Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Electronic Supplementary information Exafs and DFT : Evidence for the [Tc=O]²⁺ core

Eric Breynaert,*^{*a*} Christine E.A Kirschock^{*a*} and André Maes^{*a*} DOI: 10.1039/b000000x

5 S1: overview of the EXAFS data analysis and modelling algorithm

Data reduction and analysis were achieved using a combination of XAS and modelling tools including

- ¹⁰ EXAFSPAK, IFEFFIT, FEFF8, Gaussian03¹ (**Fig. S1**). The raw data for each sample was first recalibrated and different scans were averaged using the mcalib and mave tools from the exafspak suite of programs.² The resulting data were imported into ATHENA for data reduction purposes such as
- ¹⁵ background subtraction using the autobk algorithm and normalization of the edge jump. Fitting the normalized EXAFS signal was performed in the IFEFFIT fitting module ARTEMIS.³ All fitting was done in k-space using an overall scaling factor S_0^2 fixed at 1.

Fig. S1 Schematic representation of EXAFS data analysis and modelling algorithm

S2 phase- and amplitude-corrected Fourier transformation of the $k^3\,\mbox{weighted}$ exafs spectrum

- ²⁵ In case of the octahedral coordination of Tc in the Tc(acac)₃⁰ complex, the symmetric first shell of oxygen atoms would result in one single peak with a symmetrical imaginary part after phase and amplutide corrected Fourier transformation of the EXAFS signal. This symmetrical ³⁰ single peak would have its maximum at the top of the
- absolute magnitude and at the correct coordination distance. ⁴ The presence of two maxima in the imaginary part under the nearest neighbor signal in the RDF (Fig. S2) after phaseand amplitude-corrected FT of the k³ weighted EXAFS ³⁵ spectrum was interpreted as an indication for the presence
- of a second species

Fig. S2 phase- and amplitude-corrected Fourier transformation of the k³ weighted exafs spectrum

40

Fig. S3: exafs data and Tc(acac)₃⁰ signal reconstructed with the ⁴⁵ parameters in Table 1.

S4 Feff8 input files for the $Tc(acac)_3$ and $TcO(OH)_2(H2O)_3$ compounds, also indicating the DFT optimised geometries for these molecules.

```
TITLE Tc(acac)_3^0
 EDGE K
 S02
      1
 CONTROL 1
                               1
                 1
                          1
                                   1
                     1
55 PRINT 5
             0
                       1
                            1
                                 3
                  0
 EXCHANGE
                 3
                      5 0.8
                              0
 AFOLP 1.3
 EXAFS 15
 RMAX
         5
60 NLEG
         6
 XANES 12
               0.07
                    2
```

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

POTENTIALS	PRINT 5 0 0 1 1 3
0 43 Tc	60 EXCHANGE 3 9 0.8 0
1 8 0	AFOLP 1.3
2 - 6 - C1	FXAFS 15
- 3 6 C2	DMAY 5
4 6 C2	NIEC 4
4 0 C5	NLEU 4 NANES 10 007 0
	65 XANES 12 0.07 2
6 I H	POTENTIALS
	0 43 Tc
10 ATOMS	1 8 O
-0.0052 -0.0001 -0.0000 0 Tc 0.0000	2 8 O
0.0167 -1.6941 1.1586 1 O 2.0524	70 3 8 O
0.0015 1.6942 -1.1585 1 O 2.0525	4 1 H
1.4505 0.8534 1.1688 1 O 2.0527	5 8 O
15 1.4579 -0.8404 -1.1692 1 O 2.0528	ATOMS
-1.4779 0.8236 1.1701 1 O 2.0524	0.0734 -0.1928 0.0147 0 Tc 0.0000
-1.4706 -0.8370 -1.1699 1 O 2.0534	75 0.4034 -1.8779 -0.1816 1 O 1.7283
0 7597 -2 7280 1 0103 2 C1 3 0079	1 2344 0 4991 1 4425 2 0 1 9660
0.7348 = 2.7349 = 1.0102 = 2 C1 3.0080	
$2.0085 \pm 0.0082 \pm 0.0082 = 0.0080$	1.5225 0.2406 -1.4071 2 0 2.0417
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.8703 - 0.7049 0.8919 3 0 2.1984
-2.7391 -0.7318 -1.0200 2 C1 3.0083	$2.0277 0.3030 -0.8970 3 \qquad 0 2.2128$
-2.7455 0.7073 1.0202 2 C1 3.0084	80 -2.3479 -0.5446 0.0384 4 H 2.4468
1.9908 2.0062 1.0205 2 C1 3.0084	2.4140 0.5306 -0.0153 4 H 2.4500
-3.3850 -0.0151 0.0001 3 C2 3.3798	-0.7631 2.1692 0.1818 5 O 2.5113
25 1.7126 -2.9109 -0.0047 3 C2 3.3799	-1.2096 1.8878 -0.6533 4 H 2.5340
1.6863 2.9263 0.0047 3 C2 3.3801	0.8171 0.6142 2.3095 4 H 2.5437
0.5434 -3.8097 2.0452 4 C3 4.3585	85 -1.8067 -1.6744 0.9715 4 H 2.5779
0.5084 3.8147 -2.0449 4 C3 4.3587	2.3725 -0.5828 -1.1166 4 H 2.5919
3.0601 -2.3185 -2.0567 4 C3 4.3590	-0.9874 0.2180 -2.3175 4 H 2.5948
30 3.0397 2.3456 2.0561 4 C3 4.3590	-0.0388 2.7605 -0.0760 4 H 2.9568
-3.5570 -1.4650 -2.0599 4 C3 4.3594	
-3 5698 1 4332 2 0602 4 C3 4 3595	90 ^a kasteelpark arenberg 23, B-3001 Leuven, Belgium, Fax:+32 16 32
-4 4686 -0 0198 0 0000 5 H 4 4634	1998; Tel:+32 16 32 1457; E-mail: eric.breynaert@biw.kuleuven.be
22654 28420 0.0040 5 H 4.4634	
2.2034 - 3.8429 - 0.0040 - 5 - 11 - 4.4035	[1] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb,
35 2.2500 5.8055 0.0041 5 H 4.4057	M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T.,
-3.2612 -2.5200 -2.0801 5 H 4.6128	95 Kudin, K.N., Burant, J.C., Millam, J.M., Ivengar, S.S.,
-3.2840 2.4910 2.0797 5 H 4.6132	Tomasi I Barone V Mennucci B Cossi M Scalmani
3.8275 -1.5360 -2.0602 5 H 4.6144	G Dage N Detersson G A Nekateuii H Hade M
3.8141 1.5702 2.0593 5 H 4.6145	U., Kega, N., Feleisson, U.A., Nakatsuji, H., Hada, M.,
40 -0.5482 4.1058 -2.0441 5 H 4.6186	Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida,
-0.5105 -4.1104 2.0450 5 H 4.6186	M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene,
0.7317 3.4175 -3.0418 5 H 4.6342	M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken,
0.7636 -3.4104 3.0421 5 H 4.6342	V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E.,
2.6025 -2.3245 -3.0527 5 H 4.6392	Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C.,
45 2.5824 2.3474 3.0523 5 H 4.6393	Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A.,
-3.3499 1.0224 3.0525 5 H 4.6422	Salvador P. Dannenberg I.I. Zakrzewski V.G. Dannrich
-3 3415 -1 0517 -3 0521 5 H 4 6424	Survival, 1., Summerserg, Wei, Zummerserg, 106, Suppren,
1 1670 A 6000 1 0672 6 H 5 101A	105 S., Damers, A.D., Strain, W.C., Parkas, O., Manck, D.K.,
1.1076 - 4.0886 1.8075 0 11 5.1814 1.1240 4.6002 1.8670 6 H 5.1814	Kabuck, A.D., Kagnavacnan, K., Foresman, J.B., Ornz,
1.1249 4.0995 -1.8070 0 П 5.1814	J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J.,
50 -4.0311 -1.3938 -1.8709 0 H 5.1814	Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P.,
-4.6433 1.3538 1.8/17 6 H 5.1815	Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Laham, A.,
3.5346 -3.2863 -1.8765 6 H 5.1818	Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill,
3.5054 3.3177 1.8759 6 H 5.1818	P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez,
	C., and Pople, J.A., Gaussian 03, Revision D.02, 2004.
55 TITLE TcO(OH) ₂ (H2O) ₃	Gaussian 03 Revision D 02 Gaussian Inc. Wallingford
EDGE K	CT
S02 1	U1.
CONTROL 1 1 1 1 1 1	

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

[2] George, G.N. and Pickering, I.J., EXAFSPAK — A Suite of Computer Programs for Analysis of X-ray Absorption Spectra. 1993: Menlo Park, CA.

[3] Ravel, B. and Newville, M., ATHENA and ARTEMIS: interactive

5 graphical data analysis using IFEFFIT. Physica Scripta, 2005. T115: p. 1007-1010.

 [4] Koningsberger, D.C., Mojet, B.L., van Dorssen, G.E., and Ramaker, D.E., XAFS spectroscopy; fundamental principles and data analysis. Topics in Catalysis, 2000. 10(3-4): p.
 10 143-155.