(9) \ 0.0369(11) \ 0.0316(10) \ 0.0061(8) \ 0.0172(8) \ 0.0067(8)$ $C20 \ 0.0308(9) \ 0.0293(10) \ 0.0229(8) \ 0.0070(7) \ 0.0093(7) \ 0.0035(8)$ $\texttt{C21} \quad \texttt{0.0211(8)} \quad \texttt{0.0206(9)} \quad \texttt{0.0208(8)} \quad \texttt{0.0030(7)} \quad \texttt{0.0049(6)} \quad \texttt{0.0039(7)}$ $C22 \ 0.0219(8) \ 0.0153(8) \ 0.0155(7) \ 0.0024(6) \ 0.0039(6) \ 0.0039(6)$ $\texttt{C23} \ \texttt{0.0244(8)} \ \texttt{0.0178(9)} \ \texttt{0.0213(8)} \ \texttt{0.0009(7)} \ \texttt{0.0068(7)} \ \texttt{0.0031(7)}$ $\texttt{C24} \ \texttt{0.0368(10)} \ \texttt{0.0185(9)} \ \texttt{0.0249(9)} \ \texttt{0.0033(7)} \ \texttt{0.0128(7)} \ \texttt{0.0002(7)}$ $\texttt{C25} \ \texttt{0.0479(11)} \ \texttt{0.0208(10)} \ \texttt{0.0267(9)} \ \texttt{0.0105(8)} \ \texttt{0.0095(8)} \ \texttt{0.0078(8)}$ C26 0.0341(10) 0.0293(11) 0.0327(10) 0.0125(8) 0.0046(8) 0.0136(8) C27 0.0217(8) 0.0229(9) 0.0273(9) 0.0073(7) 0.0048(7) 0.0051(7) $C28 \ 0.0148(7) \ 0.0164(8) \ 0.0203(8) \ 0.0029(6) \ 0.0033(6) \ 0.0042(6)$ $C29 \ 0.0297(9) \ 0.0222(9) \ 0.0204(8) \ 0.0046(7) \ 0.0044(7) \ 0.0001(7)$ C30 0.0403(11) 0.0288(10) 0.0185(8) 0.0020(7) 0.0038(7) 0.0009(8) C31 0.0235(8) 0.0229(9) 0.0266(9) -0.0036(7) 0.0016(7) 0.0000(7) $C32 \ 0.0171(8) \ 0.0184(9) \ 0.0308(9) \ 0.0038(7) \ 0.0064(7) \ 0.0028(6)$ C33 0.0160(7) 0.0202(9) 0.0214(8) 0.0049(7) 0.0042(6) 0.0048(6) C34 0.0204(8) 0.0174(8) 0.0181(7) 0.0054(6) 0.0061(6) 0.0054(6) C35 0.0204(8) 0.0236(9) 0.0197(8) 0.0028(7) 0.0036(6) 0.0040(7) C36 0.0213(8) 0.0306(10) 0.0279(9) 0.0071(8) 0.0102(7) 0.0064(7) C37 0.0313(9) 0.0273(10) 0.0213(8) 0.0058(7) 0.0127(7) 0.0086(8) C38 0.0289(9) 0.0277(10) 0.0173(8) 0.0002(7) 0.0049(7) 0.0037(8) $\texttt{C39} \hspace{0.1in} 0.0192(8) \hspace{0.1in} 0.0252(9) \hspace{0.1in} 0.0210(8) \hspace{0.1in} 0.0040(7) \hspace{0.1in} 0.0036(6) \hspace{0.1in} 0.0024(7)$ C40 0.0429(12) 0.0530(15) 0.0407(12) 0.0124(11) 0.0150(10) 0.0090(11) $\texttt{C41} \quad \texttt{0.0363(11)} \quad \texttt{0.0578(16)} \quad \texttt{0.0229(9)} \quad \texttt{0.0164(10)} \quad \texttt{0.0084(8)} \quad \texttt{0.0003(10)}$ _geom_special_details All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are

only

```
_geom_bond_site_symmetry_2
 _geom_bond_publ_flag
Sil N1 1.8232(14) . ?
Sil N1 1.8232(14) 2_675 ?
Sil N2 1.8292(15) 2_675 ?
Sil N2 1.8292(15) . ?
Sil N3 1.8311(14) . ?
Sil N3 1.8311(14) 2_675 ?
P1 N4 1.5854(13) . ?
P1 C16 1.7996(15) . ?
P1 C10 1.8029(16) . ?
P1 C4 1.8086(16) . ?
P2 N4 1.5868(13) . ?
P2 C28 1.8006(16) . ?
P2 C34 1.8036(15) . ?
P2 C22 1.8044(16) . ?
S1 C1 1.6070(17) . ?
S2 C2 1.608(2) . ?
S3 C3 1.6114(17) . ?
N1 C1 1.170(2) . ?
N2 C2 1.168(2) . ?
N3 C3 1.170(2) . ?
N5 C41 1.146(3) . ?
C4 C5 1.400(2) . ?
C4 C9 1.403(2) . ?
C5 C6 1.394(2) . ?
C5 H5 0.9500 . ?
C6 C7 1.386(2) . ?
C6 H6 0.9500 . ?
C7 C8 1.391(3) . ?
C7 H7 0.9500 . ?
C8 C9 1.388(2) . ?
C8 H8 0.9500 . ?
C9 H9 0.9500 . ?
C10 C15 1.397(2) . ?
C10 C11 1.402(2) . ?
C11 C12 1.390(2) . ?
C11 H11 0.9500 . ?
C12 C13 1.381(3) . ?
C12 H12 0.9500 . ?
C13 C14 1.391(3) . ?
C13 H13 0.9500 . ?
C14 C15 1.396(2) . ?
C14 H14 0.9500 . ?
C15 H15 0.9500 . ?
C16 C21 1.398(2) . ?
C16 C17 1.400(2) .
                   ?
C17 C18 1.386(2) .
                   ?
С17 Н17 0.9500 .
                 ?
C18 C19 1.392(3) . ?
C18 H18 0.9500 . ?
```

C19 C2	0 1.38	35(3)	•	?		
C19 H1	9 0.95	500.	?			
C20 C2	1 1.39	94(2)	•	?		
C20 H2	0 0.95	500 .	?			
C21 H2	1 0.95	500 .	?	_		
C22 C2	3 1.39	94(2)	•	?		
C22 C2	7 1.40)5(2)	•	?		
C23 C2	4 1.39	96(2)	•	?		
C23 H2	3 0.95	500.	?			
C24 C2	5 1.38	36(3)	•	?		
C24 H2	4 0.95	500.	?			
C25 C2	6 1.38	39(3)	•	?		
C25 H2	5 0.95	500.	?			
C26 C2	7 1.39	91(2)	•	?		
C26 H2	6 0.95	500.	?			
C27 H2	7 0.95	500.	?			
C28 C3	3 1.40	00(2)	•	?		
C28 C2	9 1.40)4(2)		?		
C29 C3	0 1.38	35(2)		?		
C29 H2	9 0.95	500 .	?			
C30 C3	1 1.38	39(3)		?		
С30 Н3	0 0.95	500 .	?			
C31 C3	2 1.38	39(2)		?		
С31 Н3	1 0.95	500.	?			
C32 C3	3 1.39	92(2)		?		
С32 Н3	2 0.95	500 .	?			
С33 Н3	3 0.95	500	?			
C34 C3	5 1 30	$\frac{38(2)}{2}$	•	ç		
C34 C3	9 1 30	99(2)	•	• ?		
	6 1 30	36(2)	•	• ?		
C35 U3	5 0 95	500	• >	•		
	7 1 20	32(2)	•	c		
	6 0 96	500	• ?	:		
	0 1 20	300.	ſ	っ		
		-00(Z)	•	f		
C37 H3	/ 0.95		?	0		
C38 C3	9 1.39	9Z(Z)	•	?		
C38 H3	8 0.95	500 .	?			
C39 H3	9 0.95	500 .	?	_		
C40 C4	1 1.45	51(3)	•	?		
C40 H4	0A 0.9	9800	. ?			
C40 H4	OB 0.9	9800	. ?			
C40 H4	OC 0.9	9800	. ?			
loop_						
_geom	_angle	e_ato	m_s	ite_la	abel_1	
_geom	_angle	e_ato	m_s	ite_la	abel_2	
_geom	_angle	e_ato	m_s	ite_la	abel_3	
_geom	_angle	2				
_geom	_angle	e_sit	e_s	ymmetr	ry_1	
_geom	_angle	e_sit	e_s	ymmetr	.y_3	
geom	_angle	pub	1_f	lag		
N1 Si1	N1 18	30.00	(9)	. 2 6	575 ?	
N1 Si1	N2 90).41(6)	. 2 67	/5 ?	
N1 Si1	N2 89	9.59(6)	2 675	2 675	?
N1 Si1	N2 89).59(6)	?		
N1 Si1	N2 90).41(6)	2 675	. ?	
N2 Si1	N2 18	30.00	(9)	2 675	5.?	
N1 Si1	N3 90).11(6)		••	
N1 Si1	N3 80	9.89/	6)	2 675	, ?	
N2 Sil	N3 80	941	2, 7)	2 675	•••	
N2 Sil	NA OL) 06(· , 7)	0,5 ?	•••	
TTC DIT	110 20	(' '	•••		

N1	ç	Si1	N	13	8	9		8	9	(6)				2		6	7	5	?		
N1	5	Si1	N	13	9	0		1	1	(6)		2		б	7	5		2_	_6	75	?
N2	ç	Si1	N	13	9	0		0	6	(7)		2		6	7	5		2_	_6	75	?
N2	0	Si1	N	13	8	9		9	4	(7)				2		6	7	5	?		
N3	0	Si1	N	13	1	8	0		0	0	(9)				2		6	75	5	?	
N4	I	> 1	C1	6	1	1	1		3	0	(7)						?				
N4	I	21	C1	0	1	0	8		5	0	(7)						?				
C1	6	р1	0	110)	1	0	7		5	à	(, 7)						?			
N4	Ĩ	>1	с4	1	1	5	Č	Ŕ	5	(7	ì	'	'		•		。 ?		•			
C1	6	р1	(14	1	0	6		5	2	(, 7)	·		·		·	?				
C1	0	р1	. c	14 14	1	0	6	•	7	5	$\tilde{(}$, 7)		•		•		。 ?				
N4	Ĩ	22	с. С.2	28	1	1	5	•	1	4	$\tilde{(}$, 7)		•		•		。 ?				
N4	ī	22	02	84	1	1	1	•	5	Å	\tilde{i}	, 7)		•		•		。 ?				
C2	8 8	. <u>.</u> 		יזע זיגע	1	1	n	8	2	g	, 5	(, 7)	•		•		•	2			
N4	Ĩ	22	רי מים)).	1	0	7	0	0	6	(` 7	ì	'		•		•	?	•			
C2	8 8	. <u>2</u> 		122	, [_]	1	'n	6	Ő	n	` ۲	(, 7)	•		•		·	2			
C2	4	D2		122	2	1	n	7	·	с 6	с 6	(, 7)		•		•		• ?			
C1	ר ז	J1	' ci	1	1	́Б	8 8	'	ว	n	1	1	ź)		•		•		• ?			
C1 C2	T T	лт 10	C i	- ⊥ 1	1	7	0 0	·	2 1	2 2	(1 1	т 5)		•		•		• ว			
C2	יד	32 33	si	1	1	' 7	5	•	1 1	2 2	(1 1	5)		•		•		• ?			
СЈ D1	T T	ч.Э лД	DC	- ⊥ > 1	13	á	5	à	т 7	2 1	à	۲ ۲	5	'		•		ว		·			
г 1 м1	-	דע 1	c1		- 7	a	·	ר ה	י 2	(1	י 5	١	•		•		·	с С				
M2		 - 7	01	 > 1	- / 7	ر م	·	л Л		(1 1	כ ר) \		•		•		・ っ				
M2		-4 72	02	2 1	י ב רי ו	a	•	т Б	7 2	(1 1	/ Q)		•		•		・ っ				
142			23	ב ג ז	L /	20	•	5	כ ר	(1 1	0 5)		•		•		י ר				
CD		-4 7/	C3	ע י ד	L エ L つ	9 0	•	0 0	/ ^	(1 1	5 2)		•		•		י ר				
C5		-4 74	Р1 п1	 1	∟⊿ ⊧1	0	•	9 1	0	(1 1	ム つ)		•		•		י ר				
09		24 75	P1	 . 1	L	9	•	4	9 1	(1	5)		•		•		? ?				
CO		- D 7 E		t _	L エ L つ	9	•	0	4	(Ŧ	Э)	2	•		•		۶				
Co		25	HC) _ · -	L 乙 L つ	0	•	1		•		•		: 2									
07		20	п: ar) _ · -	L 乙 L つ	0	•	1	c	;	1	÷	、	:					~				
07		20			L Z	0	•	т Т	0	(Ŧ	0)	2	•		•		۶				
C7		20	пс) _ ; 1	L _L 1	20	·	2 0		•		•		י ר									
C5 C6		-0 77) _) 1	L エ L つ	9 0	·	とっ	0	;	1	6	`	f					S				
CO		י - קר) _ 7 1	∟⊿ ⊧1	0	·	2 0	0	(Ŧ	0)	2	•		•		f				
00		/ _ דר		' _ , 1	L	9	•	2		•		•		: 2									
00		27	H/	′ _ , 1	LL	9	•	9	~	;	1	÷	、	?					~				
09		28		' _ 	L 乙 L つ	0	•	0	9	(T	О)	~	•		•		?				
07		28	HC	5 _ 7 7	L 乙 L つ	0	•	0		•		•		: 2									
C7		28	на	5 _ 1 7	L Z	0	•	0	4	;	1	;	、	?					~				
00		29	C4	E _	L 乙 L つ	0	•	0	4	(T	О)	~	•		•		?				
04		29	HS	/ _ / _	L 乙 L つ	0	•	0		•		•		: 2									
C4	с (-9 01	п> 0		L Z	U	•	1	0	•	F	•	,	י ר	F	`					2		
	5 5		0.0		╵	1	⊥ 1	л Т	9	ว	с 0	1	(ン ン	с \)		•		•	÷ .		
	1		0	Р 1 П	L I	1 1	т С	9 1	•	2 1	0	(⊥ 1	2)		•		•	-	5		
	т Л		.U 1	P1		Ŧ	2 1	т С	•	T	1	(7	1	2 1) 7	`	•		•	:	í n		
	⊿ ົ		1		L U 1 1		⊥ 1	2 1	0	•	т Т	1	(Ŧ	/)	S	•		•	:		
	2 0		1	н I тт 1	L		⊥ 1	⊥ 1	2	•	20		•		•		:						
	0 2		.⊥ う		L		⊥ 1	⊥ 1	2	•	20	F	;	1	c	`	:				2		
	с С		. Z		L L L A		1	т Т	2	•	2	Э	(Ŧ	0)	2	•		•	:		
CI	5	CI	. ⊿	H I	L 乙 L つ		1	2	0	•	0		•		•		?						
	т Л		.⊿ ว		L Z		⊥ 1	ム つ	0	•	c c	1	;	1	c	`	:				2		
CI	2	CI	. 3 2		14 ເວ		1	∠ 1	0	•	ю 7	T	(Т	ю)	2	•		•	?		
CL	∠ ∧	CL	. 3 າ	H]	נ∟ רו		1	1	9	•	7		•		•		?						
CL	4 つ	CI	د. ۸	H]	∟3 ⊢⊏		1	1	9	•	/	7	;	1	•	、	?				~		
CT	კ ი	CL	.4	U]	Ľ5		1	Ť	9	•	9	Т	(Т	/)	~	•		•	?		
CT	З г	CL	.4	H	L4		1	2	U C	•	0		•		•		?						
CT	כ ∧	CL	.41 Г	H C	∟4 ∟^		⊥ 1	∠ ₁	0	•	U	~	•	1	÷	`	?				~		
CL	4 ∕	CI	. כ ר	U]			1 1	т ~	9	•	7	9	(Т	ю)	~	•		•	?		
CL	4	CL	. D F	H]	נ ב ו ר		1 1	2	0	•	⊥ 1		•		•		?						
CT	U 1	CL	. כ	H C	נ∟ קו		1 1	∠ 1	0	•	т 7	0	•	1	•	`	?				<u>_</u>		
C2	Т	СТ	0	C.	L /		Т	Т	9	•	1	Q	(Т	4)		•		•	٢		

C21	C16	P1 120.59(12) ?
C17	C16	P1 119.60(12) ?
C18	C17	C16 119 91(16) ?
C1 8	C17	u_{17} 120 0 2
		H17 120.0 :
CT0	CI/	H1/ 120.0 ?
G1./	C18	C19 120.22(16) ?
C17	C18	H18 119.9 ?
C19	C18	H18 119.9 ?
C20	C19	C18 120.10(16) ?
C20	C19	H19 120 0 2
C18	C19	H19 120 0 2
C10	d 2 0	(11) 120.0
C19		
C19	C20	H20 119.9 ?
C21	C20	H20 119.9 ?
C20	C21	C16 119.72(15) ?
C20	C21	H21 120.1 ?
C16	C21	H21 120.1 ?
C23	C22	$C_{27} 120 14(15) 2$
C25	C22 000	$C_2 / 120.14(13)$
C23	CZZ	PZ 120.08(12) ?
C27	C22	P2 119.62(12) ?
C22	C23	C24 119.70(16) ?
C22	C23	H23 120.1 ?
C24	C23	H23 120.1 ?
C25	C24	C_{23} 120 08(16) 2
C25	C24	120.00(10)
CZS		$H_{24} = 120.0 \cdot \cdot \cdot \cdot \cdot$
C23	C24	H24 120.0 ?
C24	C25	C26 120.36(16) ?
C24	C25	H25 119.8 ?
C26	C25	H25 119.8 ?
C25	C26	C27 120.32(17) ?
C25	C26	H26 119 8 2
027	C20	1120 119.0
CZ/		H_{20} 119.0 :
C26	C27	C22 119.39(16) ?
C26	C27	H27 120.3 ?
C22	C27	H27 120.3 ?
C33	C28	C29 119.53(15) ?
C33	C28	P2 121.62(12) ?
C29	C28	$P_{2} = 118 = 59(12)$?
C20	C20	$C_{28} 110 01(16) 2$
C30	C29	C20 119.91(10) :
030	C29	H29 120.0 ?
C28	C29	H29 120.0 ?
C29	C30	C31 120.35(16) ?
C29	C30	НЗО 119.8 ?
C31	C30	НЗО 119.8 ?
C30	C31	C32 120.19(16) ?
C30	C31	H31 119 9 2
d 2 0	C J I	
C32	C31	H31 119.9 ?
C3T	C32	$C_{33} = 120.04(16) ?$
C31	C32	H32 120.0 ?
C33	C32	Н32 120.0 ?
C32	C33	C28 119.97(15) ?
C32	C33	НЗЗ 120.0 ?
C28	C33	H33 120 0 2
C20	021	(135) 120.00
C35	C34	(39119.09(14) ?
C35	C34	P2 122.21(12) ?
C39	C34	P2 117.91(12) ?
C36	C35	C34 119.70(15) ?
C36	C35	Н35 120.1 ?
C34	C35	H35 120.1 ?
727	CISE	$C_{35} 120 27(15)$ 2
722	026	
(31	50	пэо ттэ.э :

data_ch1ppx70_0n

```
СЗ5 СЗ6 НЗ6 119.9 .
                    . ?
C36 C37 C38 120.36(15) . . ?
C36 C37 H37 119.8 . . ?
C38 C37 H37 119.8 . . ?
C37 C38 C39 119.89(16) . . ?
C37 C38 H38 120.1 . . ?
C39 C38 H38 120.1 . . ?
C38 C39 C34 120.08(15) . . ?
C38 C39 H39 120.0 . . ?
СЗ4 СЗ9 НЗ9 120.0 . . ?
C41 C40 H40A 109.5 . . ?
C41 C40 H40B 109.5 . . ?
H40A C40 H40B 109.5 . . ?
C41 C40 H40C 109.5 . . ?
H40A C40 H40C 109.5 . . ?
H40B C40 H40C 109.5 . . ?
N5 C41 C40 179.5(3) . . ?
_diffrn_measured_fraction_theta_max
                                      0.994
_diffrn_reflns_theta_full
                                       25.00
                                     0.999
_diffrn_measured_fraction_theta_full
_refine_diff_density_max 0.641
_refine_diff_density_min -0.529
_refine_diff_density_rms
                          0.054
```

4d) Crystallographic information file for compound 4 (data_chppx70_0m)

```
_audit_creation_method
                                 SHELXL-97
_chemical_name_systematic
;
?
;
_chemical_name_common
                                ?
_chemical_melting_point
                               ?
_chemical_formula_moiety
                                'C16 H8 N6 O4 Si, C2 H3 N'
_chemical_formula_sum
'C18 H11 N7 O4 Si'
_chemical_formula_weight
                             417.43
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
 _atom_type_scat_source
 'C' 'C' 0.0033 0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'H' 'H' 0.0000 0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'N' 'N' 0.0061 0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 '0' '0' 0.0106 0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'Si' 'Si' 0.0817 0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting
                                 Orthorhombic
_symmetry_space_group_name_H-M
                                Pna2(1)
```

```
loop_
 _symmetry_equiv_pos_as_xyz
 'x, y, z'
 '-x, -y, z+1/2'
 '-x+1/2, y+1/2, z+1/2'
 'x+1/2, -y+1/2, z'
_cell_length_a
                                  6.9932(9)
_cell_length_b
                                  18.085(2)
_cell_length_c
                                  14.1246(15)
_cell_angle_alpha
                                  90.00
_cell_angle_beta
                                  90.00
_cell_angle_gamma
                                  90.00
_cell_volume
                                  1786.4(4)
_cell_formula_units_Z
                                  4
                                 120(2)
_cell_measurement_temperature
_cell_measurement_reflns_used
                                 2074
_cell_measurement_theta_min
                                  2.25
_cell_measurement_theta_max
                                  27.04
                                 sheet
_exptl_crystal_description
                                  colourless
_exptl_crystal_colour
_exptl_crystal_size_max
                                  0.28
_exptl_crystal_size_mid
                                  0.19
_exptl_crystal_size_min
                                  0.04
_exptl_crystal_density_meas
                                  2
                                 1.552
_exptl_crystal_density_diffrn
_exptl_crystal_density_method
                                  'not measured'
_exptl_crystal_F_000
                                  856
_exptl_absorpt_coefficient_mu
                                  0.177
_exptl_absorpt_correction_type
                                 multi-scan
_exptl_absorpt_correction_T_min 0.9521
_exptl_absorpt_correction_T_max
                                0.9929
_exptl_absorpt_process_details
                                  sadabs
_exptl_special_details
;
 ?
;
_diffrn_ambient_temperature
                                 120(2)
_diffrn_radiation_wavelength
                                 0.71073
diffrn radiation type
                                  MoK∖a
diffrn radiation source
                                  'fine-focus sealed tube'
_diffrn_radiation_monochromator
                                  graphite
_diffrn_measurement_device_type
                                  'CCD area detector'
_diffrn_measurement_method
                                  'omega scans'
_diffrn_detector_area_resol_mean 100
_diffrn_standards_number
                                  0
_diffrn_standards_interval_count
                                  ?
_diffrn_standards_interval_time
                                  ?
_diffrn_standards_decay_%
                                  Ω
_diffrn_reflns_number
                                  9835
_diffrn_reflns_av_R_equivalents
                                  0.0464
_diffrn_reflns_av_sigmaI/netI
                                  0.0392
_diffrn_reflns_limit_h_min
                                  -9
_diffrn_reflns_limit_h_max
                                  8
_diffrn_reflns_limit_k_min
                                  -22
_diffrn_reflns_limit_k_max
                                  23
_diffrn_reflns_limit_l_min
                                  -17
_diffrn_reflns_limit_l_max
                                  18
```

PDF created with pdfFactory Pro trial version www.pdffactory.com

_diffrn_reflns_theta_min 2.25 _diffrn_reflns_theta_max 27.50 _reflns_number_total 2129 _reflns_number_gt 1824 _reflns_threshold_expression >2siqma(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SMART' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'Bruker SHELXTL' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Bruker SHELXTL' _computing_publication_material 'Bruker SHELXTL' _refine_special_details ; Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[$s^2^{(Fo^2^)+(0.0499P)^2^+0.0291P}$] where $P = (Fo^2^+2Fc^2^)/3'$ _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens qeom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? refine ls abs structure details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack ? _refine_ls_number_reflns 2129 _refine_ls_number_parameters 273 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0467 0.0365 _refine_ls_R_factor_gt _refine_ls_wR_factor_ref 0.0862 _refine_ls_wR_factor_gt 0.0813 _refine_ls_goodness_of_fit_ref 1.028 _refine_ls_restrained_S_all 1.028 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x

_atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Sil Si 0.74497(13) 0.98308(4) 0.07612(6) 0.01996(18) Uani 1 1 d . . . Ol O 0.9965(4) 1.11185(12) -0.12840(17) 0.0396(6) Uani 1 1 d . . . 02 0 0.6724(7) 1.17369(15) 0.2283(2) 0.0936(15) Uani 1 1 d . . . O3 O 1.2098(4) 1.01558(15) 0.23571(17) 0.0377(6) Uani 1 1 d . . . 04 0 0.2697(4) 0.94817(13) -0.08445(17) 0.0368(6) Uani 1 1 d . . . N1 N 0.8277(4) 1.03364(13) -0.02370(18) 0.0261(6) Uani 1 1 d . . . N2 N 0.6936(4) 1.06010(13) 0.15093(18) 0.0265(6) Uani 1 1 d . . . N3 N 0.9848(4) 0.97105(12) 0.12362(17) 0.0231(6) Uani 1 1 d . . . N4 N 0.4999(4) 0.97998(12) 0.03167(18) 0.0248(6) Uani 1 1 d . . . N5 N 0.6607(4) 0.91359(13) 0.17638(15) 0.0193(5) Uani 1 1 d . . . N6 N 0.7874(4) 0.88855(13) 0.00752(17) 0.0201(5) Uani 1 1 d . . . N7 N 0.6940(5) 0.21322(17) -0.0030(2) 0.0422(8) Uani 1 1 d . . . C1 C 0.9120(5) 1.07256(15) -0.0746(2) 0.0249(7) Uani 1 1 d . . . C2 C 0.6841(6) 1.11665(17) 0.1879(2) 0.0383(9) Uani 1 1 d . . . C3 C 1.0938(5) 0.99370(15) 0.1811(2) 0.0233(6) Uani 1 1 d . . . C4 C 0.3881(5) 0.96417(15) -0.0272(2) 0.0233(7) Uani 1 1 d . . . C5 C 0.5927(5) 0.92958(16) 0.26193(19) 0.0239(7) Uani 1 1 d . . . H024 H 0.5770 0.9799 0.2794 0.029 Uiso 1 1 calc R . . C6 C 0.5437(5) 0.87430(16) 0.3271(2) 0.0240(7) Uani 1 1 d . . . H021 H 0.4952 0.8878 0.3875 0.029 Uiso 1 1 calc R . C7 C 0.5649(5) 0.80120(15) 0.3047(2) 0.0223(6) Uani 1 1 d . . . H022 H 0.5340 0.7638 0.3494 0.027 Uiso 1 1 calc R . C8 C 0.6338(5) 0.78258(15) 0.2136(2) 0.0206(6) Uani 1 1 d . . . C9 C 0.6535(4) 0.70856(15) 0.1787(2) 0.0217(6) Uani 1 1 d . . H020 H 0.6242 0.6681 0.2191 0.026 Uiso 1 1 calc R . . C10 C 0.7139(4) 0.69512(16) 0.0880(2) 0.0225(7) Uani 1 1 d . . . H012 H 0.7239 0.6456 0.0662 0.027 Uiso 1 1 calc R . . C11 C 0.7622(4) 0.75486(16) 0.0258(2) 0.0205(6) Uani 1 1 d . . . Cl2 C 0.8234(5) 0.74652(17) -0.0691(2) 0.0239(7) Uani 1 1 d . . . H016 H 0.8341 0.6987 -0.0965 0.029 Uiso 1 1 calc R . . C13 C 0.8671(5) 0.80845(16) -0.1210(2) 0.0250(7) Uani 1 1 d . . . H017 H 0.9106 0.8035 -0.1844 0.030 Uiso 1 1 calc R . . C14 C 0.8479(5) 0.87919(16) -0.0808(2) 0.0241(7) Uani 1 1 d . . . H027 H 0.8789 0.9214 -0.1178 0.029 Uiso 1 1 calc R . . C15 C 0.7457(4) 0.82757(15) 0.05914(19) 0.0176(6) Uani 1 1 d . . . C16 C 0.6796(4) 0.84079(15) 0.15277(19) 0.0180(6) Uani 1 1 d . . C17 C 0.7200(6) 0.3363(2) 0.0888(3) 0.0484(11) Uani 1 1 d . . . H11A H 0.8082 0.3696 0.0558 0.073 Uiso 1 1 calc R . H11B H 0.7683 0.3264 0.1527 0.073 Uiso 1 1 calc R . H11C H 0.5936 0.3594 0.0930 0.073 Uiso 1 1 calc R . C18 C 0.7053(5) 0.26764(19) 0.0371(2) 0.0308(8) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Sil 0.0279(4) 0.0139(3) 0.0180(3) 0.0003(3) 0.0003(3) -0.0001(3)

01 0.0428(16) 0.0338(13) 0.0424(13) 0.0117(11) 0.0072(12) -0.0069(12) $02 \ 0.219(5) \ 0.0284(15) \ 0.0331(14) \ -0.0080(12) \ -0.011(2) \ 0.024(2)$ $03 \ 0.0391(17) \ 0.0482(15) \ 0.0258(12) \ -0.0096(10) \ -0.0056(12) \ -$ 0.0045(12)04 0.0418(16) 0.0389(14) 0.0298(12) 0.0051(11) -0.0080(12) -0.0087(11)N1 0.0370(17) 0.0186(12) 0.0228(12) 0.0015(10) -0.0004(13) -0.0025(12)N2 0.0348(17) 0.0175(13) 0.0271(13) -0.0004(10) 0.0015(13) 0.0012(11)N3 0.0295(16) 0.0192(13) 0.0205(12) -0.0009(10) 0.0003(12) -.0021(11) $N4 \ 0.0290(16) \ 0.0216(13) \ 0.0237(12) \ 0.0014(10) \ -0.0032(13) \ 0.0035(11)$ $N5 \ 0.0231(14) \ 0.0172(11) \ 0.0175(11) \ -0.0004(9) \ 0.0002(11) \ 0.0008(10)$ N6 0.0217(15) 0.0192(12) 0.0194(11) -0.0002(9) -0.0005(10) -0.0015(10)N7 0.053(2) 0.0345(17) 0.0386(16) -0.0031(13) -0.0062(16) 0.0005(15) $C1 \ 0.0311(19) \ 0.0175(14) \ 0.0262(14) \ -0.0013(13) \ -0.0043(15)$ 0.0016(13) $C2 \ 0.074(3) \ 0.0199(16) \ 0.0208(14) \ 0.0009(13) \ -0.0028(17) \ 0.0061(16)$ C3 0.0292(18) 0.0174(13) 0.0235(14) -0.0019(11) 0.0047(14) 0.0005(13) $C4 \ 0.0299(19) \ 0.0177(14) \ 0.0222(14) \ 0.0060(12) \ 0.0042(15) \ 0.0005(13)$ $\texttt{C5} \ \texttt{0.0297(19)} \ \texttt{0.0212(14)} \ \texttt{0.0207(13)} \ \texttt{-0.0036(11)} \ \texttt{0.0004(14)} \ \texttt{0.0009(13)}$ C6 0.0269(18) 0.0263(15) 0.0189(13) 0.0000(11) 0.0016(13) -0.0006(14) $C7 \ 0.0224(17) \ 0.0219(14) \ 0.0226(13) \ 0.0018(12) \ -0.0027(13) \$ 0.0019(13) $\texttt{C8} \ \texttt{0.0200(17)} \ \texttt{0.0201(14)} \ \texttt{0.0216(14)} \ \texttt{0.0018(11)} \ \texttt{-0.0027(13)} \ \texttt{0.0007(12)}$ $C9 \quad 0.0200(17) \quad 0.0175(14) \quad 0.0276(15) \quad 0.0051(11) \quad -0.0027(13) \quad$ 0.0018(12) $C10 \ 0.0229(17) \ 0.0153(13) \ 0.0294(15) \ -0.0032(12) \ -0.0037(14)$ 0.0018(11) $C11 \ 0.0209(16) \ 0.0180(14) \ 0.0226(14) \ -0.0044(11) \ -0.0021(14)$ 0.0007(12) $C12 \quad 0.0257(17) \quad 0.0217(15) \quad 0.0242(14) \quad -0.0041(12) \quad -0.0012(14)$ 0.0039(12) $\texttt{C13} \ \texttt{0.0291(19)} \ \texttt{0.0255(16)} \ \texttt{0.0204(14)} \ \texttt{-0.0023(12)} \ \texttt{0.0016(14)}$ 0.0011(13) $C14 \ 0.0296(19) \ 0.0242(15) \ 0.0185(13) \ 0.0007(12) \ 0.0022(14) -$ 0.0016(13)C15 0.0190(14) 0.0153(13) 0.0185(15) -0.0018(9) -0.0019(12) -0.0016(12)C16 0.0182(16) 0.0176(14) 0.0182(13) -0.0013(10) -0.0030(13) 0.0004(11) $\texttt{C17} \ \texttt{0.064(3)} \ \texttt{0.0320(19)} \ \texttt{0.049(2)} \ \texttt{-0.0076(17)} \ \texttt{-0.004(2)} \ \texttt{0.0006(18)}$ $C18 \ 0.033(2) \ 0.0299(19) \ 0.0295(16) \ 0.0063(14) \ -0.0005(15) \ 0.0042(14)$ _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ;

```
loop_
```

_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
Sil Nl 1.777(3) . ?
Sil N2 1.785(3) . ?
Sil N3 1.820(3) . ?
Sil N4 1.826(3) . ?
Sil N5 1.983(2) . ?
Sil N6 1.987(3) . ?
O1 C1 1.197(4) . ?
O2 C2 1.182(4) . ?
O3 C3 1.187(4) . ?
O4 C4 1.193(4) . ?
N1 C1 1.166(4) . ?
N2 C2 1.150(4) . ?
N3 C3 1.186(4) . ?
N4 C4 1.177(4) . ?
N5 C5 1.330(3) . ?
N5 C16 1.365(3) . ?
N6 C14 1.329(4) . ?
N6 C15 1.354(4) . ?
N7 C18 1.138(4) . ?
C5 C6 1.401(4) . ?
C5 H024 0.9500 . ?
C6 C7 1.367(4) . ?
C6 H021 0.9500 . ?
C7 C8 1.415(4) . ?
C/H022/0.9500.
$C_0 C_1 C_1 C_2 C_1 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$
CO(C) = 1.433(4). :
$C_{9} = C_{10} = 1.370(4)$
$C_{10} C_{11} = 1 + 24(4)$
C10 C11 1.434(4) . :
$C10 \ H012 \ 0.9500 \ . $
C11 C12 1 414(4) 2
C12 C13 1 374(4) 2
C12 H016 0 9500 2
C13 C14 1 406(4) ?
C13 H017 0.9500 . ?
C14 H027 0.9500 . ?
C15 C16 1.421(4).
C17 C18 1.444(5) . ?
C17 H11A 0.9800 . ?
C17 H11B 0.9800 . ?
C17 H11C 0.9800 . ?
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
N1 Si1 N2 97.68(12) ?
NI Sil N3 93.09(13) ?
NZ S1I N3 93.47(12) ?
NI SII N4 92./9(13) ?

NT ()	0 1 1	NT /	0.0	22	11.	2 \		2	
ΝZ	SII	N4	92.	22	(Τ.	5)	•	• •	
N3	Si1	N4	171	. 2	1(1	11)			?
NT 1	C + 1	NE	171	6	11-	121			S
TNT	STT	U D	т / т	• 0	Ξ(-	12)	•	•	•
N2	Si1	N5	90.	68	(1)	1)		. ?	
м3	ci1	MБ	86	27	(1-	1)		2	
113	011	105	00.	27	(L /	•	•••	
N4	Sil	N5	86.	97	(1)	L)	•	. ?	
N1	Si1	NG	90.	42	(1)	1)		. ?	
	0 ± 1	270	1 1 1		$\hat{\mathbf{a}}$	1 0 \	•		~
ΝZ	SIL	N6	Τ/Ι	• 8	9(-	LZ)	•	•	?
N3	Si1	Nб	86.	52	(1)	1)		. ?	
NT/	ci1	MG	86	Q 1	11-	1 \		2	
-	SIT	110	00.	91	(1 -	L)	•	• •	
Ν5	Si1	N6	81.	22	(1())	•	. ?	
C1	N1 9	si1	164	6	(3))		2	
~~		~ ' 1	1 6 5		()	· ·	•	•	
C2	N2 3	SIL	T 6.1	.0	(3) .	•	?	
C3	N3 3	Si1	143	. 4	(2)) .		?	
a1	NT / 0	741	1 5 0	0	()	, - \		ว	
C4	114	211	TOU	.9	(5) •	•	:	
C5	N5 (C16	117	.8	(2)) .		?	
C5	N5 9	si1	128	1	(2)		2	
			120		(2		、 •	•	-
C16	N5	Sil	11	.4.	08	(±8)		?
C14	NG	C15	11	8.	1(:	3)		. ?	
<u>a</u> 1 4	NTC	0 ± 1	1 0	0	0,0	- <i>,</i>		· ·	
CI4	NO	SII	12	8.	0(4	2)	•	• •	
C15	NG	Si1	11	.3.	96	(19)		?
M1	C1	1 1	78	61	3)			2	
111	CT () <u> </u>		0 (5,	•	•	•	
N2	C2 (D2 1	78.	0(4)	•	•	?	
N3	C3 (03 1	76.	9(3)		. '	?	
NT 4	a1 (c i	4	•		Դ	
N4	C4 (J4 I	//.	6(4)	•	•	2	
Ν5	C5 (C6 1	21.	9(3)		. '	?	
ME		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11	۵	Δ		2		
112	CJ 1	1024	11		0	• •	:		
C6	C5 I	H024	11	.9.	0		?		
C7	C6 (C5 1	20.	8(3)		. '	?	
07	CEI	1001	11	۵Ì	6		ົງ		
C/	C0 1	1021	<u> </u>	٠ و	0	• •	:		
C5	C6 I	H021	11	9.	6		?		
C6	C7 (78 1	18.	5(3)		. '	?	
20			10.	, O	0,	•	•	•	
Сb	C/ 1	1022	12	υ.	8	• •	?		
C8	C7 I	H022	12	0.	8		?		
C16	C 0	07	117	2	12	<u>۱</u>		2	
CIU		C7	11/		()		•	•	
C16	C8	C9	118	.1	(3) .	•	?	
C7	C8 (29 1	24.	6(3)		. '	?	
010			101	1	12	`	•	•	
CIU	60	Co		• 1	(5)) •	•	:	
C10	C9	H02	0 1	.19	.4		• '	?	
CB	CQI	4020	11	9	4		2		
0		.1020	11		т (• •	·	_	
C9	C10	C11	12	0.	8(.	3)	•	. ?	
C9	C10	Н01	2 1	19	.6		. '	?	
C11	010		10	11	0 4	<u> </u>		° C	
CII	. CI	л по	12	ΤT	9.0		•	ŗ	
C15	C1:	1 C1	2 1	.16	.3	(3)		•	?
C15	C1	1 01	0 1	18	8	(2)			2
C10			0 1	. 10	.0	(2)	•	•	•
CT2	CI.	I CI	0 1	24	.9	(3)	•	•	2
C13	C1:	2 C1	1 1	.19	.1	(3)			?
012	C1.	о <u>п</u> о	16	1 2	0	1		2	
CID	CI.	2 ПО	TO	12	0	±.	•	ŗ	
C11	. C1:	2 HO	16	12	0.4	1.	•	?	
C12	C1	3 (11	4 1	20	2	(3)			?
010				1 7		, <i>J /</i>	•		•
CT7	CT.	5 HO	т/	ΤT	۶.٤	5.	•	?	
C14	C1	3 н0	17	11	9.8	3.		?	
ME.	C1 /	C1 2	1 0	1	71	2 \	-	, J	
TNO		CT 3		·	/(-	ן נ	•	• • •	
Nб	C14	Н02	71	.19	.1		• '	?	
C12	C1.	4 µ∩	27	11	9 -	1		2	
UTC	- CT.	~ 110			 	- ·	•	•	
NЮ	CT2	CII	12	4.	4(2	乙)	•	. ?	
Nб	C15	C16	11	5.	7(2	2)		. ?	
C1 1	C11	5 01	6 1	10	Q.	())			2
	. UI:		0 1	. ± Э	. 0	(∠)	·	•	÷
Ν5	C16	C8	123	.7	(3).		?	
N5	C16	C15	11	4.	9(:	2)		. ?	
00	010	015	1 0	•		- / - \	•	· ·	
1. N	CTD	CT2	12	ι.	4(2	4)			

C18 C17 H11A 109.5 . . ? C18 C17 H11B 109.5 . . ? H11A C17 H11B 109.5 . . ? C18 C17 H11C 109.5 . . ? H11A C17 H11C 109.5 . . ? H11B C17 H11C 109.5 . . ? N7 C18 C17 179.4(4) . . ? _diffrn_measured_fraction_theta_max 0.998 _diffrn_reflns_theta_full 25.00 _diffrn_measured_fraction_theta_full 0.998 _refine_diff_density_max 0.265 _refine_diff_density_min -0.187 _refine_diff_density_rms 0.051

6) Variable temperature NMR spectra of compound 3

¹H NMR spectra were recorded of a solution of compound **3** in acetonitrile- d^3 , c = 0.021(+/-0.006) mol dm⁻³. The thermodynamic equilibrium constants were calculated from the ratios of integrated peaks arising from **3** and bpy. The following data was obtained:

Exp. No	T [°C]	thermodynamic equilibrium constant
		A
1	20.6	6.17×10 ⁻⁴
2	54.9	4.26×10^{-3}
3	43.7	2.33×10^{-3}
4	34.5	1.46×10^{-3}
5	25.35	7.90×10^{-4}

The standard enthalpy (ΔH°) , entropy (ΔS°) and free energy (ΔG°) of the equilibrium reaction, Si(NCO)₄(bpy) \leftrightarrow Si(NCO)₄ + bpy, were obtained from the slope and intercept of a van't Hoff plot, $\Delta H^{\circ} = +45$ kJ mol⁻¹, $\Delta S^{\circ} = +93$ J mol⁻¹ K⁻¹, $\Delta G^{\circ} = +18$ kJ mol⁻¹ ($c_0 = 1$ mol dm⁻³). This results in $K' = 7.9 \times 10^{-3}$ mol dm⁻³ at 298 K and the complex stability constant pK = 3 for Si(NCO)₄(bpy), **3**.