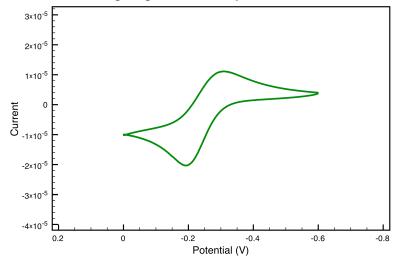
Supporting Information

For


Chelating tris(amidate) ligands: versatile scaffolds for nickel(II)

Matthew B. Jones,^a Brian S. Newell,^b Wesley A. Hoffert,^b Kenneth I. Hardcastle,^a Matthew P. Shores^b and Cora E. MacBeth*^a

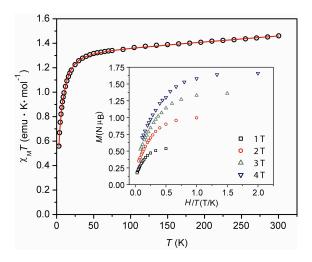
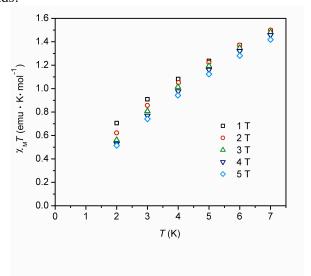
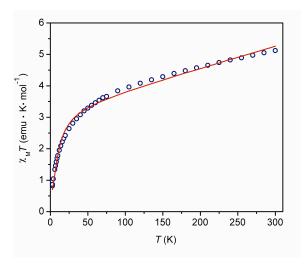

^aDepartment of Chemistry, Emory University, Atlanta, GA, USA. Fax: 01 404-727-6586; Tel: 01-404-727-7033; E-mail: cmacbet@emory.edu ^b Department of Chemistry, Colorado State University, Fort Collins, CO, USA. Tel: 01-970-491-6033; E-mail: shores@lamar.colostate.edu

Table of Contents	<u>Page</u>
Figure S1 Cyclic voltammogram of $[Et_4N]_2[Ni(L^{iPr})(CN)]$	S2
Figure S2 Temperature dependant magnetic susceptibility for $Ph_4P[Ni(L^{iPr})]$	S2
Figure S3 Expansion of magnetic susceptibility of $[Et_4N]_3[CoNi(L^{iPr})_2(\mu_2-CN)]$ collected at various fields	S 3
Figure S4 Magnetic susceptibility of $[Et_4N]_3[CoNi(L^{iPr})_2(\mu_2\text{-}CN)]$	S 3
Figure S5 Magnetic susceptibility of $[Et_4N]_3[CoNi(L^{iPr})_2(\mu_2-CN)]$ (<i>D</i> allowed to refine freely)	S4


Figure S1. Cyclic voltammogram of $[Et_4N]_2[Ni(L^{iPr})(CN)]$ recorded in DMF (0.2 M tetrabutylammonium hexafluorophosphate TBAPF₆). Scan rate 50 mV/sec (vs. Fc/Fc⁺).


Figure S2. Temperature dependence of the magnetic susceptibility for $[Ph_4P[Ni(L^{iPr})]]$ obtained with an applied field of 0.1 T (circles). Best fits to the data (red line) give g = 2.354, D = -19.44 cm⁻¹, E = -1.46 cm⁻¹, $TIP = 808 \times 10^{-6}$ emu·mol⁻¹, and relative error f = 0.018. Inset: Magnetization of $Ph_4P[Ni(L^{iPr})]$ as a function of reduced magnetic field.

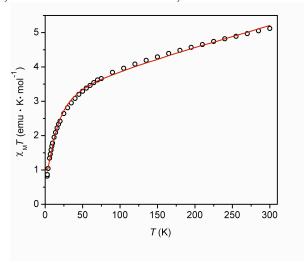

Figure S3. Low temperature expansion of magnetic susceptibility of $[Et_4N]_3[CoNi(L^{iPr})_2(\mu_2\text{-}CN)]$ collected at various fields.

Figure S4. Magnetic susceptibility of $[Et_4N]_3[CoNi(L^{iPr})_2(\mu_2-CN)]$ (circles) measured with an applied field of 0.1 T. The fit (red line) was obtained with D fixed at 10 cm^{-1} . $J=-1.56 \text{ cm}^{-1}$, g=2.12, $D=10 \text{ cm}^{-1}$ (fixed), TIP = $6.87 \times 10^{-3} \text{ emu·mol}^{-1}$, f=0.10.

Figure S5. Magnetic susceptibility of $[Et_4N]_3[CoNi(L^{iPr})_2(\mu_2-CN)]$ (circles) measured with an aaplied field of 0.1 T. The fit (red line) was obtained with D allowed to refine freely. $J=-1.49~cm^{-1}$, g=2.17, $D=20~cm^{-1}$, $TIP=6.21\times10^{-3}~emu\cdot mol^{-1}$, f=0.067.

