Mono-alkylated bisphosphines as dopants for ESI-MS analysis of catalytic reactions

Danielle M. Chisholm,^a Allen G. Oliver^b and J. Scott McIndoe^{*a}

- a. Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6,
 Canada. E-mail: <u>mcindoe@uvic.ca</u>.
- b. Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA.

Figure SI1. MS/MS of $[RhCl(PPh_3)(\mathbf{4}^+)_2]^+$. Loss of PPh₃ (586 m/z) and loss of $\mathbf{4}^+$ (generating two charged fragments, $\mathbf{4}^+$ at 517 *m*/z and $[RhCl(PPh_3)(\mathbf{4}^+)]^+$ at 917 *m*/z) are competitive; while $\mathbf{4}^+$ is a better ligand, it experiences Coloumbic repulsion from the other charged ligand and is therefore eliminated more easily).

Figure SI2. Positive-ion ESI-MS of RhCl(PPh₃)₃ + $\mathbf{4}^{+}$ BF₄⁻ in H₂-saturated chlorobenzene at a cone voltage of 10 V.

Figure SI3. MS/MS of $[RhCl(PPh_3)(\mathbf{4}^+)(C_4H_8)]^+$. Only a small proportion of the product ions involve loss of C_4H_8 ; the predominant fragmentation pathway is loss of PPh₃ then $\mathbf{4}^+$.

Figure SI4. Variation in total ion current (TIC) with cone voltage for the positive-ion ESI-MS of RhCl(PPh₃)₃ + $\mathbf{4}^+$ BF₄⁻ in chlorobenzene. Note the linear response of TIC with voltage. Data were collected for 20 s at each value of cone voltage up to 43 V.

Figure SI5. MS/MS of $[Rh_2Cl_2(PPh_3)_3(\mathbf{4}^*)]^*$. Neither loss of PPh₃ or loss of $\mathbf{4}^*$ is observed; instead, the dimer cleaves in two symmetrically.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009 X-ray Structure Report for [Ph₂P(CH₂)₄PPh₂CH₂Ph]⁺ [PF₆]⁻ (4⁺ PF₆⁻)

The compound crystallizes as colourless block-like crystals. There are four molecules of the phosphine cation and associated PF_6 anion in the unit cell of the primitive, acentric, orthorhombic space group $P2_12_12_1$. This is a chiral space group. The correct enantiomorph of the space group was determined by comparison of intesities of Friedel pairs of reflections. This resulted in an absolute structure parameter of 0.2 (Flack parameter). This vale is indicative of racemic twinning. A racemic twin law was applied to the refined structure.

CRYSTAL SUMMARY

Crystal data for $C_{35}H_{35}F_6P_3$; $M_r = 662.54$; orthorhombic; space group $P2_12_12_1$; a = 10.1738(4) Å; b = 15.8803(7) Å; c = 19.7059(8) Å; $a = 90^{\circ}$; $\beta = 90^{\circ}$; $\gamma = 90^{\circ}$; V = 3183.7(2) Å³; Z = 4; T = 100(2) K; λ (Mo-K α) = 0.71073 Å; μ (Mo-K α) = 0.247 mm⁻¹; $d_{calc} = 1.382g.cm^{-3}$; 24326 reflections collected; 6483 unique ($R_{int} = 0.0470$); giving $R_1 = 0.0426$, w $R_2 = 0.0937$ for 5506 data with [I>2 σ (I)] and $R_1 = 0.0546$, w $R_2 = 0.1004$ for all 6483 data. Residual electron density (e⁻.Å⁻³) max/min: 0.407/-0.303.

An arbitrary sphere of data were collected on a colourless block-like crystal, having approximate dimensions of $0.20 \times 0.18 \times 0.15$ mm, on a Bruker APEX-II diffractometer using a combination of ω -and φ -scans of 0.3° . Data were corrected for absorption and polarization effects and analyzed for space group determination. The structure was solved by direct methods and expanded routinely. The model was refined by full-matrix least-squares analysis of F² against all reflections. All non-hydrogen atoms were refined with anisotropic thermal displacement parameters. Unless otherwise noted, hydrogen atoms were included in calculated positions. Thermal parameters for the hydrogens were tied to the isotropic thermal parameter of the atom to which they are bonded (1.2 ×).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009 **Table 1. Crystal data and structure refinement**

Empirical formula	C35 H35 F6 P3
Formula weight	662.54
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P212121
Unit cell dimensions	$a = 10.1738(4) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 15.8803(7) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 19.7059(8) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	$3183.7(2) \text{ Å}^3$
Ζ	4
Density (calculated)	1.382 g.cm ⁻³
Absorption coefficient (μ)	0.247 mm ⁻¹
F(000)	1376
Crystal size	$0.20 \times 0.18 \times 0.15 \text{ mm}^3$
ω range for data collection	1.65 to 26.46°
Index ranges	$-12 \le h \le 12, -17 \le k \le 19, -24 \le l \le 24$
Reflections collected	24326
Independent reflections	$6483 [R_{int} = 0.0470]$
Completeness to $\theta = 26.46^{\circ}$	99.4 %
Absorption correction	numerical
Max. and min. transmission	1.0000 and 0.8915
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6483 / 0 / 398
Goodness-of-fit on F^2	1.032
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0426$, $wR_2 = 0.0937$
R indices (all data)	$R_1 = 0.0546$, $wR_2 = 0.1004$
Absolute structure parameter	0.20(8)
Largest diff. peak and hole	0.407 and -0.303 e ⁻ .Å ⁻³

Table 2.	Atomic coordinates an	d equivalent isotrop	ic displacement parameters ((Å ²).
U(eq) is d	efined as one third of	the trace of the ortho	ogonalized U _{ij} tensor.	

	Х	У	Z	U(eq)
P(1)	0.43911(6)	-0.07444(4)	0.39599(4)	0.020(1)
P(2)	0.66646(7)	0.20173(5)	0.63754(4)	0.026(1)
C(1)	0.4454(3)	0.02584(17)	0.43879(13)	0.022(1)
C(2)	0.5707(3)	0.03763(19)	0.48077(14)	0.026(1)
C(3)	0.5564(3)	0.10887(18)	0.53208(14)	0.025(1)
C(4)	0.6895(3)	0.13399(19)	0.56284(14)	0.028(1)
C(11)	0.3929(3)	-0.15446(18)	0.45708(14)	0.025(1)
C(12)	0.2707(3)	-0.13429(17)	0.49698(13)	0.023(1)
C(13)	0.2820(3)	-0.09898(19)	0.56205(14)	0.027(1)
C(14)	0.1726(3)	-0.0832(2)	0.60072(15)	0.032(1)
C(15)	0.0482(3)	-0.1022(2)	0.57601(16)	0.034(1)
C(16)	0.0354(3)	-0.13650(18)	0.51111(16)	0.030(1)
C(17)	0.1460(3)	-0.15234(18)	0.47206(14)	0.027(1)
C(21)	0.5979(2)	-0.10213(17)	0.36331(14)	0.022(1)
C(22)	0.6514(3)	-0.05444(17)	0.31082(14)	0.025(1)
C(23)	0.7763(3)	-0.07162(19)	0.28731(15)	0.029(1)
C(24)	0.8481(3)	-0.13674(18)	0.31585(14)	0.028(1)
C(25)	0.7961(3)	-0.18406(19)	0.36758(15)	0.029(1)
C(26)	0.6703(3)	-0.16720(18)	0.39145(15)	0.027(1)
C(31)	0.3230(3)	-0.06791(17)	0.32780(13)	0.022(1)
C(32)	0.2263(3)	-0.00573(19)	0.32792(15)	0.028(1)
C(33)	0.1358(3)	-0.00202(19)	0.27488(15)	0.029(1)
C(34)	0.1414(3)	-0.05962(19)	0.22335(14)	0.029(1)
C(35)	0.2363(3)	-0.1208(2)	0.22326(16)	0.035(1)
C(36)	0.3289(3)	-0.12475(18)	0.27529(14)	0.030(1)
C(41)	0.5902(3)	0.29445(18)	0.59840(15)	0.026(1)
C(42)	0.4751(3)	0.3245(2)	0.62749(16)	0.033(1)
C(43)	0.4120(3)	0.3950(2)	0.60161(17)	0.038(1)
C(44)	0.4617(3)	0.4359(2)	0.54664(19)	0.041(1)
C(45)	0.5777(3)	0.4062(2)	0.51604(16)	0.036(1)
C(46)	0.6406(3)	0.33610(19)	0.54203(14)	0.028(1)
C(51)	0.8318(3)	0.24425(17)	0.65345(14)	0.024(1)

C(52)	0.9404(3)	0.23186(18)	0.61195(15)	0.028(1)
C(53)	1.0627(3)	0.26680(18)	0.62861(15)	0.029(1)
C(54)	1.0765(3)	0.31335(18)	0.68701(15)	0.029(1)
C(55)	0.9689(3)	0.32657(19)	0.72902(14)	0.028(1)
C(56)	0.8482(3)	0.29167(18)	0.71258(14)	0.029(1)
P(3)	0.82858(7)	0.12914(5)	0.14822(4)	0.025(1)
F(1)	0.92418(17)	0.04997(11)	0.14040(9)	0.041(1)
F(2)	0.73054(18)	0.20635(12)	0.15520(10)	0.047(1)
F(3)	0.8681(2)	0.13496(15)	0.22559(10)	0.066(1)
F(4)	0.7859(2)	0.12172(15)	0.07099(9)	0.060(1)
F(5)	0.71247(18)	0.06754(13)	0.16917(11)	0.056(1)
F(6)	0.94375(19)	0.18987(13)	0.12776(15)	0.078(1)
H(1A)	0.4399	0.0714	0.4046	0.027
H(1B)	0.3682	0.0309	0.4691	0.027
H(2A)	0.5909	-0.0154	0.5051	0.031
H(2B)	0.6451	0.0501	0.4500	0.031
H(3A)	0.4963	0.0909	0.5689	0.030
H(3B)	0.5168	0.1584	0.5095	0.030
H(4A)	0.7422	0.1643	0.5284	0.033
H(4B)	0.7383	0.0827	0.5762	0.033
H(11A)	0.3792	-0.2083	0.4327	0.030
H(11B)	0.4666	-0.1627	0.4892	0.030
H(13A)	0.3666	-0.0859	0.5795	0.033
H(14A)	0.1820	-0.0591	0.6446	0.039
H(15A)	-0.0275	-0.0921	0.6031	0.041
H(16A)	-0.0494	-0.1490	0.4936	0.036
H(17A)	0.1366	-0.1757	0.4279	0.032
H(22A)	0.6018	-0.0100	0.2912	0.030
H(23A)	0.8129	-0.0389	0.2517	0.035
H(24A)	0.9340	-0.1487	0.2995	0.033
H(25A)	0.8461	-0.2284	0.3871	0.035
H(26A)	0.6340	-0.2003	0.4270	0.033
H(32A)	0.2221	0.0339	0.3640	0.033
H(33A)	0.0703	0.0406	0.2745	0.035
H(34A)	0.0792	-0.0572	0.1875	0.034
H(35A)	0.2391	-0.1609	0.1875	0.042
H(36A)	0.3957	-0.1665	0.2745	0.035

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2009

0 4390	0 2964	0.6657	0.040
0.4370	0.2704	0.0057	0.040
0.3336	0.4148	0.6224	0.046
0.4183	0.4842	0.5291	0.049
0.6129	0.4343	0.4775	0.043
0.7189	0.3162	0.5212	0.034
0.9318	0.1993	0.5718	0.034
1.1360	0.2583	0.5996	0.034
1.1597	0.3365	0.6986	0.035
0.9780	0.3595	0.7690	0.034
0.7754	0.3001	0.7420	0.035
	0.4390 0.3336 0.4183 0.6129 0.7189 0.9318 1.1360 1.1597 0.9780 0.7754	0.43900.29640.33360.41480.41830.48420.61290.43430.71890.31620.93180.19931.13600.25831.15970.33650.97800.35950.77540.3001	0.43900.29640.66570.33360.41480.62240.41830.48420.52910.61290.43430.47750.71890.31620.52120.93180.19930.57181.13600.25830.59961.15970.33650.69860.97800.35950.76900.77540.30010.7420

Table 3. Anisotropic displacement parameters $(\text{\AA})^2$ for agojsm3. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
P(1)	0.0185(3)	0.0203(4)	0.0213(3)	0.0000(3)	-0.0007(3)	0.0002(3)
P(2)	0.0271(4)	0.0289(4)	0.0230(4)	-0.0012(3)	-0.0013(3)	-0.0043(3)
C(1)	0.0225(13)	0.0210(15)	0.0227(14)	0.0010(12)	-0.0001(11)	-0.0023(11)
C(2)	0.0259(14)	0.0235(15)	0.0275(15)	-0.0021(12)	-0.0040(12)	-0.0023(12)
C(3)	0.0275(14)	0.0226(16)	0.0248(14)	-0.0028(12)	-0.0021(12)	-0.0017(12)
C(4)	0.0324(16)	0.0226(16)	0.0286(15)	-0.0021(13)	-0.0052(12)	0.0004(12)
C(11)	0.0266(15)	0.0217(16)	0.0260(15)	0.0022(13)	-0.0007(12)	0.0006(11)
C(12)	0.0222(13)	0.0220(16)	0.0234(15)	0.0058(13)	0.0001(11)	-0.0017(11)
C(13)	0.0189(13)	0.0343(18)	0.0292(16)	0.0025(13)	-0.0037(11)	-0.0045(12)
C(14)	0.0320(15)	0.0414(19)	0.0235(15)	0.0009(14)	0.0050(13)	-0.0022(14)
C(15)	0.0250(15)	0.042(2)	0.0358(17)	0.0067(15)	0.0078(13)	0.0004(13)
C(16)	0.0211(14)	0.0273(17)	0.0413(17)	0.0072(15)	-0.0032(12)	-0.0044(12)
C(17)	0.0268(15)	0.0249(16)	0.0290(15)	0.0008(12)	-0.0022(12)	-0.0042(12)
C(21)	0.0184(12)	0.0243(15)	0.0234(14)	-0.0052(12)	-0.0008(11)	0.0003(10)
C(22)	0.0278(14)	0.0196(15)	0.0279(14)	0.0019(12)	-0.0024(12)	0.0039(12)
C(23)	0.0292(14)	0.0282(17)	0.0302(16)	0.0031(14)	0.0065(12)	-0.0025(13)
C(24)	0.0224(14)	0.0285(17)	0.0319(15)	-0.0049(13)	0.0013(12)	0.0008(12)
C(25)	0.0234(14)	0.0298(17)	0.0349(17)	0.0016(14)	-0.0040(12)	0.0064(11)
C(26)	0.0252(14)	0.0273(16)	0.0295(15)	0.0054(13)	-0.0002(13)	0.0010(12)
C(31)	0.0219(13)	0.0222(15)	0.0206(13)	0.0011(12)	-0.0016(11)	-0.0026(11)
C(32)	0.0254(14)	0.0267(17)	0.0311(16)	-0.0090(13)	-0.0028(12)	0.0061(12)
C(33)	0.0221(14)	0.0309(16)	0.0345(17)	-0.0017(14)	-0.0058(12)	0.0080(12)
C(34)	0.0216(14)	0.0376(19)	0.0268(15)	-0.0001(13)	-0.0031(11)	-0.0008(12)
C(35)	0.0358(17)	0.0336(19)	0.0364(17)	-0.0119(15)	-0.0086(14)	0.0065(14)
C(36)	0.0276(14)	0.0278(17)	0.0333(16)	-0.0041(14)	-0.0061(13)	0.0090(13)
C(41)	0.0288(15)	0.0211(15)	0.0290(16)	-0.0048(13)	-0.0056(12)	-0.0053(12)
C(42)	0.0289(15)	0.039(2)	0.0324(17)	-0.0053(14)	0.0003(12)	-0.0054(13)
C(43)	0.0261(15)	0.040(2)	0.049(2)	-0.0116(17)	0.0017(15)	0.0028(13)
C(44)	0.0306(17)	0.0260(18)	0.066(2)	-0.0025(17)	-0.0163(16)	0.0013(13)
C(45)	0.0376(17)	0.0295(18)	0.0404(18)	0.0034(15)	-0.0087(14)	-0.0090(14)
C(46)	0.0276(15)	0.0285(17)	0.0292(15)	-0.0063(13)	-0.0021(12)	-0.0024(13)
C(51)	0.0251(14)	0.0213(15)	0.0269(15)	0.0019(12)	-0.0065(12)	-0.0047(12)

C(52)	0.0279(14)	0.0313(17)	0.0259(15)	0.0000(13)	-0.0038(13)	0.0025(12)
C(53)	0.0257(14)	0.0289(17)	0.0315(16)	0.0032(13)	-0.0002(12)	0.0021(12)
C(54)	0.0296(15)	0.0273(17)	0.0309(16)	0.0051(14)	-0.0082(13)	-0.0030(13)
C(55)	0.0358(17)	0.0287(17)	0.0199(14)	-0.0028(13)	-0.0051(12)	-0.0009(13)
C(56)	0.0328(16)	0.0290(17)	0.0256(15)	0.0011(13)	0.0005(12)	-0.0021(13)
P(3)	0.0211(3)	0.0281(4)	0.0273(4)	0.0017(3)	0.0012(3)	0.0047(3)
F(1)	0.0370(9)	0.0386(11)	0.0470(11)	0.0071(9)	0.0047(9)	0.0155(8)
F(2)	0.0410(10)	0.0407(12)	0.0604(13)	0.0013(10)	0.0081(10)	0.0214(9)
F(3)	0.0737(15)	0.0814(17)	0.0416(12)	-0.0196(12)	-0.0205(11)	0.0295(13)
F(4)	0.0697(14)	0.0835(17)	0.0267(10)	-0.0036(11)	-0.0049(9)	0.0382(12)
F(5)	0.0286(10)	0.0552(13)	0.0847(16)	0.0323(12)	-0.0052(10)	-0.0042(9)
F(6)	0.0300(11)	0.0471(13)	0.156(3)	0.0421(15)	0.0092(13)	-0.0025(9)

Table 4. Bond lengths [Å].

atom-atom	distance	atom-atom	distance	
P(1)-C(31)	1.792(3)	P(1)-C(21)	1.794(3)	P(1)-
C(1)	1.803(3)	P(1)-C(11)	1.813(3)	P(2)-
C(41)	1.834(3)	P(2)-C(4)	1.838(3)	P(2)-
C(51)	1.840(3)	C(1)-C(2)	1.531(4)	C(2)-
C(3)	1.524(4)	C(3)-C(4)	1.536(4)	C(11)-
C(12)	1.506(4)	C(12)-C(17)	1.390(4)	C(12)-
C(13)	1.404(4)	C(13)-C(14)	1.372(4)	C(14)-
C(15)	1.389(4)	C(15)-C(16)	1.396(4)	C(16)-
C(17)	1.387(4)	C(21)-C(26)	1.384(4)	C(21)-
C(22)	1.393(4)	C(22)-C(23)	1.380(4)	C(23)-
C(24)	1.386(4)	C(24)-C(25)	1.373(4)	C(25)-
C(26)	1.390(4)	C(31)-C(36)	1.374(4)	C(31)-
C(32)	1.394(4)	C(32)-C(33)	1.394(4)	C(33)-
C(34)	1.368(4)	C(34)-C(35)	1.370(4)	C(35)-
C(36)	1.393(4)	C(41)-C(42)	1.389(4)	C(41)-
C(46)	1.391(4)	C(42)-C(43)	1.387(4)	C(43)-
C(44)	1.361(5)	C(44)-C(45)	1.408(5)	C(45)-
C(46)	1.382(4)	C(51)-C(52)	1.389(4)	C(51)-
C(56)	1.397(4)	C(52)-C(53)	1.401(4)	C(53)-
C(54)	1.375(4)	C(54)-C(55)	1.389(4)	C(55)-
C(56)	1.386(4)	P(3)-F(6)	1.570(2)	P(3)-
F(3)	1.579(2)	P(3)-F(2)	1.5866(18)	P(3)-
F(4)	1.5871(19)	P(3)-F(5)	1.5883(19)	P(3)-
F(1)	1.5969(18)	C(1)-H(1A)	0.9900	C(1)-
H(1B)	0.9900	C(2)-H(2A)	0.9900	C(2)-
H(2B)	0.9900	C(3)-H(3A)	0.9900	C(3)-
H(3B)	0.9900	C(4)-H(4A)	0.9900	C(4)-
H(4B)	0.9900	C(11)-H(11A)	0.9900	C(11)-
H(11B)	0.9900	C(13)-H(13A)	0.9500	C(14)-
H(14A)	0.9500	C(15)-H(15A)	0.9500	C(16)-
H(16A)	0.9500	C(17)-H(17A)	0.9500	C(22)-
H(22A)	0.9500	C(23)-H(23A)	0.9500	C(24)-
H(24A)	0.9500	C(25)-H(25A)	0.9500	C(26)-
H(26A)	0.9500	C(32)-H(32A)	0.9500	C(33)-
H(33A)	0.9500	C(34)-H(34A)	0.9500	C(35)-
H(35A)	0.9500	C(36)-H(36A)	0.9500	C(42)-
H(42A)	0.9500	C(43)-H(43A)	0.9500	C(44)-
H(44A)	0.9500	C(45)-H(45A)	0.9500	C(46)-
H(46A)	0.9500	C(52)-H(52A)	0.9500	C(53)-
H(53A)	0.9500	C(54)-H(54A)	0.9500	C(55)-
H(55A)	0.9500	C(56)-H(56A)	0.9500	

Table 5.Bond angles [°].

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	atom-atom-atom	angle	atom-atom-atom	angle	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)-P(1)-C(21)	109 80(12)	C(31)-P(1)-C(1)	108 86(13)	C(21)-
$\begin{array}{cccccc} P(1) & 107.47(13) & C(1)-P(1)-C(11) & 108.53(13) & C(4)-\\ P(2)-C(51) & 103.58(13) & C(4)-P(2)-C(51) & 99.43(13) & C(4)-\\ P(2)-C(51) & 103.58(13) & C(2)-C(1)-P(1) & 112.99(19) & C(3)-\\ C(2)-C(1) & 111.7(2) & C(2)-C(3)-C(4) & 111.7(2) & C(3)-\\ C(4)-P(2) & 110.84(19) & C(12)-C(11)-P(1) & 114.3(2) & C(17)-\\ C(12)-C(13) & 118.7(2) & C(17)-C(12)-C(11) & 121.7(2) & C(13)-\\ C(12)-C(11) & 119.6(2) & C(14)-C(13)-C(12) & 120.9(3) & C(13)-\\ C(14)-C(15) & 120.3(3) & C(14)-C(15)-C(16) & 119.4(3) & C(17)-\\ C(16)-C(15) & 120.3(3) & C(14)-C(15)-C(16) & 119.4(3) & C(17)-\\ C(16)-C(15) & 120.2(3) & C(16)-C(17)-C(12) & 120.5(3) & C(26)-\\ C(21)-C(22) & 119.7(2) & C(26)-C(22)-C(21) & 120.1(3) & C(22)-\\ C(23)-C(24) & 119.8(3) & C(25)-C(24)-C(23) & 120.4(3) & C(24)-\\ C(25)-C(26) & 120.1(3) & C(21)-C(26)-C(25) & 119.9(3) & C(36)-\\ C(31)-C(32) & 119.8(2) & C(33)-C(34)-C(35) & 119.9(3) & C(34)-\\ C(33)-C(32) & 119.8(2) & C(33)-C(34)-C(35) & 119.9(3) & C(34)-\\ C(35)-C(36) & 120.5(3) & C(31)-C(36)-C(35) & 119.7(3) & C(42)-\\ C(41)-P(2) & 124.2(2) & C(43)-C(44)-P(2) & 117.3(2) & C(46)-\\ C(41)-C(46) & 118.5(3) & C(42)-C(41) & 120.1(3) & C(42)-\\ C(41)-C(46) & 118.5(3) & C(42)-C(41) & 120.1(3) & C(44)-\\ C(43)-C(42) & 120.4(3) & C(43)-C(44)-C(45) & 119.5(3) & C(46)-\\ C(41)-C(46) & 118.2(3) & C(52)-C(53) & 120.8(3) & C(54)-\\ C(53)-C(54) & 119.9(3) & C(55)-C(56)-C(51) & 121.1(3) & F(6)-\\ P(3)-F(3) & 91.25(15) & F(6)-P(3)-F(4) & 88.54(13) & F(6)-\\ P(3)-F(3) & 91.25(15) & F(6)-P(3)-F(4) & 88.54(13) & F(6)-\\ P(3)-F(3) & 91.25(15) & F(6)-P(3)-F(4) & 88.54(13) & F(6)-\\ P(3)-F(1) & 90.24(11) & F(3)-P(3)-F(1) & 90.90(11) & F(3)-\\ P(3)-F(1) & 90.24(11) & F(3)-P(3)-F(1) & 80.90(11) & F(6)-\\ P(3)-F(1) & 90.24(11) & F(3)-P(3)-F(1) & 80.90(11) & F(6)-\\ P(3)-F(1) & 178.55(15) & F(2)-P(3)-F(4) & 88.54(13) & F(2)-\\ P(3)-F(1) & 178.55(15) & F(2)-P(3)-F(4) & 88.54(13) & F(2)-\\ P(3)-F(4) & 178.55(15) & F(2)-P(3)-F(4) & 88.54(13) & F(2)-\\ P(3)-F(1) & 178.57(15) & F(2)-P(3)-F(4) & 80.50(11) & F(6)-\\ P(3)-F(1) & 179.47(11) & F(3)-P(3)-F(1) & 80.90(11) & F(6)$	P(1)-C(1)	110.62(12)	C(31)-P(1)-C(11)	111.57(13)	C(21)-
$\begin{array}{ccccccc} P(2)-C(1) & 100.77(13) & C(41)-P(2)-C(51) & 99.43(13) & C(4)-\\ P(2)-C(51) & 103.58(13) & C(2)-C(1)-P(1) & 112.99(19) & C(3)-\\ C(2)-C(1) & 111.7(2) & C(2)-C(3)-C(4) & 111.7(2) & C(3)-\\ C(4)-P(2) & 110.84(19) & C(12)-C(11)-P(1) & 114.3(2) & C(17)-\\ C(12)-C(13) & 118.7(2) & C(17)-C(12)-C(11) & 121.7(2) & C(13)-\\ C(14)-C(15) & 120.3(3) & C(14)-C(15)-C(16) & 119.4(3) & C(17)-\\ C(16)-C(15) & 120.3(3) & C(14)-C(15)-C(16) & 119.4(3) & C(17)-\\ C(16)-C(15) & 120.2(3) & C(16)-C(17)-C(12) & 120.5(3) & C(26)-\\ C(21)-C(22) & 119.7(2) & C(26)-C(21)-P(1) & 121.2(2) & C(22)-\\ C(23)-C(24) & 119.8(3) & C(23)-C(24)-C(23) & 120.4(3) & C(24)-\\ C(25)-C(26) & 120.1(3) & C(21)-C(26)-C(25) & 119.9(3) & C(36)-\\ C(31)-C(32) & 119.8(2) & C(36)-C(31)-P(1) & 119.9(2) & C(32)-\\ C(31)-C(32) & 119.8(2) & C(36)-C(31)-P(1) & 119.9(2) & C(32)-\\ C(31)-C(32) & 119.8(2) & C(36)-C(35) & 119.7(3) & C(44)-\\ C(35)-C(36) & 120.5(3) & C(31)-C(36)-C(35) & 119.7(3) & C(44)-\\ C(35)-C(36) & 120.5(3) & C(31)-C(36)-C(35) & 119.7(3) & C(42)-\\ C(41)-P(2) & 124.2(2) & C(43)-C(44)-P(4) & 119.5(3) & C(44)-\\ C(43)-C(42) & 120.4(3) & C(43)-C(44)-C(45) & 119.5(3) & C(46)-\\ C(41)-P(2) & 124.2(2) & C(43)-C(41) & 121.1(3) & C(44)-\\ C(43)-C(44) & 120.0(3) & C(45)-C(45) & 120.5(3) & C(52)-\\ C(51)-C(56) & 118.2(3) & C(52)-C(53) & 120.8(3) & C(54)-\\ C(53)-C(52) & 120.0(3) & C(53)-C(54)-C(55) & 120.0(3) & C(55)-\\ C(51)-P(2) & 116.7(2) & C(51)-C(52)-C(53) & 120.8(3) & C(54)-\\ C(53)-C(54) & 119.9(3) & C(55)-C(56)-C(51) & 121.1(3) & F(6)-\\ P(3)-F(3) & 91.25(15) & F(6)-P(3)-F(4) & 82.20(11) & F(6)-\\ P(3)-F(3) & 91.25(15) & F(6)-P(3)-F(4) & 90.20(14) & F(3)-\\ P(3)-F(4) & 178.55(15) & F(2)-P(3)-F(1) & 90.88(11) & F(5)-\\ P(3)-F(1) & 90.4(11) & F(3)-P(3)-F(1) & 90.88(11) & F(6)-\\ P(3)-F(3) & 90.9(11) & F(4)-P(3)-F(1) & 90.88(11) & F(6)-\\ P(3)-F(1) & 90.0 & H(1A)-C(1)-H(1B) & 109.0 & P(1)-\\ C(1)-H(1B) & 109.0 & H(1A)-C(1)-H(1B) & 109.0 & P(1)-\\ C(1)-H(1B) & 109.0 & H(1A)-C(1)-H(1B) & 109.3 & C(4)-\\ C(3)-H(2A) & 109.3 & C(1)-C(2)-H(2B) & 109.3 & C(4)-\\ C(3)-H(2B) & 107.9 & C$	P(1)-C(11)	107.47(13)	C(1)-P(1)-C(11)	108.53(13)	C(41)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2)-C(4)	100 77(13)	C(41)-P(2)-C(51)	99 43(13)	C(4)-
$\begin{array}{ccccc} (2)-C(1) & 111.7(2) & C(2)-C(3)-C(4) & 111.7(2) & C(3)-C(4)-P(2) & 110.84(19) & C(12)-C(11)-P(1) & 114.3(2) & C(17)-C(12)-C(13) & 118.7(2) & C(17)-C(12)-C(11) & 121.7(2) & C(3)-C(12)-C(11) & 121.7(2) & C(3)-C(12)-C(11) & 121.7(2) & C(13)-C(12)-C(11) & 121.7(2) & C(13)-C(12)-C(11) & 120.9(3) & C(13)-C(12)-C(15) & 120.3(3) & C(14)-C(15)-C(16) & 119.4(3) & C(17)-C(12)-C(15) & 120.2(3) & C(16)-C(17)-C(12) & 120.2(3) & C(22)-C(21)-P(1) & 121.2(2) & C(22)-C(21)-P(1) & 121.2(2) & C(22)-C(21)-P(1) & 121.2(2) & C(22)-C(21)-P(1) & 121.2(2) & C(22)-C(23)-C(24) & 119.8(3) & C(25)-C(26) & 120.1(3) & C(21)-C(26)-C(25) & 119.9(3) & C(36)-C(35)-C(32) & 119.8(3) & C(34)-C(33)-C(31)-P(1) & 119.9(2) & C(32)-C(31)-P(1) & 120.3(2) & C(33)-C(32)-C(31) & 119.6(3) & C(34)-C(33)-C(32) & 120.1(3) & C(33)-C(34)-C(35) & 120.3(3) & C(34)-C(35)-C(36) & 120.5(3) & C(34)-C(35) & 119.7(3) & C(42)-C(41)-P(2) & 117.3(2) & C(46)-C(41)-P(2) & 117.3(2) & C(46)-C(41)-P(2) & 117.3(2) & C(46)-C(41)-P(2) & 124.2(2) & C(43)-C(44)-C(45) & 119.5(3) & C(42)-C(41)-P(2) & 125.1(2) & C(56)-C(51)-P(2) & 125.1(2) & C(56)-C(55)-C(54) & 119.9(3) & C(55)-C(56)-C(51) & 121.1(3) & F(6)-P(3)-F(3) & 90.9(11) & F(3)-P(3)-F(4) & 93.2(11) & F(6)-P(3)-F(4) & 90.20(14) & F(3)-P(3)-F(4) & 90.20(14) & F(3)-P(3)-F(4) & 90.20(14) & F(3)-P(3)-F(5) & 89.19(11) & F(4)-P(3)-F(1) & 90.99(11) & F(2)-P(3)-F(1) & 90.99(11) & F(3)-P(3)-F(1) & 90.99(11) & F(3)-P(3)-F(1) & 90.99(11) & F(3)-P(3)-F(1) & 90.99(11) & F(3)-P(3)-F$	P(2)-C(51)	103 58(13)	C(2)-C(1)-P(1)	112,99(19)	C(3)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2) - C(1)	1117(2)	C(2)-C(3)-C(4)	1117(2)	C(3)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)-P(2)	110.84(19)	C(12)-C(11)-P(1)	114.7(2) 114.3(2)	C(17)-
$\begin{array}{ccccc} C(12)-C(11) & 119.6(2) & C(14)-C(13)-C(12) & 120.9(3) & C(13)-C(14)-C(15) & 120.3(3) & C(14)-C(15)-C(16) & 119.4(3) & C(17)-C(16)-C(15) & 120.2(3) & C(16)-C(17)-C(12) & 120.5(3) & C(26)-C(21)-P(1) & 119.0(2) & C(23)-C(21)-P(1) & 121.2(2) & C(22)-C(21)-P(1) & 119.0(2) & C(23)-C(22)-C(21) & 120.1(3) & C(22)-C(23)-C(24) & 119.8(3) & C(25)-C(24)-C(23) & 120.4(3) & C(24)-C(25)-C(26) & 120.1(3) & C(21)-C(26)-C(25) & 119.9(3) & C(36)-C(31)-P(1) & 119.9(2) & C(32)-C(31)-P(1) & 119.8(2) & C(36)-C(31)-P(1) & 119.9(2) & C(32)-C(31)-P(1) & 120.3(2) & C(33)-C(32)-C(31) & 119.6(3) & C(34)-C(35)-C(36) & 120.5(3) & C(31)-C(36)-C(35) & 119.7(3) & C(42)-C(41)-P(2) & 117.3(2) & C(46)-C(41)-P(2) & 117.3(2) & C(46)-C(41)-P(2) & 117.3(2) & C(46)-C(41)-P(2) & 117.3(2) & C(46)-C(41)-P(2) & 122.4(2) & C(43)-C(42)-C(41) & 121.1(3) & C(44)-C(45) & 119.5(3) & C(42)-C(44) & 120.0(3) & C(45)-C(46)-C(41) & 120.5(3) & C(52)-C(51)-P(2) & 116.7(2) & C(51)-C(52)-C(53) & 120.8(3) & C(54)-C(55)-C(54) & 119.9(3) & C(53)-C(54)-C(55) & 120.0(3) & C(55)-C(55) & 120.0(3) & C(56)-C(51)-P(2) & 116.7(2) & C(51)-C(52)-C(51) & 121.1(3) & F(6)-C(55)-C(54) & 119.9(3) & C(55)-C(55) & 120.0(3) & C(56)-C(51) & 121.1(3) & F(6)-P(3)-F(4) & 90.29(11) & F(3)-P(3)-F(4) & 90.29(11) & F(3)-P(3)-F(4) & 90.29(11) & F(3)-P(3)-F(5) & 90.01(13) & F(6)-P(3)-F(4) & 90.29(11) & F(6)-P(3)-F(4) & 90.29(11) & F(6)-P(3)-F(5) & 90.01(13) & F(6)-P(3)-F(4) & 90.99(11) & F(2)-P(3)-F(1) & 90.99(11) & F(2)-P(3)-F(1) & 89.61(10) & C(2)-C(1)+H(1B) & 109.0 & P(1)-C(1)+H(1A) & 109.0$	C(12)- $C(13)$	118 7(2)	C(12) - C(12) - C(11)	121.7(2)	C(13)-
$\begin{array}{ccccc} C(14)-C(15) & 120.3(3) & C(14)-C(15)-C(16) & 119.4(3) & C(17)-C(16)-C(15) & 120.2(3) & C(16)-C(17)-C(12) & 120.5(3) & C(26)-C(21)-C(22) & 119.7(2) & C(26)-C(21)-P(1) & 121.2(2) & C(22)-C(21) & 120.1(3) & C(22)-C(21) & 120.1(3) & C(22)-C(22)-C(21) & 120.1(3) & C(22)-C(22)-C(24) & 119.8(3) & C(25)-C(24)-C(23) & 120.4(3) & C(24)-C(25)-C(26) & 120.1(3) & C(21)-C(26)-C(25) & 119.9(3) & C(36)-C(31)-C(32) & 119.8(2) & C(36)-C(31)-P(1) & 119.9(2) & C(32)-C(31)-P(1) & 120.3(2) & C(33)-C(32)-C(31) & 119.6(3) & C(34)-C(35)-C(36) & 120.5(3) & C(31)-C(35) & 120.3(3) & C(34)-C(35)-C(36) & 120.5(3) & C(31)-C(35) & 120.3(3) & C(34)-C(35)-C(36) & 120.5(3) & C(31)-C(35) & 120.3(3) & C(42)-C(41)-P(2) & 117.3(2) & C(46)-C(41)-P(2) & 117.3(2) & C(46)-C(41)-C(46) & 118.5(3) & C(42)-C(41)-P(2) & 117.3(2) & C(46)-C(41)-C(46) & 118.5(3) & C(42)-C(41) & 121.1(3) & C(44)-C(45) & 119.5(3) & C(45)-C(44)-C(45) & 119.5(3) & C(45)-C(45)-C(44) & 120.0(3) & C(53)-C(54)-C(15) & 120.8(3) & C(55)-C(56) & 118.2(3) & C(52)-C(51)-P(2) & 125.1(2) & C(56)-C(51)-P(2) & 125.1(2) & C(56)-C(51)-P(2) & 125.1(2) & C(56)-C(51)-P(2) & 125.1(2) & C(56)-C(51)-P(2) & 125.1(3) & F(6)-C(51)-P(2) & 125.1(3) & F(6)-C(51)-P(2) & 125.1(3) & F(6)-C(51)-P(2) & 125.1(3) & F(6)-C(51)-P(2) & 120.8(3) & C(54)-C(55) & 120.0(3) & C(56)-C(51)-P(2) & 120.8(3) & C(54)-C(55)-C(54) & 119.9(3) & C(55)-C(56)-C(51) & 121.1(3) & F(6)-C(51)-F(2) & 90.96(11) & F(3)-P(3)-F(5) & 80.90(11) & F(3)-P(3)-F(1) & 89.90(11) & F(3)-P(3)-F(5) & 80.90(11) & F(3)-P(3)-F(5) & 80.90(11) & F(3)-P(3)-F(5) & 80.90(11) & F(3)-P(3)-F(1) & 89.90(11) & F(2)-P(3)-F(1) & 89.90(11) & F(2)-P(3)-F(1) & 89.90(11) & F(2)-P(3)-F(1) & 89.90(11) & F(2)-P(3)-F(1) & 89.90(11) & F(3)-P(3)-F(1) & 89$	C(12)- $C(11)$	119.6(2)	C(14)-C(12)-C(12)	120.9(3)	C(13)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(12) \cdot C(11)$ C(14) - C(15)	120.3(3)	C(14)-C(15)-C(16)	1194(3)	C(17)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)-C(15)	120.3(3) 120.2(3)	C(16)-C(17)-C(12)	120 5(3)	C(26)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)- $C(22)$	120.2(3) 119 7(2)	C(26)-C(21)-P(1)	120.3(3) 121.2(2)	C(22)-
$\begin{array}{ccccc} C(23)-C(24) & 119.8(3) & C(25)-C(24)-C(23) & 120.4(3) & C(24)-C(25)-C(26) & 120.1(3) & C(21)-C(26)-C(25) & 119.9(3) & C(36)-C(31)-P(1) & 120.3(2) & C(36)-C(31)-P(1) & 119.9(2) & C(32)-C(31)-P(1) & 120.3(2) & C(33)-C(32)-C(31) & 119.6(3) & C(34)-C(35)-C(36) & 120.5(3) & C(31)-C(36)-C(35) & 120.3(3) & C(34)-C(35)-C(36) & 120.5(3) & C(31)-C(36)-C(35) & 119.7(3) & C(42)-C(41)-C(46) & 118.5(3) & C(42)-C(41)-P(2) & 117.3(2) & C(46)-C(41)-P(2) & 124.2(2) & C(43)-C(44)-C(45) & 119.5(3) & C(46)-C(41)-P(2) & 124.2(2) & C(43)-C(44)-C(45) & 119.5(3) & C(46)-C(41)-P(2) & 124.2(2) & C(43)-C(44)-C(45) & 119.5(3) & C(46)-C(41)-P(2) & 126.3(3) & C(52)-C(51)-P(2) & 126.3(3) & C(52)-C(51)-P(2) & 125.1(2) & C(56)-C(51)-P(2) & 116.7(2) & C(51)-C(52)-C(53) & 120.8(3) & C(54)-C(55)-C(54) & 119.9(3) & C(55)-C(56)-C(51) & 121.1(3) & F(6)-P(3)-F(2) & 91.79(11) & F(6)-P(3)-F(4) & 90.20(14) & F(3)-P(3)-F(2) & 91.79(11) & F(6)-P(3)-F(4) & 90.20(14) & F(3)-P(3)-F(2) & 91.79(11) & F(6)-P(3)-F(4) & 90.20(14) & F(3)-P(3)-F(5) & 89.19(11) & F(4)-P(3)-F(5) & 90.01(13) & F(6)-P(3)-F(1) & 90.24(11) & F(3)-P(3)-F(1) & 90.89(11) & F(2)-P(3)-F(1) & 90.89(11) & F(2)-P(3)-F(1) & 90.24(11) & F(3)-P(3)-F(1) & 90.89(11) & F(2)-P(3)-F(1) & 90.89(11)$	C(21) - P(1)	119.0(2)	C(23)-C(22)-C(21)	1201(2)	C(22)-
$\begin{array}{ccccc} C(25) - C(26) & (12) - C(26) - C(25) & (12) - C(26) - C(25) & (13) - C(25) & (13) - C(25) & (13) - C(32) & (13) - C(32) - C(31) - C(13) & (12) - C(26) - C(25) & (13) - 9(1) & (12) - 9(2) & (12) - 2(3) - C(3) & (13) - C(3) - C(3) - C(3) & (13) - C(3) - C(3) - C(3) - C(3) - C(3) & (13) - C(3) - C(3) - C(3) & (13) - C(3) - C(3) - C(3) & (13) - C(3) & (12) - C(3) - C(4) - C(4) - C(46) & (18) - (53) & (12) - C(43) - C(42) - C(41) - P(2) & (17) - 3(2) & C(46) - C(41) - P(2) & (12) - 2(3) & (12) - C(43) - C(42) - C(41) & (12) - 1(3) & C(44) - C(43) - C(42) & (12) - 0(3) & C(43) - C(44) - C(45) & (119) - 5(3) & C(46) - C(44) - C(42) & (12) - 0(3) & C(53) - C(44) - C(45) & (12) - 0(3) & C(56) - C(51) - P(2) & (15) - P(2) & (15) - P(2) & (12) - 0(3) & C(55) - C(54) & (12) - 0(3) & C(55) - C(54) & (12) - 0(3) & C(55) - C(56) - C(51) & (12) - 0(3) & C(56) - C(55) - C(54) & (13) - 9(3) - F(2) & 90 - 96(11) & F(3) - P(3) - F(3) & 91 - 25(15) & F(6) - P(3) - F(4) & 88 - 20(11) & F(6) - P(3) - F(3) & 91 - 25(15) & F(6) - P(3) - F(4) & 88 - 20(11) & F(6) - P(3) - F(4) & 88 - 20(11) & F(6) - P(3) - F(5) & 90 - 01(13) & F(6) - P(3) - F(5) & 91 - 91 - 91 - 178 - 55(15) & F(2) - P(3) - F(5) & 90 - 01(13) & F(6) - P(3) - F(5) & 91 - 91 - 178 - 178 - 178 - 178 - 178 - 178 - 178 - 178 - 178 - 17$	C(23)-C(24)	119.8(3)	C(25) - C(24) - C(23)	120.1(3) 120.4(3)	C(24)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25) - C(26)	1201(3)	C(21)-C(26)-C(25)	119 9(3)	C(36)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)-C(32)	119 8(2)	C(36)-C(31)-P(1)	119.9(3) 119.9(2)	C(32)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)-P(1)	120.3(2)	C(33)-C(32)-C(31)	119.6(3)	C(32)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(33)-C(32)	120.3(2) 120.1(3)	C(33)-C(34)-C(35)	1203(3)	C(34)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(35) - C(36)	120.1(3) 120.5(3)	C(31)-C(36)-C(35)	119 7(3)	C(42)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(41)- $C(46)$	120.5(3) 118 5(3)	C(42)-C(41)-P(2)	117.7(3) 117.3(2)	C(46)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(41)-P(2)	1242(2)	C(43)-C(42)-C(41)	121 1(3)	C(44)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(43)-C(42)	1204(3)	C(43)-C(44)-C(45)	119 5(3)	C(46)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(45)- $C(44)$	120.1(3) 120.0(3)	C(45)-C(46)-C(41)	120.5(3)	C(52)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(51)- $C(56)$	120.0(3) 118 2(3)	C(52)-C(51)-P(2)	120.3(5) 125.1(2)	C(56)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(51)- $P(2)$	116.2(3) 116.7(2)	C(51) - C(52) - C(53)	120.1(2) 120.8(3)	C(50)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(51) \Gamma(2)$ C(53) - C(52)	120.0(3)	C(53)- $C(54)$ - $C(55)$	120.0(3) 120.0(3)	C(54)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(55) - C(54)	120.0(3) 119 9(3)	C(55) - C(56) - C(51)	120.0(3) 121 1(3)	E(6)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(3)-F(3)	91 25(15)	F(6)-P(3)-F(2)	90.96(11)	F(3)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(3)-F(2)	91.29(13)	F(6)-P(3)-F(4)	90.20(14)	F(3)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(3)-F(4)	178 55(15)	F(2)-P(3)-F(4)	88 20(11)	F(6)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(3)-F(5)	170.35(13) 179.75(14)	F(3)-P(3)-F(5)	88 54(13)	$F(2)_{-}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(3)-F(5)	89 19(11)	F(4)-P(3)-F(5)	90.01(13)	F(6)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(3)-F(1)	90.24(11)	F(3)-P(3)-F(1)	89.09(11)	$F(2)_{-}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(3)-F(1)	$178\ 49(11)$	F(4)-P(3)-F(1)	90.89(11)	F(5)-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(3)-F(1)	89 61(10)	C(2)-C(1)-H(1A)	109.0	$P(1)_{-}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(1)-H(1\Delta)$	109.01(10)	C(2) - C(1) - H(1R)	109.0	$P(1)_{-}$
C(1) H(H2) 107.0 107.0 $C(3)$ $C(2)$ -H(2A) 109.3 $C(1)$ -C(2)-H(2A) 109.3 $C(3)$ - $C(2)$ -H(2B) 109.3 $C(1)$ -C(2)-H(2B) 109.3 H(2A)- $C(2)$ -H(2B) 107.9 $C(2)$ -C(3)-H(3A) 109.3 $C(4)$ - $C(3)$ -H(3A) 109.3 $C(2)$ -C(3)-H(3B) 109.3 $C(4)$ - $C(3)$ -H(3B) 109.3 $H(3A)$ -C(3)-H(3B) 107.9 $C(3)$ - $C(4)$ -H(4A) 109.5 $P(2)$ -C(4)-H(4A) 109.5 $C(3)$ -	C(1)-H(1R)	109.0	H(1A)-C(1)-H(1B)	107.8	C(3)-
C(2) - H(2R) 109.3 $C(1) - C(2) - H(2R)$ 109.3 $C(3) - H(2R)$ $C(2) - H(2B)$ 109.3 $C(1) - C(2) - H(2B)$ 109.3 $H(2A) - C(2) - H(2B)$ $C(2) - H(2B)$ 107.9 $C(2) - C(3) - H(3A)$ 109.3 $C(4) - C(3) - H(3B)$ $C(3) - H(3B)$ 109.3 $H(3A) - C(3) - H(3B)$ 109.3 $C(4) - C(3) - H(3B)$ $C(4) - H(4A)$ 109.5 $P(2) - C(4) - H(4A)$ 109.5 $C(3) - C(3) - H(3B)$	C(2) - H(2A)	109.0	C(1)-C(2)-H(2A)	109.3	C(3)
C(2)-H(2B) 109.3 $C(1)$ - $C(2)$ -H(2D) 109.3 $H(2A)$ - $C(2)$ -H(2B) 107.9 $C(2)$ - $C(3)$ -H(3A) 109.3 $C(4)$ - $C(3)$ -H(3A) 109.3 $C(2)$ - $C(3)$ -H(3B) 109.3 $C(4)$ - $C(3)$ -H(3B) 109.3 $H(3A)$ - $C(3)$ -H(3B) 107.9 $C(3)$ - $C(4)$ -H(4A) 109.5 $P(2)$ - $C(4)$ -H(4A) 109.5 $C(3)$ -	C(2) - H(2R)	109.3	C(1)-C(2)-H(2R)	109.3	$H(2\Delta)_{-}$
C(2) - C(3) - H(2B) 107.5 $C(4) - C(4) - C(3) - H(3B)$ 109.3 $C(4) - C(4) - C(3) - H(3B)$ $C(3) - H(3B)$ 109.3 $H(3A) - C(3) - H(3B)$ 107.9 $C(3) - C(4) - H(4A)$ $C(4) - H(4A)$ 109.5 $P(2) - C(4) - H(4A)$ 109.5 $C(3) - C(3) -$	C(2) - H(2R)	107.9	$C(2) - C(3) - H(3\Delta)$	109.3	$C(4)_{-}$
C(3) $H(3H)$ 107.5 $C(2)$ - $C(3)$ - $H(3B)$ 107.5 $C(4)$ - $C(3)$ - $H(3B)$ 109.5 $H(3A)$ - $C(3)$ - $H(3B)$ 107.9 $C(3)$ - $C(4)$ - $H(4A)$ 109.5 $P(2)$ - $C(4)$ - $H(4A)$ 109.5 $C(3)$ -	C(2) H(2D) C(3)-H(3A)	109.3	C(2) = C(3) - H(3R)	109.3	$C(4)_{-}$
C(4)-H(4A) 109.5 $P(2)-C(4)-H(4A)$ 109.5 $C(3)-$	C(3)-H(3R)	109.3	H(3A)-C(3)-H(3B)	107.9	$C(3)_{-}$
	C(4)-H(4A)	109.5	P(2)-C(4)-H(4A)	109.5	C(3)

Electronic Supplemen	tary Information for	Dalton Transactions		
This journal is © The	Royal Society of Ch	emistry 2009		
C(4)-H(4B)	109.5	P(2)-C(4)-H(4B)	109.5	H(4A)-
C(4)-H(4B)	108.1	C(12)-C(11)-H(11A)	108.7	P(1)-
C(11)-H(11A)	108.7	C(12)-C(11)-H(11B)	108.7	P(1)-
С(11)-Н(11В)	108.7	H(11A)-C(11)-H(11B)	107.6	C(14)-
С(13)-Н(13А)	119.6	C(12)-C(13)-H(13A)	119.6	C(13)-
C(14)-H(14A)	119.8	C(15)-C(14)-H(14A)	119.8	C(14)-
C(15)-H(15A)	120.3	C(16)-C(15)-H(15A)	120.3	C(17)-
C(16)-H(16A)	119.9	C(15)-C(16)-H(16A)	119.9	C(16)-
C(17)-H(17A)	119.8	C(12)-C(17)-H(17A)	119.8	C(23)-
C(22)-H(22A)	119.9	C(21)-C(22)-H(22A)	119.9	C(22)-
C(23)-H(23A)	120.1	C(24)-C(23)-H(23A)	120.1	C(25)-
C(24)-H(24A)	119.8	C(23)-C(24)-H(24A)	119.8	C(24)-
C(25)-H(25A)	120.0	C(26)-C(25)-H(25A)	120.0	C(21)-
C(26)-H(26A)	120.1	C(25)-C(26)-H(26A)	120.1	C(33)-
C(32)-H(32A)	120.2	C(31)-C(32)-H(32A)	120.2	C(34)-
C(33)-H(33A)	120.0	C(32)-C(33)-H(33A)	120.0	C(33)-
C(34)-H(34A)	119.8	C(35)-C(34)-H(34A)	119.8	C(34)-
C(35)-H(35A)	119.8	C(36)-C(35)-H(35A)	119.8	C(31)-
C(36)-H(36A)	120.1	C(35)-C(36)-H(36A)	120.1	C(43)-
C(42)-H(42A)	119.5	C(41)-C(42)-H(42A)	119.5	C(44)-
C(43)-H(43A)	119.8	C(42)-C(43)-H(43A)	119.8	C(43)-
C(44)-H(44A)	120.3	C(45)-C(44)-H(44A)	120.3	C(46)-
C(45)-H(45A)	120.0	C(44)-C(45)-H(45A)	120.0	C(45)-
C(46)-H(46A)	119.7	C(41)-C(46)-H(46A)	119.7	C(51)-
C(52)-H(52A)	119.6	C(53)-C(52)-H(52A)	119.6	C(54)-
C(53)-H(53A)	120.0	C(52)-C(53)-H(53A)	120.0	C(53)-
C(54)-H(54A)	120.0	C(55)-C(54)-H(54A)	120.0	C(56)-
C(55)-H(55A)	120.0	C(54)-C(55)-H(55A)	120.0	C(55)-
C(56)-H(56A)	119.5	C(51)-C(56)-H(56A)	119.5	

Table 6. Torsion angles [°].

atom-atom-atom-atom	angle	atom-atom-atom-atom	angle	
C(31)-P(1)-C(1)-C(2)	-160.38(19)	C(21)-P(1)-C(1)-C(2)	-39.7(2)	C(11)-
P(1)-C(1)-C(2)	78.0(2)	P(1)-C(1)-C(2)-C(3)	-163.0(2)	C(1)-
C(2)-C(3)-C(4)	-167.2(2)	C(2)-C(3)-C(4)-P(2)	-167.0(2)	C(41)-
P(2)-C(4)-C(3)	-64.4(2)	C(51)-P(2)-C(4)-C(3)	-167.0(2)	C(31)-
P(1)-C(11)-C(12)	-68.1(2)	C(21)-P(1)-C(11)-C(12)	171.52(19)	C(1)-
P(1)-C(11)-C(12)	51.9(2)	P(1)-C(11)-C(12)-C(17)	84.8(3)	P(1)-
C(11)-C(12)-C(13)	-97.4(3)	C(17)-C(12)-C(13)-C(14)	0.6(4)	C(11)-
C(12)-C(13)-C(14)	-177.3(3)	C(12)-C(13)-C(14)-C(15)	0.2(5)	C(13)-
C(14)-C(15)-C(16)	-0.9(5)	C(14)-C(15)-C(16)-C(17)	0.8(5)	C(15)-
C(16)-C(17)-C(12)	-0.1(4)	C(13)-C(12)-C(17)-C(16)	-0.6(4)	C(11)-
C(12)-C(17)-C(16)	177.2(3)	C(31)-P(1)-C(21)-C(26)	-130.1(2)	C(1)-
P(1)-C(21)-C(26)	109.7(2)	C(11)-P(1)-C(21)-C(26)	-8.6(3)	C(31)-
P(1)-C(21)-C(22)	53.0(3)	C(1)-P(1)-C(21)-C(22)	-67.2(2)	C(11)-
P(1)-C(21)-C(22)	174.5(2)	C(26)-C(21)-C(22)-C(23)	-0.5(4)	P(1)-
C(21)-C(22)-C(23)	176.5(2)	C(21)-C(22)-C(23)-C(24)	0.3(4)	C(22)-
C(23)-C(24)-C(25)	-0.3(4)	C(23)-C(24)-C(25)-C(26)	0.4(4)	C(22)-
C(21)-C(26)-C(25)	0.6(4)	P(1)-C(21)-C(26)-C(25)	-176.3(2)	C(24)-
C(25)-C(26)-C(21)	-0.5(4)	C(21)-P(1)-C(31)-C(36)	38.5(3)	C(1)-
P(1)-C(31)-C(36)	159.7(2)	C(11)-P(1)-C(31)-C(36)	-80.6(2)	C(21)-
P(1)-C(31)-C(32)	-141.9(2)	C(1)-P(1)-C(31)-C(32)	-20.7(3)	C(11)-
P(1)-C(31)-C(32)	99.1(2)	C(36)-C(31)-C(32)-C(33)	0.3(4)	P(1)-
C(31)-C(32)-C(33)	-179.3(2)	C(31)-C(32)-C(33)-C(34)	0.6(4)	C(32)-
C(33)-C(34)-C(35)	-0.5(4)	C(33)-C(34)-C(35)-C(36)	-0.5(5)	C(32)-
C(31)-C(36)-C(35)	-1.3(4)	P(1)-C(31)-C(36)-C(35)	178.3(2)	C(34)-
C(35)-C(36)-C(31)	1.4(5)	C(4)-P(2)-C(41)-C(42)	129.4(2)	C(51)-
P(2)-C(41)-C(42)	-124.7(2)	C(4)-P(2)-C(41)-C(46)	-50.8(3)	C(51)-
P(2)-C(41)-C(46)	55.1(3)	C(46)-C(41)-C(42)-C(43)	-0.6(4)	P(2)-
C(41)-C(42)-C(43)	179.2(2)	C(41)-C(42)-C(43)-C(44)	0.3(5)	C(42)-
C(43)-C(44)-C(45)	0.1(5)	C(43)-C(44)-C(45)-C(46)	-0.3(5)	C(44)-
C(45)-C(46)-C(41)	0.0(4)	C(42)-C(41)-C(46)-C(45)	0.5(4)	P(2)-
C(41)-C(46)-C(45)	-179.3(2)	C(41)-P(2)-C(51)-C(52)	-97.7(3)	C(4)-
P(2)-C(51)-C(52)	5.9(3)	C(41)-P(2)-C(51)-C(56)	83.2(2)	C(4)-
P(2)-C(51)-C(56)	-173.3(2)	C(56)-C(51)-C(52)-C(53)	-0.7(4)	P(2)-
C(51)-C(52)-C(53)	-179.8(2)	C(51)-C(52)-C(53)-C(54)	0.6(4)	C(52)-
C(53)-C(54)-C(55)	-0.8(4)	C(53)-C(54)-C(55)-C(56)	1.0(4)	C(54)-
C(55)-C(56)-C(51)	-1.1(4)	C(52)-C(51)-C(56)-C(55)	1.0(4)	P(2)-
C(51)-C(56)-C(55)	-179.8(2)			