Electronic Supplementary Information

Novel Re(I) dendrimers: synthesis, characterization and theoretical studies

Zhenjun Si^{a, b}, Xiaona Li^a, Xiyan Li^a, Guohai Xu^a, Zhiyong Guo^a, Hongjie Zhang^{*,a}, and Liang Zhou^a

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China. Fax: +86 43185698041; Tel: 86 431 85262127; E-mail: hongjie@ciac.jl.cn (H.-J. Zhang) ^b School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China. Fax: +86 43185583015; Tel: +86 43185583016; E-mail: sizj168@126.com (Zhenjun Si)

Table S1. Selected bond lengths (Å) and angles (deg) for P1 and P2.

	P1		P2	
	Experimental	Theoretical	Experimenta	lTheoretical
C(1)-Re(1)	1.881(7)	1.914	1.981(8)	1.914
C(2)-Re(1)	1.909(6)	1.925	1.921(7)	1.925
C(3)-Re(1)	1.927(7)	1.925	1.933(8)	1.925
N(1)-Re(1)	2.182(4)	2.186	2.161(5)	2.186
N(2)-Re(1)	2.175(5)	2.186	2.177(5)	2.186
Br(1)-Re(1)	2.6246(7)	2.677	2.6285(7)	2.677
O(1)-C(1)-Re(1)	176.9(5)	179.7	174.4(7)	179.8
O(2)-C(2)-Re(1)	178.3(6)	177.2	178.6(6)	177.2
O(3)-C(3)-Re(1)	177.2(6)	177.3	175.5(6)	177.3
C(13)-N(2)-Re(1)	126.3(4)	125.8	126.7(4)	125.8
C(12)-N(2)-Re(1)	114.8(4)	115.2	115.2(4)	115.2
C(5)-N(1)-Re(1)	125.7(4)	125.4	126.6(4)	125.4
C(4)-N(1)-Re(1)	115.8(4)	115.3	115.3(4)	115.3
C(1)-Re(1)-C(2)	89.8(3)	92.1	88.4(3)	92.2
C(1)-Re(1)-C(3)	88.9(3)	92.2	90.4(3)	92.1
C(2)-Re(1)-C(3)	87.5(3)	90.7	89.8(3)	90.7
C(1)-Re(1)-N(1)	94.5(2)	93.5	90.2(2)	93.4
C(2)-Re(1)-N(1)	98.5(2)	96.6	98.6(2)	96.5
C(3)-Re(1)-N(1)	173.1(2)	170.6	171.5(2)	170.7
C(1)-Re(1)-N(2)	95.6(2)	93.4	96.9(2)	93.4
C(2)-Re(1)-N(2)	172.3(2)	170.7	172.2(2)	170.6
C(3)-Re(1)-N(2)	98.1(2)	96.6	95.8(2)	96.6
N(1)-Re(1)-N(2)	75.64(17)	75.62	75.75(19)	75.62
C(1)-Re(1)-Br(1)	178.5(2)	177.0	169.94(18)	177.02
C(2)-Re(1)-Br(1)	89.8(2)	89.8	87.6(2)	89.9
C(3)-Re(1)-Br(1)	92.51(18)	90.1	98.8(2)	90.0
N(1)-Re(1)-Br(1)	84.15(13)	83.93	81.28(13)	84.19
N(2)-Re(1)-Br(1)	84.59(12)	84.34	86.25(13)	84.27

This journal is © The Royal Society of Chemistry 2009

	P1						P2					
Orbital	E (eV)	Bond type	Contribution (%)			$E(\mathbf{a}V)$	Dand tyma	Contribution (%)				
			Re	CO	Br	L1	E (ev)	вопа туре	Re	CO	Br	L2
LUMO+3	-1.06	π* (L)				72.3L′ 22.5R1	-1.03	$\pi^*(L)$				93.3L′
LUMO+2	-2.01	$\pi^*(L)$				93.1L′	-1.96	$\pi^*(L)$				97.8L′
LUMO+1	-2.52	$\pi^*(L)$				97.5L′	-2.49	$\pi^*(L)$				98.9L′
LUMO	-2.78	$\pi^*(L)$				90.4L′	-2.76	$\pi^*(L)$				90.4L′
HOMO-LUMO gap	2.73						2.73					
НОМО	-5.51	d(Re) π(CO) π(Br)	$11.4 d_{z^2}$ 5.1 d _{yz} 3.4 d _{x^2-y^2}	14.4	57.2		-5.49	d(Re) π(CO) π(Br)	$16.9 d_{z^2} \\ 1.1 d_{yz} \\ 4.4 d_{x^2 - y^2}$	14.4	57.2	
HOMO-1	-5.55	$d(Re) \pi(CO) \pi(Br)$	$13.9 d_{xz}$ $3.6 d_{xy}$	11.1	59.6		-5.53	$d(Re) \pi(CO) \pi(Br)$	$8.8 d_{xz}$ $5.5 d_{xy}$	10.8	58.0	
НОМО-2	-5.78	π (L)				19.8L' 79.5 R1	-5.59	π (L)				65.4L′ 30.7R2
HOMO-3	-6.19	π (L)				99.5R1	-6.01	π (L)				96.6L′

Table S2. Frontier molecular orbital compositions (%) in the ground state for P1 and P2 at B3LYP/LANL2DZ level

This journal is © The Royal Society of Chemistry 2009

		D1						D2				
Orbital	E (eV)	Bond type	Contribution (%)				E (aV)	Bond type -	Contribution (%)			
			Re	CO	Br	L3		Bollu type	Re	CO	Br	L4
LUMO+3	-1.49	$\pi^*(L)$				97.6R3	-1.42	π* (L)				97.6R4
LUMO+2	-2.15	$\pi^*(L)$				92.5L′	-2.13	$\pi^*(L)$				92.6L′
LUMO+1	-2.623	$\pi^*(L)$				96.8L′	-2.61	$\pi^*(L)$				96.9L′
LUMO	-2.87	$\pi^*(L)$				90.4L′	-2.85	$\pi^*(L)$				90.4L′
HOMO-LUMO gap	2.55						2.38					
HOMO	-5.42	π (L)				97.2R3	-5.23	$\pi(L)$				97.7R4
HOMO-1	-5.54	π (L)				99.8R3	-5.34	$\pi(L)$				99.8R4
		d(Re)	$13.7 d_{2}$					d(Re)	$16.2 d_{2}$			
HOMO-2	-5.58	$\pi(CO)$	47d	14.9	55.9		-5.56	$\pi(CO)$	48d	14.9	55.9	
		$\pi(Br)$	$x^2 - y^2$					$\pi(Br)$	$x^{2}-y^{2}$			
		d(Re)	$8.9 d_{xz}$		• •• •			d(Re)	$6.3 d_{xz}$		•••	
HOMO-3	-5.62	$\pi(CO)$	6.6 <i>d</i>	6 <i>d</i> 11.5	58.6	-5.60	$\pi(CO)$ 11.6 d	11.5	58.6			
		$\pi(Br)$	x = x + xy					$\pi(Br)$	xy			

 Table S3. Frontier molecular orbital compositions (%) in the ground state for D1 and D2 at B3LYP/LANL2DZ level

Table S4. Selected triplet-absorption parameters of P1, P2, D1, and D2 in

Complex	State	Transition	$\lambda(nm) / E(eV)$	Assignment
P1	T_1	H→L	507/2.44	$d \rightarrow \pi^* / \pi \rightarrow \pi^*$
	T_2	H-1→L	501/2.47	$d \rightarrow \pi^* / \pi \rightarrow \pi^*$
	T_3	H-1→L	485/2.56	$d \rightarrow \pi^* / \pi \rightarrow \pi^*$
	T_4	H-2→L	476/2.60	$\pi \rightarrow \pi^*$
	T_5	$H\rightarrow L+2$	430/2.88	$d \rightarrow \pi^* / \pi \rightarrow \pi^*$
P2	T_1	H→L	521/2,38	$d \rightarrow \pi^* / \pi \rightarrow \pi^*$
	T_2	H-2→L	504/2.46	$\pi { ightarrow} \pi^*$
	T_3	H-2→L	489/2.54	$\pi { ightarrow} \pi^*$
	T_4	H-1→L	483/2.57	$d \rightarrow \pi^* / \pi \rightarrow \pi^*$
	T_5	$H\rightarrow L+2$	435/2.85	$d \rightarrow \pi^* / \pi \rightarrow \pi^*$
D1	T_1	H→L	517/2.40	$\pi { ightarrow} \pi^*$
	T_2	H - 4→L	502/2.47	$\pi { ightarrow} \pi^*$
	T_3	H-5→L	493/2.51	$\pi \rightarrow \pi^*$
	T_4	$H \rightarrow L+1$	480/2.58	$\pi \rightarrow \pi^*$
	T_5	H-1→L	473/2.62	$\pi \rightarrow \pi^*$
D2	T_1	H→L	543/2.28	$\pi \rightarrow \pi^*$
	T_2	H-1→L	504/2.46	$\pi \rightarrow \pi^*$
	T_3	H-5→L	503/2.46	$\pi \rightarrow \pi^*$
	T_4	H - 6→L	496/2.50	$\pi \rightarrow \pi^*$
	T ₅	H→L+1	489/2.54	$\pi \rightarrow \pi^*$

CH₂Cl₂ according to TDDFT (LANL2DZ) calculations

Fig. S1. Absorption spectra of L1 - L4 in CH_2Cl_2 .

Fig. S2. Electron density plots of the frontier orbitals for P1.

Fig. S3. Electron density plots of the frontier orbitals for P2.

Fig. S4. Electron density plots of the frontier orbitals for D1.

