Electronic Supplemental Information

Synthesis and Characterization of Palladium Fluorides with Nitrogen Ligands

Nicholas D. Ball, Jeff W. Kampf, Melanie S. Sanford* Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48104

Table of Contents

1 H, 19 F and, 13 C NMR data for 8	p. S2
1 H, 19 F and, 13 C NMR data for 9	p. S5
1 H, 19 F and, 13 C NMR data for 10	p. S8
1 H, 19 F and, 13 C NMR data for 11	p. S13
1 H, 19 F and, 13 C NMR data for 12	p. S18
1 H, 19 F and, 13 C NMR data for 14	p. S20
Crystallographic data for 8, 10-12 and 15	p. S25

4-ndb-148-forcarbon-H

Sample Name: Data Collected on:

Ga.Chem.LSA.UMich.edu-vnmrs400 Archive directory:

Sample directory:

FidFile: 4-ndb-148-forcarbon-H

Pulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: Sep 19 2009

Temp. 23.0 C / 296.1 K Operator: nball Relax. delay 0.500 sec Pulse 45.0 degrees Acq. time 3.500 sec Width 6410.3 Hz 16 repetitions OBSERVE H1, 399.5389548 MHz DATA PROCESING DATA PROCESING DATA PROCESING Time broadening 0.3 Hz FT lie 65536 Total time 1 min 12 sec

ω

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

4-ndb-148-forF-F

Sample Name:

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

udd

-400

-350

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

6.20

udd

T

Ŷ

ч

2

ო

-

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

2-ndb-192-pumped21907-F

Sample Name:

Archive directory:

Sample directory:

FidFile: 2-ndb-192-pumped21907-F

Pulse Sequence: Fluorine (s2pul) Solvent: cdc13 Data collected on: Feb 19 2007

Operator: nball VNMRS-500 "Dy.Chem.LSA.UMich.edu"

OBSERVE F19, 376.3430932 MHz Line broadening 0.9 Hz Gauss apodization 0.462 sec FT size 524288 Total time 0 min 24 sec Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 1.049 sec Width 250.0 kHz 128 repetitions DATA PROCESSING

udd -400 -300 -200 -100 0 100

to

РО

9

ш

udd

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

4-ndb-192-Freal

Sample Name:

Data Collected on: Zr.Chem.LSA.UMich.edu-inova400 Archive directory:

Sample directory:

FidFile: FLUORINE

Pulse Sequence: FLUORINE (s2pul) Solvent: cdc13 Data collected on: Sep 18 2009

Temp. 25.0 C / 298.1 K Operator: nball

64 repetitions OBSERVE F19, 376.3430710 MHz DATA PROCESSING Relax. delay 1.000 sec Pulse 30.0 degrees Acq. time 1.024 sec Width 128.0 kHz Line broadening 0.5 Hz

undd

-50

`PPh₃

Ра

7

VARIAN

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

udd

Ē
Т
Ē
σ
പ
C C
υ
g
ഹ
д
ъ
g
- T
4

Sample Name:

Data Collected on: Co.Chem.LSA.UMich.Edu-vnmrs400 Archive directory:

Sample directory:

FidFile: 4-ndb-5-ncnpdF-F

Pulse Sequence: FLUORINE (s2pul) Solvent: cdcl3 Data collected on: Jan 13 2009

Temp. 25.0 C / 298.1 K Operator: nball Relax. delay 1.000 sec Fulse 35.0 degrees Acq. time 0.734 sec Width 89285.7 Hz 64 repetitions OBSERVE F19, 376.8745228 MHz DATA PROCESSING FT size 131072 FT size 131072 sec

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

Sample Name:

Data Collected on: Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory:

Sample directory:

FidFile: 4-ndb-134-forcarbon-H

Pulse Sequence: PROTON (s2pul) Solvent: cd2cl2 Data collected on: May 28 2009

Operator: nball

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.556 sec Width 6410.3 Hz 16 repetitions OBSERVE H1, 400.5305758 MHz OBSERVE H1, 400.5305758 MHz PATA PROCESSING FT size 32768 FT size 32768 Total time 0 min 57 sec

4-ndb-134-forcarbon-F

Sample Name:

Data Collected on: Co.Chem.LSA.UMich.edu-vnmrs400 Archive directory:

Sample directory:

FidFile: 4-ndb-134-forcarbon-F

Pulse Sequence: FLUORINE (s2pul) Solvent: cd2cl2 Data collected on: May 28 2009

Operator: nball

Relax. delay 1.000 sec Pulse 35.0 degrees Acq. time 1.101 sec Width 119.0 kHz 32 repetitions OBSERVE F19, 376.8752435 MHz DATA PROCESSING FT size 262144 Total time 1 min 8 sec

VARIAN

Archive directory:

Sample directory:

Solvent: cd2c12

Operator: nball

OBSERVE C13, 100.7134238 MHz DECOUPLE H1, 400.5325306 MHz Relax. delay 1.000 sec Pulse 45.0 degrees Line broadening 0.5 Hz Acq. time 1.285 sec continuously on WALTZ-16 modulated Width 25510.2 Hz 3776 repetitions DATA PROCESSING FT size 65536 Power 40 dB

Structure Determination of 8.

Colorless needles of 8 were crystallized from a pentane/tetrahydrofuran solution at -35deg. C. A crystal of dimensions 0.33 x 0.14 x 0.07 mm was mounted on a standard Bruker SMART-APEX CCD-based X-ray diffractometer equipped with a low temperature device and fine focus Mo-target X-ray tube ($\lambda = 0.71073$ A) operated at 1500 W power (50 kV, 30 mA). The X-ray intensities were measured at 85(2) K; the detector was placed at a distance 5.055 cm from the crystal. A total of 3630 frames were collected with a scan width of 0.5° in ω and 0.45° in ϕ with an exposure time of 20 s/frame. Indexing was performed by use of the CELL NOW program which indicated that the crystal was a non-merohedral twin. The frames were integrated with the Bruker SAINT software package with a narrow frame algorithm. The integration of the data yielded a total of 39833 reflections to a maximum 20 value of 52.88° of which 4339 were independent and 3953 were greater than $2\sigma(I)$. The final cell constants (Table 1) were based on the xyz centroids of 9958 reflections above $10\sigma(I)$. Analysis of the data showed negligible decay during data collection; the data were processed with TWINABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 6.12) software package, using the space group P2(1)/c with Z = 4 for the formula C₁₈H₁₇N₂FPd. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. The twin domains are related by a 4.2 degree rotation about the direct (0.900 0.100 1) axis or reciprocal (0.048 0.031 1) axis and a refined twin volume fraction of 0.281(1). Full-matrix least-squares refinement based on F^2 converged at R1 = 0.0323 and wR2 = 0.0797 [based on I > 2sigma(I)], R1 = 0.0383 and wR2 = 0.0842 for all data. Additional details are presented in Table 1 and are given as Supporting Information in a CIF file.

Saint Plus, v. 7.34, Bruker Analytical X-ray, Madison, WI, 2006.

Sheldrick, G.M. CELL_NOW, Program for Indexing Twins and Other Problem Crystals, University of Gottingen: Gottingen, Germany, 2007.

Sheldrick, G.M. SHELXTL, v. 6.12; Bruker Analytical X-ray, Madison, WI, 2001.

Sheldrick, G.M. TWINABS, v. 2007/5. Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen: Gottingen, Germany, 2007.

 Table S1. Crystal data and structure refinement for 8.

Identification code	nb272
Empirical formula	C18 H17 F N2 Pd
Formula weight	386.74
Temperature	85(2) K
Wavelength	0.71073 A
Crystal system, space gr	oup Monoclinic, P2(1)/c
Unit cell dimensions b = c =	a = 9.6607(11) A alpha = 90 deg. 9.2742(10) A beta = 96.023(2) deg. 17.810(2) A gamma = 90 deg.
Volume	1586.9(3) A^3
Z, Calculated density	4, 1.619 Mg/m^3
Absorption coefficient	1.177 mm^-1
F(000)	776
Crystal size	0.33 x 0.14 x 0.07 mm
Theta range for data coll	ection 2.12 to 28.44 deg.
Limiting indices	-12<=h<=11, -12<=k<=12, -23<=l<=23
Reflections collected / un	nique $39833 / 4339 [R(int) = 0.0578]$
Completeness to theta =	28.44 99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmiss	ion 0.9222 and 0.6974
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parame	eters 4339 / 0 / 211
Goodness-of-fit on F^2	1.142

Final R indices [I>2sigma(I)] R1 = 0.0323, wR2 = 0.0797

R indices (all data) R1 = 0.0383, wR2 = 0.0842

Largest diff. peak and hole 1.264 and -0.786 e.A^-3

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for 8.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

U(eq) Х Ζ y Pd(1)2363(1)7004(1) 4012(1)13(1)F(1) 8723(2) 3537(2) 4509(1) 21(1) N(1) 5753(3) 4108(3)3981(1) 16(1)N(2) 8136(2) 484(2)4040(1)15(1)C(1) 6147(3)5398(3) 4258(2) 20(1)C(2)5225(3)6530(3)4266(2) 24(1)C(3) 3847(3) 6298(3) 3993(2) 26(1)C(4) 3434(3) 4962(3)3704(2) 22(1)C(5) 3876(3) 16(1)4420(3) 3692(1)C(6) 4178(3) 2422(3)3383(2) 17(1)C(7) 2939(3) 1997(3) 2972(2) 20(1) C(8) 2803(3)604(3)2686(2) 21(1)C(9) 3899(3) -356(3)2828(2)21(1)C(10) 5150(3) 63(3) 3227(1) 18(1) C(11) 5321(3) 1465(3)3505(1) 15(1)C(12) 8102(3) -437(3)4626(2) 18(1) C(13) 8834(3) -1716(3)4651(2) 22(1)C(14) 9608(3) -2070(3)4068(2)25(1)C(15) 9642(3) -1109(3)3474(2)22(1)C(16) 8911(3) 171(3) 3473(2) 18(1) C(17) 7237(3) -14(3)5241(2) 22(1)C(18) 8941(3) 1259(3) 22(1)2851(2)

Pd(1)-C(11)	1.960(3)
Pd(1)-N(1)	2.017(2)
Pd(1)-N(2)	2.055(2)
Pd(1)-F(1)	2.1024(17)
N(1)-C(1)	1.335(4)
N(1)-C(5)	1.353(4)
N(2)-C(16)	1.351(3)
N(2)-C(12)	1.351(3)
C(1)-C(2)	1.378(4)
C(2)-C(3)	1.384(5)
C(3)-C(4)	1.385(4)
C(4)-C(5)	1.388(4)
C(5)-C(6)	1.466(4)
C(6)-C(7)	1.394(4)
C(6)-C(11)	1.416(4)
C(7)-C(8)	1.389(4)
C(8)-C(9)	1.386(4)
C(9)-C(10)	1.392(4)
C(10)-C(11)	1.395(4)
C(12)-C(13)	1.380(4)
C(12)-C(17)	1.498(4)
C(13)-C(14)	1.381(4)
C(14)-C(15)	1.386(4)
C(15)-C(16)	1.381(4)
C(16)-C(18)	1.501(4)
C(11)-Pd(1)-N(1)	82.13(11)
C(11)-Pd(1)-N(2)	93.68(10)
N(1)-Pd(1)-N(2)	175.36(9)
C(11)-Pd(1)-F(1)	173.88(9)
N(1)-Pd(1)-F(1)	92.32(8)
N(2)-Pd(1)-F(1)	91.95(8)
C(1)-N(1)-C(5)	120.4(2)
C(1)-N(1)-Pd(1)	124.2(2)
C(5)-N(1)-Pd(1)	115.25(19)
C(16)-N(2)-C(12)	120.2(2)
C(16)-N(2)-Pd(1)	119.92(18)
C(12)-N(2)-Pd(1)	119.91(18)
N(1)-C(1)-C(2)	121.8(3)
C(1)-C(2)-C(3)	118.5(3)
C(2)-C(3)-C(4)	119.9(3)
C(3)-C(4)-C(5)	118.9(3)
N(1)-C(5)-C(4)	120.4(3)

Table S3.	Bond	lengths	[A]	and	angles	[deg]	for 8	3.
-----------	------	---------	-----	-----	--------	-------	-------	----

N(1)-C(5)-C(6)	113.4(2)
C(4)-C(5)-C(6)	126.2(3)
C(7)-C(6)-C(11)	121.1(3)
C(7)-C(6)-C(5)	123.5(3)
C(11)-C(6)-C(5)	115.4(2)
C(8)-C(7)-C(6)	119.9(3)
C(9)-C(8)-C(7)	119.3(3)
C(8)-C(9)-C(10)	121.3(3)
C(9)-C(10)-C(11)	120.4(3)
C(10)-C(11)-C(6)	117.9(3)
C(10)-C(11)-Pd(1)	128.4(2)
C(6)-C(11)-Pd(1)	113.6(2)
N(2)-C(12)-C(13)	120.9(3)
N(2)-C(12)-C(17)	117.4(2)
C(13)-C(12)-C(17)	121.7(3)
C(12)-C(13)-C(14)	119.7(3)
C(13)-C(14)-C(15)	118.7(3)
C(16)-C(15)-C(14)	120.0(3)
N(2)-C(16)-C(15)	120.5(3)
N(2)-C(16)-C(18)	117.6(2)
C(15)-C(16)-C(18)	122.0(3)

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12	
	<u></u>	<u>.</u>					
Pd(1)	15(1)	15(1)	10(1)	0(1)	1(1)	0(1)	
F(1)	21(1)	24(1)	18(1)	0(1)	-2(1)	-3(1)	
N(1)	21(1)	18(1)	11(1)	2(1)	3(1)	1(1)	
N(2)	16(1)	15(1)	12(1)	-1(1)	0(1)	0(1)	
C(1)	24(2)	19(1)	15(1)	2(1)	3(1)	-1(1)	
C(2)	33(2)	17(1)	21(1)	0(1)	5(1)	1(1)	
C(3)	29(2)	22(1)	26(1)	2(1)	5(1)	8(1)	
C(4)	24(2)	21(1)	20(1)	2(1)	3(1)	5(1)	
C(5)	19(1)	19(1)	10(1)	3(1)	3(1)	1(1)	
C(6)	21(1)	19(1)	10(1)	2(1)	3(1)	-1(1)	
C(7)	18(1)	28(1)	14(1)	4(1)	1(1)	0(1)	
C(8)	20(2)	32(2)	12(1)	0(1)	1(1)	-5(1)	
C(9)	25(2)	23(1)	15(1)	-2(1)	6(1)	-5(1)	
C(10)	20(1)	21(1)	13(1)	-1(1)	5(1)	-1(1)	
C(11)	17(1)	20(1)	9(1)	1(1)	2(1)	-1(1)	
C(12)	18(1)	18(1)	18(1)	0(1)	-1(1)	-3(1)	
C(13)	20(2)	19(1)	26(1)	2(1)	-2(1)	-1(1)	
C(14)	22(2)	20(1)	33(2)	-3(1)	-1(1)	3(1)	
C(15)	20(1)	25(2)	22(1)	-7(1)	4(1)	1(1)	
C(16)	19(1)	20(1)	13(1)	-3(1)	-1(1)	-2(1)	
C(17)	28(2)	22(1)	15(1)	4(1)	4(1)	1(1)	
C(18)	25(2)	30(2)	14(1)	1(1)	6(1)	1(1)	

Table S4. Anisotropic displacement parameters (A² x 10³) for **8**. The anisotropic displacement factor exponent takes the form: $-2 \operatorname{pi^2} [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

	X	y z	U(eq)	
H(1A)	7090	5541	4456	23
H(2A)	5527	7449	4453	28
H(3A)	3187	7055	4005	31
H(4A)	2490	4791	3518	26
H(7A)	2188	2658	2886	24
H(8A)	1968	313	2397	26
H(9A)	3795	-1319	2648	25
H(10A)	5891	-609	3311	22
H(13A)	8807	-2350	5068	26
H(14A)	10105	-2954	4074	30
H(15A)	10169	-1331	3068	27
H(17A)	7613	871	5485	32
H(17B)	7256	-790	5616	32
H(17C)	6275	154	5025	32
H(18A)	7989	1444	2623	34
H(18B)	9499	885	2465	34
H(18C)	9353	2159	3058	34

Table S5.	Hydrogen coordinates (x 10 ⁴) and isotropic
displaceme	ent parameters ($A^2 \times 10^3$) for 8 .

Structure Determination of 10.

Yellow blocks of 10 were crystallized from a dichloromethane/pentane solution at -35 deg. C. A crystal of dimensions 0.34 x 0.20 x 0.16 mm was mounted on a standard Bruker SMART 1K CCD-based X-ray diffractometer equipped with a LT-2 low temperature device and normal focus Mo-target X-ray tube ($\lambda = 0.71073$ A) operated at 2000 W power (50 kV, 40 mA). The X-ray intensities were measured at 108(2) K; the detector was placed at a distance 4.912 cm from the crystal. A total of 3000 frames were collected with a scan width of 0.5° in ω and phi with an exposure time of 25 s/frame. The integration of the data yielded a total of 44848 reflections to a maximum 20 value of 56.72° of which 5037 were independent and 4299 were greater than $2\sigma(I)$. The final cell constants (Table 1) were based on the xyz centroids of 9227 reflections above $10\sigma(I)$. Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 6.12) software package, using the space group P2(1)/c with Z = 4 for the formula $C_{20}H_{17}N_2FPd\bullet(CH_2Cl_2)$. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. Full matrix leastsquares refinement based on F^2 converged at R1 = 0.0214 and wR2 = 0.0508 [based on I > 2sigma(I)], R1 = 0.0307 and wR2 = 0.0551 for all data. Additional details are presented in Table 1 and are given as Supporting Information in a CIF file.

Sheldrick, G.M. SHELXTL, v. 6.12; Bruker Analytical X-ray, Madison, WI, 2001.

Sheldrick, G.M. SADABS, v. 2.10. Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen: Gottingen, Germany, 2003.

Saint Plus, v. 7.34, Bruker Analytical X-ray, Madison, WI, 2006.

 Table S6. Crystal data and structure refinement for 10.

Identification code	nb192
Empirical formula	C21 H19 Cl2 F N2 Pd
Formula weight	495.68
Temperature	108(2) K
Wavelength	0.71073 A
Crystal system, space gr	roup Monoclinic, P2(1)/c
Unit cell dimensions b = c =	a = 13.904(4) A alpha = 90 deg. = 11.409(3) A beta = 117.158(3) deg. = 14.366(4) A gamma = 90 deg.
Volume	2027.8(9) A^3
Z, Calculated density	4, 1.624 Mg/m^3
Absorption coefficient	1.195 mm^-1
F(000)	992
Crystal size	0.34 x 0.20 x 0.16 mm
Theta range for data col	lection 2.39 to 28.36 deg.
Limiting indices	-18<=h<=18, -15<=k<=15, -19<=l<=19
Reflections collected / u	nique $44848 / 5037 [R(int) = 0.0379]$
Completeness to theta =	28.36 99.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmiss	sion 0.8318 and 0.6867
Refinement method	Full-matrix least-squares on F^2
Data / restraints / param	eters 5037 / 0 / 246
Goodness-of-fit on F^2	1.073

Final R indices [I>2sigma(I)] R1 = 0.0214, wR2 = 0.0508

R indices (all data) R1 = 0.0307, wR2 = 0.0551

Largest diff. peak and hole 0.436 and -0.586 e.A^-3

Table S7. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for **10**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x y	Z	U(eq)	
Pd(1)	2261(1)	8571(1)	4042(1)	18(1)
Cl(1)	2090(1)	155(1)	7084(1)	31(1)
Cl(2)	1368(1)	2362(1)	5926(1)	44(1)
F(1)	1042(1)	9608(1)	4028(1)	26(1)
N(1)	3018(1)	9990(1)	3824(1)	20(1)
N(2)	1551(1)	7048(1)	4178(1)	19(1)
C(1)	2720(2)	11107(2)	3747(2)	25(1)
C(2)	3307(2)	11999(2)	3562(2)	29(1)
C(3)	4207(2)	11724(2)	3448(2)	28(1)
C(4)	4544(2)	10547(2)	3528(1)	24(1)
C(5)	5473(2)	10133(2)	3432(2)	28(1)
C(6)	5738(2)	8979(2)	3540(2)	28(1)
C(7)	5108(2)	8113(2)	3745(1)	23(1)
C(8)	5347(2)	6906(2)	3862(2)	27(1)
C(9)	4683(2)	6144(2)	4040(2)	27(1)
C(10)	3760(2)	6540(2)	4125(2)	24(1)
C(11)	3488(2)	7721(2)	4016(1)	20(1)
C(12)	4186(2)	8491(2)	3830(1)	19(1)
C(13)	3922(2)	9705(2)	3722(1)	20(1)
C(14)	1880(2)	6517(2)	5119(2)	24(1)
C(15)	1476(2)	5428(2)	5193(2)	30(1)
C(16)	717(2)	4882(2)	4296(2)	29(1)
C(17)	365(2)	5444(2)	3342(2)	24(1)
C(18)	790(2)	6533(2)	3304(1)	20(1)
C(19)	2699(2)	7143(2)	6065(2)	34(1)
C(20)	413(2)	7175(2)	2289(2)	26(1)
C(21)	1090(2)	843(2)	5941(2)	28(1)

Pd(1)-C(11)	1.9769(19)
Pd(1)-N(1)	2.0325(15)
Pd(1)-N(2)	2.0519(15)
Pd(1)-F(1)	2.0604(12)
Cl(1)-C(21)	1.778(2)
Cl(2)-C(21)	1.778(2)
N(1)-C(1)	1.328(2)
N(1)-C(13)	1.370(2)
N(2)-C(18)	1.352(2)
N(2)-C(14)	1.355(2)
C(1)-C(2)	1 404(3)
C(2)-C(3)	1 370(3)
C(3)-C(4)	1 410(3)
C(4)-C(13)	1404(3)
C(4)-C(5)	1 439(3)
C(5)-C(6)	1 357(3)
C(6)-C(7)	1 437(3)
C(7)-C(8)	1 408(3)
C(7)-C(12)	1410(3)
C(8)-C(9)	1 375(3)
C(9)-C(10)	1 418(3)
C(10)- $C(11)$	1 388(3)
C(11)- $C(12)$	1.222(2)
C(12)-C(13)	1.423(3)
C(14)-C(15)	1 388(3)
C(14)-C(19)	1.497(3)
C(15)-C(16)	1 386(3)
C(16)-C(17)	1.384(3)
C(17)-C(18)	1.387(3)
C(18)-C(20)	1.496(3)
C(11)-Pd(1)-N(1)	82.89(7)
C(11)-Pd(1)-N(2)	92.46(7)
N(1)-Pd(1)-N(2)	174.46(6)
C(11)-Pd(1)-F(1)	174.14(6)
N(1)-Pd(1)-F(1)	91.29(6)
N(2)-Pd(1)-F(1)	93.32(5)
C(1)-N(1)-C(13)	119.09(16)
C(1)-N(1)-Pd(1)	127.79(14)
C(13)-N(1)-Pd(1)	113.09(12)
C(18)-N(2)-C(14)	119.82(16)
C(18)-N(2)-Pd(1)	119.09(12)

Table S8.	Bond lengths	[A] and	angles	[deg]	for 10	
-----------	--------------	---------	--------	-------	---------------	--

C(14)-N(2)-Pd(1)	120.96(12)
N(1)-C(1)-C(2)	121.62(19)
C(3)-C(2)-C(1)	119.88(19)
C(2)-C(3)-C(4)	119.78(18)
C(13)-C(4)-C(3)	117.11(18)
C(13)-C(4)-C(5)	117.10(18)
C(3)-C(4)-C(5)	125.79(18)
C(6)-C(5)-C(4)	121.06(18)
C(5)-C(6)-C(7)	122.11(19)
C(8)-C(7)-C(12)	117.61(18)
C(8)-C(7)-C(6)	124.27(19)
C(12)-C(7)-C(6)	118.12(18)
C(9)-C(8)-C(7)	119.85(18)
C(8)-C(9)-C(10)	121.77(18)
C(11)-C(10)-C(9)	120.68(18)
C(10)-C(11)-C(12)	116.50(17)
C(10)-C(11)-Pd(1)	131.84(14)
C(12)-C(11)-Pd(1)	111.65(13)
C(7)-C(12)-C(11)	123.58(17)
C(7)-C(12)-C(13)	119.13(17)
C(11)-C(12)-C(13)	117.28(16)
N(1)-C(13)-C(4)	122.53(17)
N(1)-C(13)-C(12)	115.00(16)
C(4)-C(13)-C(12)	122.47(18)
N(2)-C(14)-C(15)	120.78(18)
N(2)-C(14)-C(19)	117.60(17)
C(15)-C(14)-C(19)	121.62(18)
C(16)-C(15)-C(14)	119.62(18)
C(17)-C(16)-C(15)	119.15(18)
C(16)-C(17)-C(18)	119.32(18)
N(2)-C(18)-C(17)	121.26(17)
N(2)-C(18)-C(20)	118.01(16)
C(17)-C(18)-C(20)	120.72(17)
Cl(1)-C(21)-Cl(2)	111.03(11)

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
Pd(1)	19(1)	17(1)	18(1)	0(1)	9(1)	-2(1)
Cl(1)	33(1)	27(1)	35(1)	4(1)	18(1)	-2(1)
Cl(2)	47(1)	28(1)	41(1)	6(1)	6(1)	1(1)
F(1)	25(1)	28(1)	28(1)	2(1)	14(1)	4(1)
N(1)	22(1)	19(1)	17(1)	1(1)	7(1)	-2(1)
N(2)	20(1)	19(1)	20(1)	0(1)	10(1)	-2(1)
C(1)	28(1)	21(1)	22(1)	2(1)	9(1)	0(1)
C(2)	38(1)	19(1)	22(1)	3(1)	7(1)	-3(1)
C(3)	32(1)	25(1)	21(1)	2(1)	7(1)	-10(1)
C(4)	26(1)	27(1)	16(1)	1(1)	6(1)	-7(1)
C(5)	24(1)	37(1)	21(1)	1(1)	10(1)	-12(1)
C(6)	22(1)	40(1)	23(1)	-1(1)	12(1)	-5(1)
C(7)	22(1)	31(1)	16(1)	-1(1)	8(1)	-2(1)
C(8)	26(1)	33(1)	23(1)	-1(1)	13(1)	4(1)
C(9)	33(1)	25(1)	24(1)	0(1)	14(1)	5(1)
C(10)	29(1)	22(1)	22(1)	1(1)	13(1)	-1(1)
C(11)	22(1)	21(1)	16(1)	0(1)	8(1)	-2(1)
C(12)	20(1)	22(1)	14(1)	-1(1)	6(1)	-3(1)
C(13)	21(1)	24(1)	13(1)	1(1)	5(1)	-4(1)
C(14)	27(1)	27(1)	21(1)	1(1)	12(1)	-4(1)
C(15)	37(1)	28(1)	23(1)	4(1)	14(1)	-7(1)
C(16)	34(1)	23(1)	31(1)	0(1)	17(1)	-7(1)
C(17)	26(1)	22(1)	24(1)	-3(1)	12(1)	-5(1)
C(18)	19(1)	21(1)	21(1)	-1(1)	10(1)	0(1)
C(19)	41(1)	37(1)	21(1)	2(1)	10(1)	-13(1)
C(20)	30(1)	22(1)	20(1)	0(1)	8(1)	-3(1)
C(21)	27(1)	30(1)	28(1)	-6(1)	12(1)	-5(1)

Table S9. Anisotropic displacement parameters (A² x 10³) for **10**. The anisotropic displacement factor exponent takes the form: $-2 \operatorname{pi^2} [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

	X	y z	U(eq)	
H(1A)	2093	11306	3818	30
H(2A)	3081	12792	3516	35
H(3A)	4602	12324	3316	33
H(5A)	5909	10677	3292	33
H(6A)	6359	8735	3477	33
H(8A)	5967	6619	3818	32
H(9A)	4847	5331	4108	32
H(10A)	3322	5992	4257	28
H(15A)	1718	5059	5855	35
H(16A)	442	4131	4335	35
H(17A)	-162	5088	2720	29
H(19A)	3393	7162	6044	52
H(19B)	2785	6731	6697	52
H(19C)	2454	7947	6073	52
H(20A)	1	7870	2296	39
H(20B)	-50	6660	1712	39
H(20C)	1039	7417	2196	39
H(21A)	372	743	5917	34
H(21B)	1070	462	5313	34
. ,				

Table S10. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² x 10³) for **10**.

Structure Determination of 11.

Colorless plates 11 were grown from a pentanes/dichloromethane solution at -35 deg. C. A crystal of dimensions 0.25 x 0.24 x 0.05 mm was mounted on a Bruker SMART APEX CCDbased X-ray diffractometer equipped with a low temperature device and fine focus Mo-target Xray tube ($\lambda = 0.71073$ A) operated at 1500 W power (50 kV, 30 mA). The X-ray intensities were measured at 85(1) K; the detector was placed at a distance 5.055 cm from the crystal. A total of 5190 frames were collected with a scan width of 0.5° in ω and 0.45° in phi with an exposure time of 25 s/frame. The integration of the data yielded a total of 128348 reflections to a maximum 20 value of 56.66° of which 14487 were independent and 13303 were greater than $2\sigma(I)$. The final cell constants (Table 1) were based on the xyz centroids of 9709 reflections above $10\sigma(I)$. Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 2008/3) software package, using the space group P1bar with Z = 4 for the formula $C_{31}H_{23}NFPPd$, CHCl₂. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. There are two independent palladium complexes and two independent dichloromethane solvates in the asymmetric unit. One of the solvates is disordered over three sites. Full matrix least-squares refinement based on F^2 converged at R1 = 0.0376 and wR2 = 0.0934 [based on I > 2sigma(I)], R1 = 0.0403 and wR2 = 0.0961 for all data. Additional details are presented in Table 1 and are given as Supporting Information in a CIF file.

Sheldrick, G.M. SHELXTL, v. 2008/3; Bruker Analytical X-ray, Madison, WI, 2008.

Sheldrick, G.M. SADABS, v. 2008/1. Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen: Gottingen, Germany, 2008.

Saint Plus, v. 7.60a, Bruker Analytical X-ray, Madison, WI, 2009.

Table 1. Crystal data and structure refinement for nb143.

Identification code	nb143
Empirical formula	C32 H25 Cl2 F N P Pd
Formula weight	650.80
Temperature	85(2) K

Wavelength	0.71073 A		
Crystal system, space grou	p Triclinic, P-1		
Unit cell dimensions b = 1 c = 20	a = 8.7399(5) A alpha = 96.861(1) deg. 7.2959(9) A beta = 98.293(1) deg. 0.3468(11) A gamma = 104.123(1)deg.		
Volume 2	913.0(3) A^3		
Z, Calculated density	4, 1.484 Mg/m^3		
Absorption coefficient	0.904 mm^-1		
F(000) 13	12		
Crystal size 0	0.25 x 0.24 x 0.05 mm		
Theta range for data collec	tion 1.72 to 28.33 deg.		
Limiting indices	-11<=h<=11, -23<=k<=23, -27<=l<=27		
Reflections collected / unio	que $128348 / 14487 [R(int) = 0.0328]$		
Completeness to theta $= 28$	3.33 99.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmissio	n 0.9562 and 0.8056		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters 14487 / 45 / 79			
Goodness-of-fit on F^2	1.055		
Final R indices [I>2sigma([I)] R1 = 0.0367, wR2 = 0.0934		
R indices (all data)	R1 = 0.0403, $wR2 = 0.0961$		
Largest diff. peak and hole	e 0.950 and -0.859 e.A^-3		

Table S11. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for **11**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	y z	U(eq)		
Pd(1)	2644(1)	6622(1)	2975(1)	18(1)	
Pd(2)	5538(1)	1764(1)	421(1)	19(1)	
P(1)	3689(1)	5945(1)	3719(1)	18(1)	
P(2)	5019(1)	2401(1)	1358(1)	18(1)	
F(1)	2329(2)	7447(1)	3705(1)	33(1)	
F(2)	6471(2)	987(1)	919(1)	26(1)	
C(1)	991(3)	7836(2)	2402(1)	24(1)	
C(2)	254(3)	8152(2)	1878(2)	29(1)	
C(3)	60(3)	7784(2)	1225(1)	28(1)	
C(4)	630(3)	7101(2)	1086(1)	24(1)	
C(5)	505(3)	6665(2)	428(1)	28(1)	
C(6)	1155(3)	6033(2)	341(1)	27(1)	
C(7)	1987(3)	5769(2)	898(1)	22(1)	
C(8)	2777(3)	5154(2)	820(1)	26(1)	
C(9)	3578(3)	4953(2)	1378(1)	26(1)	
C(10)	3573(3)	5322(2)	2035(1)	22(1)	
C(11)	2820(3)	5929(1)	2142(1)	18(1)	
C(12)	2055(3)	6156(1)	1557(1)	19(1)	
C(13)	1377(3)	6826(1)	1637(1)	19(1)	
C(14)	3250(3)	6210(2)	4553(1)	24(1)	
C(15)	3850(4)	7018(2)	4859(1)	35(1)	
C(16)	3530(5)	7263(2)	5487(2)	44(1)	
C(17)	2616(4)	6712(3)	5814(2)	45(1)	
C(18)	2030(4)	5914(2)	5520(1)	40(1)	
C(19)	2344(3)	5659(2)	4883(1)	29(1)	
C(20)	5865(3)	6175(2)	3883(1)	23(1)	
C(21)	6721(3)	6446(2)	3391(1)	26(1)	
C(22)	8391(3)	6667(2)	3523(2)	32(1)	
C(23)	9208(3)	6613(2)	4146(2)	39(1)	
C(24)	8372(4)	6338(2)	4631(2)	43(1)	
C(25)	6705(3)	6119(2)	4505(2)	34(1)	
C(26)	2933(3)	4851(2)	3546(1)	21(1)	
C(27)	3856(3)	4326(2)	3715(1)	24(1)	
C(28)	3169(4)	3497(2)	3591(1)	29(1)	
C(29)	1561(4)	3188(2)	3307(1)	31(1)	

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2009

C(30)	631(3)	3705(2)	3138(1)	30(1)
C(31)	1314(3)	4532(2)	3254(1)	25(1)
C(32)	6496(3)	527(2)	-533(1)	24(1)
C(33)	6689(3)	181(2)	-1164(1)	27(1)
C(34)	6219(3)	493(2)	-1726(1)	28(1)
C(35)	5559(3)	1158(2)	-1662(1)	24(1)
C(36)	4974(3)	1518(2)	-2214(1)	30(1)
C(37)	4347(3)	2156(2)	-2100(1)	29(1)
C(38)	4263(3)	2508(2)	-1435(1)	24(1)
C(39)	3679(3)	3189(2)	-1305(1)	26(1)
C(40)	3623(3)	3482(2)	-652(1)	25(1)
C(41)	4107(3)	3110(2)	-112(1)	23(1)
C(42)	4700(3)	2440(1)	-209(1)	19(1)
C(43)	4787(3)	2157(2)	-884(1)	21(1)
C(44)	5431(3)	1480(2)	-1013(1)	22(1)
C(45)	5310(3)	1903(2)	2088(1)	22(1)
C(46)	6796(3)	1747(2)	2281(1)	28(1)
C(47)	7046(4)	1359(2)	2828(1)	32(1)
C(48)	5821(4)	1112(2)	3186(1)	34(1)
C(49)	4351(4)	1275(2)	3005(1)	32(1)
C(50)	4093(3)	1670(2)	2457(1)	26(1)
C(51)	2935(3)	2439(2)	1269(1)	20(1)
C(52)	1806(3)	1814(2)	818(1)	24(1)
C(53)	193(3)	1798(2)	731(1)	27(1)
C(54)	-287(3)	2422(2)	1066(1)	27(1)
C(55)	810(3)	3034(2)	1493(1)	27(1)
C(56)	2434(3)	3048(2)	1613(1)	23(1)
C(57)	6249(3)	3430(1)	1671(1)	19(1)
C(58)	7135(3)	3861(2)	1248(1)	22(1)
C(59)	8069(3)	4651(2)	1480(1)	25(1)
C(60)	8114(3)	5017(2)	2131(1)	25(1)
C(61)	7250(3)	4590(2)	2556(1)	22(1)
C(62)	6331(3)	3799(2)	2331(1)	21(1)
N(1)	1534(2)	7191(1)	2280(1)	19(1)
N(7)	5903(2)	1164(1)	-461(1)	21(1)
Cl(1)	8924(1)	-412(1)	751(1)	39(1)
Cl(2)	10077(1)	448(1)	2123(1)	40(1)
C(63)	8369(3)	-35(2)	1501(2)	32(1)
Cl(3)	6921(8)	400(1)	6258(2)	103(2)
Cl(4)	5204(9)	657(4)	4962(3)	105(2)
C(64)	6842(13)	932(5)	5589(4)	77(2)
Cl(5)	1400(40)	1330(20)	5200(20)	250(30)
Cl(6)	4289(8)	780(3)	5686(3)	98(2)
C(65)	3040(20)	1397(13)	5838(13)	140(9)
Cl(7)	2941(14)	1225(6)	4885(5)	161(4)
Cl(8)	-258(13)	1592(6)	4506(5)	154(3)

C(66) 1270(30) 1510(20) 5106(9) 165(10)

Pd(1)-C(11)	2.004(2)
Pd(1)-F(1)	2.0301(15)
Pd(1)-N(1)	2.0762(19)
Pd(1)-P(1)	2.2458(6)
Pd(2)-C(42)	2.012(2)
Pd(2)-F(2)	2.0290(15)
Pd(2)-N(7)	2.070(2)
Pd(2)-P(2)	2.2448(6)
P(1)-C(26)	1.816(3)
P(1)-C(20)	1.818(2)
P(1)-C(14)	1.823(3)
P(2)-C(45)	1.822(3)
P(2)-C(51)	1.822(2)
P(2)-C(57)	1.825(2)
C(1)-N(1)	1.327(3)
C(1)-C(2)	1.402(4)
C(2)-C(3)	1.371(4)
C(3)-C(4)	1.404(4)
C(4)-C(13)	1.408(3)
C(4)-C(5)	1.430(4)
C(5)-C(6)	1.355(4)
C(6)-C(7)	1.440(3)
C(7)-C(8)	1.407(4)
C(7)-C(12)	1.411(3)
C(8)-C(9)	1.373(4)
C(9)-C(10)	1.412(3)
C(10)-C(11)	1.381(3)
C(11)-C(12)	1.424(3)
C(12)-C(13)	1.427(3)
C(13)-N(1)	1.356(3)
C(14)-C(19)	1.387(4)
C(14)-C(15)	1.398(4)
C(15)-C(16)	1.386(4)
C(16)-C(17)	1.386(6)
C(17)-C(18)	1.376(5)
C(18)-C(19)	1.405(4)
C(20)-C(21)	1.392(4)
C(20)-C(25)	1.395(4)
C(21)-C(22)	1.392(4)
C(22)-C(23)	1.387(5)
C(23)-C(24)	1.373(5)
C(24)-C(25)	1.390(4)

Table S12.	Bond lengths	[A] and angle	s [deg] for 11.
------------	--------------	---------------	-----------------

C(26)-C(27)	1.395(3)
C(26)-C(31)	1.399(3)
C(27)-C(28)	1.389(4)
C(28)-C(29)	1.386(4)
C(29)-C(30)	1.388(4)
C(30)-C(31)	1.385(4)
C(32)-N(7)	1.328(3)
C(32)-C(33)	1.401(4)
C(33)-C(34)	1.374(4)
C(34)-C(35)	1.408(4)
C(35)-C(44)	1.402(3)
C(35)-C(36)	1.436(4)
C(36)-C(37)	1.358(4)
C(37)-C(38)	1.436(4)
C(38)-C(39)	1.406(4)
C(38)-C(43)	1.409(4)
C(39)-C(40)	1.376(4)
C(40)-C(41)	1.402(4)
C(41)-C(42)	1.386(3)
C(42)-C(43)	1.421(3)
C(43)-C(44)	1.431(3)
C(44)-N(7)	1.362(3)
C(45)-C(50)	1.396(4)
C(45)-C(46)	1.400(4)
C(46)-C(47)	1.386(4)
C(47)-C(48)	1.390(5)
C(48)-C(49)	1.390(4)
C(49)-C(50)	1.395(4)
C(51)-C(56)	1.388(3)
C(51)-C(52)	1.402(3)
C(52)-C(53)	1.389(3)
C(53)-C(54)	1.390(4)
C(54)-C(55)	1.356(4)
C(55)-C(56)	1.399(3)
C(57)-C(58)	1.400(3)
C(57)-C(62)	1.401(3)
C(58)-C(59)	1.395(3)
C(59)-C(60)	1.389(4)
C(60)-C(61)	1.391(4)
C(61)-C(62)	1.391(3)
Cl(1)-C(63)	1.767(3)
Cl(2)-C(63)	1.767(3)
Cl(3)-C(64)	1.734(7)
Cl(4)-C(64)	1.702(8)
Cl(4)-Cl(4)#1	2.240(13)
Cl(5)-C(65)	1.757(10)

Cl(6)-C(65)	1.737(10)
Cl(7)-C(66)	1.751(10)
Cl(8)-C(66)	1.720(10)
C(11)-Pd(1)-F(1)	169.77(8)
C(11)-Pd(1)-N(1)	82.52(9)
F(1)-Pd(1)-N(1)	87.36(7)
C(11)-Pd(1)-P(1)	96.97(7)
F(1)-Pd(1)-P(1)	93 23(5)
N(1)-Pd(1)-P(1)	176 20(6)
C(42)-Pd(2)-F(2)	170 46(8)
C(42)-Pd(2)-N(7)	82 57(9)
$E(2)_Pd(2)_N(7)$	87.91(7)
C(42) Pd(2) P(2)	06.08(7)
C(42) = I (2) = I (2) E(2) Dd(2) D(2)	90.08(7)
N(7) Dd(2) D(2)	177 22(6)
N(7)- $Fu(2)$ - $F(2)C(26) P(1) C(20)$	177.32(0) 107.02(11)
$C(20)$ - $\Gamma(1)$ - $C(20)$	107.02(11) 102.42(12)
C(20)-P(1)-C(14) C(20) P(1) $C(14)$	103.43(12) 102.22(12)
C(20)-P(1)-C(14)	102.23(12)
C(20)-P(1)-Pd(1)	116.10(8) 115.20(8)
C(20)-P(1)-Pd(1)	115.30(8)
C(14)-P(1)-Pd(1)	111.25(8)
C(45)-P(2)-C(51)	104.15(11)
C(45)-P(2)-C(57)	102.19(11)
C(51)-P(2)-C(57)	106.64(11)
C(45)-P(2)-Pd(2)	113.53(8)
C(51)-P(2)-Pd(2)	112.23(8)
C(57)-P(2)-Pd(2)	116.85(8)
N(1)-C(1)-C(2)	121.3(2)
C(3)-C(2)-C(1)	119.9(2)
C(2)-C(3)-C(4)	119.6(2)
C(3)-C(4)-C(13)	117.2(2)
C(3)-C(4)-C(5)	125.0(2)
C(13)-C(4)-C(5)	117.7(2)
C(6)-C(5)-C(4)	120.8(2)
C(5)-C(6)-C(7)	122.0(2)
C(8)-C(7)-C(12)	118.0(2)
C(8)-C(7)-C(6)	123.3(2)
C(12)-C(7)-C(6)	118.7(2)
C(9)-C(8)-C(7)	119.5(2)
C(8)-C(9)-C(10)	121.7(2)
C(11)-C(10)-C(9)	121.2(2)
C(10)- $C(11)$ - $C(12)$	1165(2)
C(10)- $C(11)$ - $Pd(1)$	132 79(18)
C(12)- $C(11)$ -Pd(1)	110 69(16)
C(7)- $C(12)$ - $C(11)$	123 0(2)
C(12) - C(12) - C(11)	123.0(2)

C(7)-C(12)-C(13)	118.3(2)
C(11)-C(12)-C(13)	118.6(2)
N(1)-C(13)-C(4)	122.2(2)
N(1)-C(13)-C(12)	115.5(2)
C(4)-C(13)-C(12)	122.3(2)
C(19)-C(14)-C(15)	119.6(3)
C(19)-C(14)-P(1)	123.4(2)
C(15)-C(14)-P(1)	117.0(2)
C(16)-C(15)-C(14)	119.9(3)
C(17)-C(16)-C(15)	120.4(3)
C(18)-C(17)-C(16)	120.3(3)
C(17)-C(18)-C(19)	119.9(3)
C(14)-C(19)-C(18)	120.0(3)
C(21)-C(20)-C(25)	1190(2)
C(21)-C(20)-P(1)	119 67(19)
C(25)-C(20)-P(1)	121 2(2)
C(22)-C(21)-C(20)	120.3(3)
C(23)-C(22)-C(21)	120.0(3)
C(24)-C(23)-C(22)	120.0(3) 120.1(3)
C(23)-C(24)-C(25)	120.1(3) 120.4(3)
C(24)-C(25)-C(20)	120.1(3) 120.2(3)
C(27)- $C(26)$ - $C(31)$	120.2(3) 119 2(2)
C(27) - C(26) - P(1)	12359(19)
C(21) - C(20) - P(1)	125.59(19) 117 19(19)
C(28)-C(27)-C(26)	1201(2)
C(20) C(27) C(20) C(29) C(28) C(27)	120.1(2) 120.3(3)
C(28)- $C(29)$ - $C(30)$	120.3(3) 120.1(3)
C(20) C(20) C(30)	119 8(3)
C(30)-C(31)-C(26)	120.5(2)
N(7)-C(32)-C(33)	120.3(2) 121.7(3)
C(34)-C(33)-C(32)	1194(2)
C(33)-C(34)-C(35)	119.8(2)
C(44)-C(35)-C(34)	117.8(2)
C(44)-C(35)-C(36)	117.7(2)
C(34)-C(35)-C(36)	1249(2)
C(37)-C(36)-C(35)	1204(2)
C(36)-C(37)-C(38)	122.2(3)
C(39)-C(38)-C(43)	112.2(3) 118.1(2)
C(39)-C(38)-C(37)	1231(2)
C(43)-C(38)-C(37)	1189(2)
C(40)- $C(39)$ - $C(38)$	119 3(2)
C(39)-C(40)-C(41)	121.8(2)
C(42)-C(41)-C(40)	121.5(2)
C(41)-C(42)-C(43)	1160(2)
C(41)-C(42)-Pd(2)	133 27(18)
C(43)-C(42)-Pd(2)	110.67(17)

C(38)-C(43)-C(42)	123.3(2)
C(38)-C(43)-C(44)	118.1(2)
C(42)-C(43)-C(44)	118.6(2)
N(7)-C(44)-C(35)	122.1(2)
N(7)-C(44)-C(43)	115.3(2)
C(35)-C(44)-C(43)	122.6(2)
C(50)-C(45)-C(46)	119.4(2)
C(50)-C(45)-P(2)	121.81(19)
C(46)-C(45)-P(2)	118.8(2)
C(47)-C(46)-C(45)	120.1(3)
C(46)-C(47)-C(48)	120.4(3)
C(47)-C(48)-C(49)	119.9(3)
C(48)-C(49)-C(50)	120.0(3)
C(49)-C(50)-C(45)	120.1(3)
C(56)-C(51)-C(52)	119.7(2)
C(56)-C(51)-P(2)	123.75(19)
C(52)-C(51)-P(2)	116.58(18)
C(53)-C(52)-C(51)	119.7(2)
C(52)-C(53)-C(54)	119.9(2)
C(55)-C(54)-C(53)	120.2(2)
C(54)-C(55)-C(56)	121.1(2)
C(51)-C(56)-C(55)	119.2(2)
C(58)-C(57)-C(62)	119.2(2)
C(58)-C(57)-P(2)	119.76(18)
C(62)-C(57)-P(2)	121.09(18)
C(59)-C(58)-C(57)	120.2(2)
C(60)-C(59)-C(58)	120.2(2)
C(61)-C(60)-C(59)	119.9(2)
C(62)-C(61)-C(60)	120.3(2)
C(61)-C(62)-C(57)	120.3(2)
C(1)-N(1)-C(13)	119.7(2)
C(1)-N(1)-Pd(1)	127.68(17)
C(13)-N(1)-Pd(1)	112.60(15)
C(32)-N(7)-C(44)	119.6(2)
C(32)-N(7)-Pd(2)	127.57(18)
C(44)-N(7)-Pd(2)	112.81(16)
Cl(2)-C(63)-Cl(1)	111.06(15)
C(64)-Cl(4)-Cl(4)#1	92.8(5)
Cl(4)-C(64)-Cl(3)	120.1(6)
Cl(6)-C(65)-Cl(5)	117.5(10)
Cl(8)-C(66)-Cl(7)	121.5(12)

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y, -z + 1

	U11	U22	U33	U23	U13	U12	
Pd(1)	18(1)	22(1)	16(1)	3(1)	2(1)	10(1)	
Pd(2)	17(1)	19(1)	19(1)	0(1)	1(1)	7(1)	
P(1)	16(1)	24(1)	16(1)	5(1)	2(1)	8(1)	
P(2)	16(1)	19(1)	19(1)	1(1)	1(1)	6(1)	
F(1)	44(1)	36(1)	24(1)	-2(1)	4(1)	23(1)	
F(2)	26(1)	24(1)	30(1)	5(1)	3(1)	12(1)	
C(1)	23(1)	24(1)	28(1)	6(1)	5(1)	10(1)	
C(2)	25(1)	26(1)	38(2)	11(1)	2(1)	12(1)	
C(3)	22(1)	28(1)	33(1)	15(1)	-1(1)	7(1)	
C(4)	18(1)	26(1)	25(1)	10(1)	-1(1)	2(1)	
C(5)	26(1)	36(1)	21(1)	12(1)	-1(1)	4(1)	
C(6)	28(1)	33(1)	17(1)	5(1)	2(1)	2(1)	
C(7)	22(1)	24(1)	18(1)	4(1)	3(1)	2(1)	
C(8)	29(1)	28(1)	20(1)	0(1)	7(1)	6(1)	
C(9)	30(1)	25(1)	25(1)	2(1)	9(1)	12(1)	
C(10)	23(1)	26(1)	22(1)	6(1)	6(1)	11(1)	
C(11)	18(1)	20(1)	16(1)	3(1)	2(1)	6(1)	
C(12)	17(1)	21(1)	18(1)	3(1)	2(1)	3(1)	
C(13)	15(1)	22(1)	19(1)	7(1)	2(1)	4(1)	
C(14)	23(1)	36(1)	17(1)	4(1)	0(1)	16(1)	
C(15)	42(2)	39(2)	23(1)	0(1)	-3(1)	17(1)	
C(16)	57(2)	54(2)	24(1)	-7(1)	-6(1)	33(2)	
C(17)	46(2)	82(3)	18(1)	0(1)	1(1)	42(2)	
C(18)	30(1)	77(2)	22(1)	16(1)	7(1)	27(2)	
C(19)	22(1)	47(2)	22(1)	10(1)	3(1)	16(1)	
C(20)	17(1)	25(1)	27(1)	6(1)	1(1)	8(1)	
C(21)	23(1)	26(1)	30(1)	2(1)	6(1)	7(1)	
C(22)	24(1)	26(1)	47(2)	0(1)	13(1)	5(1)	
C(23)	18(1)	34(2)	65(2)	5(1)	-1(1)	10(1)	
C(24)	25(1)	48(2)	51(2)	16(2)	-10(1)	9(1)	
C(25)	23(1)	45(2)	36(2)	16(1)	-2(1)	9(1)	
C(26)	21(1)	26(1)	17(1)	6(1)	4(1)	8(1)	
C(27)	23(1)	29(1)	21(1)	5(1)	2(1)	10(1)	
C(28)	35(1)	27(1)	28(1)	7(1)	4(1)	14(1)	
C(29)	36(2)	26(1)	27(1)	3(1)	5(1)	5(1)	

Table S13. Anisotropic displacement parameters (A² x 10³) for **11**. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C(63) 23(1) 34(1) 39(2) 8(1) 1(1) 10(1)
Cl(3) 212(5) 24(1) 59(2) 12(1) 35(2) -5(2)
Cl(4) 151(6) 79(4) 60(3) 3(3) 12(3) -9(4)
C(64) 128(6) 32(3) 64(4) 7(3) 7(4) 13(4)
Cl(5) 180(30) 150(30) 360(60) -170(40) -60(30) 100(20)
Cl(6) 115(5) 51(3) 88(4) -10(2) -12(3) -24(3)
C(65) 152(19) 65(14) 160(20) -60(15) 42(15) -25(10)
Cl(7) 237(10) 103(6) 103(6) -24(5) 4(7) 2(7)
Cl(8) 186(8) 119(6) 98(5) -12(5) 2(6) -41(6)

 $C(66) \ \ 278(16) \ \ \ 38(11) \ \ \ 180(20) \ \ \ 14(13) \ \ \ \ 1(9) \ \ \ 62(15)$

	Х	y z	U(eq))
H(1A)	1104	8090	2854	29
H(2A)	-112	8620	1975	34
H(3A)	-456	7990	868	33
H(5A)	-39	6821	49	34
H(6A)	1058	5756	-101	32
H(8A)	2757	4881	383	31
H(9A)	4149	4555	1321	31
$H(10\dot{A})$	4098	5150	2411	27
H(15A)	4476	7398	4637	42
H(16A)	3941	7812	5695	53
H(17A)	2392	6886	6242	54
H(18A)	1415	5537	5747	48
H(19A)	1935	5109	4678	34
H(21A)	6163	6481	2964	32
H(22A)	8971	6855	3187	39
H(23A)	10347	6767	4237	47
H(24A)	8937	6297	5055	51
H(25A)	6136	5930	4844	41
H(27A)	4956	4536	3914	29
H(28A)	3804	3141	3702	35
H(29A)	1094	2621	3227	37
H(30A)	-471	3493	2942	36
H(31A)	678	4885	3135	30
H(32A)	6797	301	-147	29
H(33A)	7141	-266	-1203	33
H(34A)	6339	261	-2157	34
H(36A)	5025	1307	-2661	36
H(37A)	3951	2378	-2474	35
H(39A)	3326	3444	-1664	31
H(40A)	3247	3948	-565	30
H(41A)	4027	3373	331	27
H(46A)	7634	1909	2036	34
H(47A)	8060	1261	2960	38
H(48A)	5989	832	3552	41
H(49A)	3521	1118	3256	38
H(50A)	3087	1781	2334	31
H(52A)	2143	1403	572	29
(2211)	_115	1105	0,2	/

Table S14. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² x 10³) for **11**.

H(53A)	-582	1362	443	32
H(54A)	-1387	2420	995	32
H(55A)	470	3461	1714	32
H(56A)	3186	3469	1926	28
H(58A)	7100	3614	801	26
H(59A)	8675	4939	1192	30
H(60A)	8735	5559	2286	30
H(61A)	7288	4839	3003	27
H(62A)	5755	3508	2626	25
H(63A)	7735	355	1406	38
H(63B)	7686	-486	1671	38
H(64A)	6979	1504	5779	93
H(64B)	7787	912	5377	93
H(65A)	3701	1964	5934	168
H(65B)	2617	1276	6251	168
H(66A)	783	1120	5385	197
H(66B)	1681	2041	5403	197

Structure Determination of 12.

Colorless plates 12 were grown from a pentanes/dichloromethane solution at -35 deg. C. A crystal of dimensions 0.32 x 0.30 x 0.22 mm was mounted on a Bruker SMART APEX CCDbased X-ray diffractometer equipped with a low temperature device and fine focus Mo-target Xray tube ($\lambda = 0.71073$ A) operated at 1500 W power (50 kV, 30 mA). The X-ray intensities were measured at 85(1) K; the detector was placed at a distance 5.055 cm from the crystal. A total of 5190 frames were collected with a scan width of 0.5° in ω and 0.45° in phi with an exposure time of 10 s/frame. The integration of the data yielded a total of 38567 reflections to a maximum 20 value of 60.18° of which 4384 were independent and 4326 were greater than $2\sigma(I)$. The final cell constants (Table 1) were based on the xyz centroids of 9935 reflections above $10\sigma(I)$. Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 2008/3) software package, using the space group P1bar with Z = 2for the formula C₁₂H₁₉N₂FPd, CHCl₂. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. Full matrix least-squares refinement based on F^2 converged at R1 = 0.0147 and wR2 = 0.0386 [based on I > 2sigma(I)], R1 = 0.0150 and wR2 = 0.0387 for all data. Additional details are presented in Table 1 and are given as Supporting Information in a CIF file.

Sheldrick, G.M. SHELXTL, v. 2008/3; Bruker Analytical X-ray, Madison, WI, 2008.

Sheldrick, G.M. SADABS, v. 2008/1. Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen: Gottingen, Germany, 2008.

Saint Plus, v. 7.60a, Bruker Analytical X-ray, Madison, WI, 2009.

 Table S15.
 Crystal data and structure refinement for 12.

Identification code nb4s
Empirical formula C13 H21 Cl2 F N2 Pd
Formula weight 401.62
Temperature85(2) K
Wavelength 0.71073 A
Crystal system, space group Triclinic, P-1
Unit cell dimensions $a = 8.4407(6)$ A $alpha = 105.314(1)$ deg. b = 9.5451(6) A $beta = 95.629(1)$ deg. c = 11.5693(8) A $gamma = 116.010(1)$ deg.
Volume 782.97(9) A^3
Z, Calculated density 2, 1.704 Mg/m ³
Absorption coefficient 1.525 mm^-1
F(000) 404
Crystal size 0.32 x 0.30 x 0.22 mm
Theta range for data collection 1.88 to 29.59 deg.
Limiting indices -11<=h<=11, -13<=k<=13, -16<=l<=16
Reflections collected / unique $38567 / 4384 [R(int) = 0.0282]$
Completeness to theta = $29.59 99.8 \%$
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.7157 and 0.6283
Refinement method Full-matrix least-squares on F^2
Data / restraints / parameters 4384 / 0 / 176

Goodness-of-fit on F^2	1.096
Final R indices [I>2sigma(I)]	R1 = 0.0147, wR2 = 0.0386
R indices (all data) R	l = 0.0150, wR2 = 0.0387
Largest diff. peak and hole	0.566 and -0.863 e.A^-3

Table S16. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for **12**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x y	Z	U(eq)	
Pd(1)	7397(1)	7930(1)	1983(1)	10(1)
Cl(1)	4209(1)	8447(1)	7413(1)	19(1)
Cl(2)	1384(1)	6301(1)	8377(1)	17(1)
F(1)	6461(1)	8361(1)	436(1)	16(1)
N(1)	10182(1)	9337(1)	2131(1)	11(1)
N(2)	4894(1)	6338(1)	2246(1)	13(1)
C(1)	11211(2)	9761(1)	3429(1)	13(1)
C(2)	10163(2)	8381(1)	3898(1)	13(1)
C(3)	10842(2)	7976(2)	4836(1)	16(1)
C(4)	9653(2)	6681(2)	5186(1)	17(1)
C(5)	7792(2)	5771(1)	4604(1)	16(1)
C(6)	7112(2)	6162(1)	3658(1)	14(1)
C(7)	8306(2)	7470(1)	3331(1)	12(1)
C(8)	5214(2)	5216(1)	2830(1)	15(1)
C(9)	10660(2)	8245(1)	1234(1)	14(1)
C(10)	10650(2)	10864(1)	1825(1)	16(1)
C(11)	3427(2)	5324(2)	1090(1)	19(1)
C(12)	4330(2)	7374(2)	3117(1)	18(1)
C(13)	3402(2)	8238(1)	8759(1)	16(1)

Pd(1)-C(7)	1 9068(11)
Dd(1) N(1)	2.0054(0)
$\Gamma u(1) - In(1)$ $D - I(1) - \Gamma(1)$	2.0934(9)
Pd(1)-F(1)	2.0959(7)
Pd(1)-N(2)	2.1019(9)
Cl(1)-C(13)	1.7833(12)
Cl(2)-C(13)	1.7810(12)
N(1)-C(10)	1.4835(14)
N(1)-C(9)	1.4853(14)
N(1)-C(1)	1 5127(14)
N(2)-C(11)	1.6127(11) 1.4824(15)
N(2) C(11) N(2) C(12)	1.4024(13) 1.4826(14)
N(2) - C(12) N(2) - C(9)	1.4650(14)
N(2)-C(8)	1.5094(15)
C(1)-C(2)	1.5042(15)
C(2)-C(7)	1.3945(15)
C(2)-C(3)	1.3958(15)
C(3)-C(4)	1.3978(17)
C(4)-C(5)	1.4010(18)
C(5)-C(6)	1.3953(16)
C(6)-C(7)	1.3927(15)
C(6)-C(8)	1.5080(16)
C(7)-Pd(1)-N(1)	81 69(4)
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1)	81.69(4) 176.62(4)
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1)	81.69(4) 176.62(4) 96.89(3)
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7) Pd(1) N(2)	81.69(4) 176.62(4) 96.89(3) 81.61(4)
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2)	81.69(4) 176.62(4) 96.89(3) 81.61(4)
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2)	81.69(4) 176.62(4) 96.89(3) 81.61(4) 163.27(4)
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2) F(1)-Pd(1)-N(2)	81.69(4) 176.62(4) 96.89(3) 81.61(4) 163.27(4) 99.74(3)
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2) F(1)-Pd(1)-N(2) C(10)-N(1)-C(9)	$81.69(4) \\176.62(4) \\96.89(3) \\81.61(4) \\163.27(4) \\99.74(3) \\108.90(9)$
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2) F(1)-Pd(1)-N(2) C(10)-N(1)-C(9) C(10)-N(1)-C(1)	$\begin{array}{c} 81.69(4) \\ 176.62(4) \\ 96.89(3) \\ 81.61(4) \\ 163.27(4) \\ 99.74(3) \\ 108.90(9) \\ 110.67(8) \end{array}$
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2) F(1)-Pd(1)-N(2) C(10)-N(1)-C(9) C(10)-N(1)-C(1) C(9)-N(1)-C(1)	$\begin{array}{c} 81.69(4) \\ 176.62(4) \\ 96.89(3) \\ 81.61(4) \\ 163.27(4) \\ 99.74(3) \\ 108.90(9) \\ 110.67(8) \\ 109.54(8) \end{array}$
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2) F(1)-Pd(1)-N(2) C(10)-N(1)-C(9) C(10)-N(1)-C(1) C(9)-N(1)-C(1) C(10)-N(1)-Pd(1)	$\begin{array}{c} 81.69(4) \\ 176.62(4) \\ 96.89(3) \\ 81.61(4) \\ 163.27(4) \\ 99.74(3) \\ 108.90(9) \\ 110.67(8) \\ 109.54(8) \\ 113.19(7) \end{array}$
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2) F(1)-Pd(1)-N(2) C(10)-N(1)-C(9) C(10)-N(1)-C(1) C(9)-N(1)-C(1) C(10)-N(1)-Pd(1) C(9)-N(1)-Pd(1)	$\begin{array}{c} 81.69(4)\\ 176.62(4)\\ 96.89(3)\\ 81.61(4)\\ 163.27(4)\\ 99.74(3)\\ 108.90(9)\\ 110.67(8)\\ 109.54(8)\\ 113.19(7)\\ 105.98(6)\end{array}$
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2) F(1)-Pd(1)-N(2) C(10)-N(1)-C(9) C(10)-N(1)-C(1) C(9)-N(1)-C(1) C(10)-N(1)-Pd(1) C(9)-N(1)-Pd(1) C(1)-N(1)-Pd(1)	$\begin{array}{c} 81.69(4)\\ 176.62(4)\\ 96.89(3)\\ 81.61(4)\\ 163.27(4)\\ 99.74(3)\\ 108.90(9)\\ 110.67(8)\\ 109.54(8)\\ 113.19(7)\\ 105.98(6)\\ 108.42(6)\end{array}$
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2) F(1)-Pd(1)-N(2) C(10)-N(1)-C(9) C(10)-N(1)-C(1) C(9)-N(1)-C(1) C(9)-N(1)-Pd(1) C(9)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(11)-N(2)-C(12)	$\begin{array}{c} 81.69(4)\\ 176.62(4)\\ 96.89(3)\\ 81.61(4)\\ 163.27(4)\\ 99.74(3)\\ 108.90(9)\\ 110.67(8)\\ 109.54(8)\\ 113.19(7)\\ 105.98(6)\\ 108.42(6)\\ 108.92(9) \end{array}$
$C(7)-Pd(1)-N(1) \\ C(7)-Pd(1)-F(1) \\ N(1)-Pd(1)-F(1) \\ C(7)-Pd(1)-N(2) \\ N(1)-Pd(1)-N(2) \\ F(1)-Pd(1)-N(2) \\ C(10)-N(1)-C(9) \\ C(10)-N(1)-C(1) \\ C(9)-N(1)-C(1) \\ C(9)-N(1)-Pd(1) \\ C(9)-N(1)-Pd(1) \\ C(1)-N(1)-Pd(1) \\ C(1)-N(1)-Pd(1) \\ C(11)-N(2)-C(12) \\ C(11)-N(2)-C(8) \\ \end{array}$	$\begin{array}{c} 81.69(4)\\ 176.62(4)\\ 96.89(3)\\ 81.61(4)\\ 163.27(4)\\ 99.74(3)\\ 108.90(9)\\ 110.67(8)\\ 109.54(8)\\ 113.19(7)\\ 105.98(6)\\ 108.42(6)\\ 108.92(9)\\ 109.73(9)\end{array}$
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2) F(1)-Pd(1)-N(2) C(10)-N(1)-C(9) C(10)-N(1)-C(1) C(9)-N(1)-C(1) C(10)-N(1)-Pd(1) C(9)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(11)-N(2)-C(12) C(11)-N(2)-C(8) C(12)-N(2)-C(8) C(12)-C(12)-C(12) C(12)-C(12)-C(12) C(12)-C(12)-C(12)-C(12) C(12)-C(1	$\begin{array}{c} 81.69(4)\\ 176.62(4)\\ 96.89(3)\\ 81.61(4)\\ 163.27(4)\\ 99.74(3)\\ 108.90(9)\\ 110.67(8)\\ 109.54(8)\\ 113.19(7)\\ 105.98(6)\\ 108.42(6)\\ 108.92(9)\\ 109.73(9)\\ 109.14(9)\end{array}$
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2) F(1)-Pd(1)-N(2) C(10)-N(1)-C(9) C(10)-N(1)-C(1) C(9)-N(1)-C(1) C(9)-N(1)-Pd(1) C(9)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(11)-N(2)-C(12) C(11)-N(2)-C(8) C(12)-N(2)-C(8) C(11)-N(2)-Pd(1)	$\begin{array}{c} 81.69(4)\\ 176.62(4)\\ 96.89(3)\\ 81.61(4)\\ 163.27(4)\\ 99.74(3)\\ 108.90(9)\\ 110.67(8)\\ 109.54(8)\\ 113.19(7)\\ 105.98(6)\\ 108.42(6)\\ 108.92(9)\\ 109.73(9)\\ 109.14(9)\\ 113.84(7)\end{array}$
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2) F(1)-Pd(1)-N(2) C(10)-N(1)-C(9) C(10)-N(1)-C(1) C(9)-N(1)-C(1) C(9)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(11)-N(2)-C(12) C(11)-N(2)-C(8) C(12)-N(2)-C(8) C(11)-N(2)-Pd(1) C(12)-N(2)-Pd(1) C(12)-N(2)-Pd(1)	$\begin{array}{c} 81.69(4)\\ 176.62(4)\\ 96.89(3)\\ 81.61(4)\\ 163.27(4)\\ 99.74(3)\\ 108.90(9)\\ 110.67(8)\\ 109.54(8)\\ 113.19(7)\\ 105.98(6)\\ 108.42(6)\\ 108.92(9)\\ 109.73(9)\\ 109.73(9)\\ 109.14(9)\\ 113.84(7)\\ 107.88(7)\end{array}$
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2) F(1)-Pd(1)-N(2) C(10)-N(1)-C(9) C(10)-N(1)-C(1) C(9)-N(1)-C(1) C(9)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(11)-N(2)-C(12) C(11)-N(2)-C(8) C(12)-N(2)-C(8) C(11)-N(2)-Pd(1) C(12)-N(2)-Pd(1) C(8)-N(2)-Pd(1) C(8)-N(2)-Pd(1) C(8)-N(2)-Pd(1) C(1)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(1)-N(2)-Pd(1) C(1	$\begin{array}{c} 81.69(4)\\ 176.62(4)\\ 96.89(3)\\ 81.61(4)\\ 163.27(4)\\ 99.74(3)\\ 108.90(9)\\ 110.67(8)\\ 109.54(8)\\ 113.19(7)\\ 105.98(6)\\ 108.42(6)\\ 108.42(6)\\ 108.92(9)\\ 109.73(9)\\ 109.14(9)\\ 113.84(7)\\ 107.88(7)\\ 107.24(7)\\ \end{array}$
C(7)-Pd(1)-N(1) C(7)-Pd(1)-F(1) N(1)-Pd(1)-F(1) C(7)-Pd(1)-N(2) N(1)-Pd(1)-N(2) F(1)-Pd(1)-N(2) C(10)-N(1)-C(9) C(10)-N(1)-C(1) C(9)-N(1)-C(1) C(9)-N(1)-Pd(1) C(9)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(1)-N(1)-Pd(1) C(11)-N(2)-C(12) C(11)-N(2)-C(8) C(12)-N(2)-C(8) C(11)-N(2)-Pd(1) C(12)-N(2)-Pd(1) C(8)-N(2)-Pd(1) C(2)-C(1)-N(1)-Pd(1) C(2)-C(1)-N(1)-Pd(1) C(2)-C(1)-N(1)-Pd(1) C(1)-N(1)-Pd(1)-Pd(1) C(1)-N(1)-Pd(1)-Pd(1) C(1)-N(1)-Pd(1)-Pd(1)-Pd(1)	$\begin{array}{c} 81.69(4)\\ 176.62(4)\\ 96.89(3)\\ 81.61(4)\\ 163.27(4)\\ 99.74(3)\\ 108.90(9)\\ 110.67(8)\\ 109.54(8)\\ 113.19(7)\\ 105.98(6)\\ 108.42(6)\\ 108.92(9)\\ 109.73(9)\\ 109.73(9)\\ 109.14(9)\\ 113.84(7)\\ 107.88(7)\\ 107.24(7)\\ 108.40(0)\\ \end{array}$
$C(7)-Pd(1)-N(1) \\C(7)-Pd(1)-F(1) \\N(1)-Pd(1)-F(1) \\C(7)-Pd(1)-N(2) \\N(1)-Pd(1)-N(2) \\F(1)-Pd(1)-N(2) \\C(10)-N(1)-C(9) \\C(10)-N(1)-C(1) \\C(9)-N(1)-C(1) \\C(9)-N(1)-Pd(1) \\C(9)-N(1)-Pd(1) \\C(1)-N(1)-Pd(1) \\C(1)-N(1)-Pd(1) \\C(1)-N(1)-Pd(1) \\C(1)-N(2)-C(12) \\C(11)-N(2)-C(12) \\C(11)-N(2)-C(8) \\C(12)-N(2)-C(8) \\C(11)-N(2)-C(8) \\C(11)-N(2)-C(8) \\C(11)-N(2)-Pd(1) \\C(12)-N(2)-Pd(1) \\C(8)-N(2)-Pd(1) \\C(2)-C(1)-N(1) \\C(2)-C(2)-C(2) \\C(2)-C(1)-N(1) \\C(2)-C(1)-N(1)-N(1) \\C(2)-C(1)-N(1) \\C(2)-C(1)-N(1)$	$\begin{array}{c} 81.69(4)\\ 176.62(4)\\ 96.89(3)\\ 81.61(4)\\ 163.27(4)\\ 99.74(3)\\ 108.90(9)\\ 110.67(8)\\ 109.54(8)\\ 113.19(7)\\ 105.98(6)\\ 108.42(6)\\ 108.42(6)\\ 108.92(9)\\ 109.73(9)\\ 109.14(9)\\ 113.84(7)\\ 107.88(7)\\ 107.24(7)\\ 108.49(9)\\ 113.76(10)\end{array}$
$C(7)-Pd(1)-N(1) \\C(7)-Pd(1)-F(1) \\N(1)-Pd(1)-F(1) \\C(7)-Pd(1)-N(2) \\N(1)-Pd(1)-N(2) \\F(1)-Pd(1)-N(2) \\C(10)-N(1)-C(9) \\C(10)-N(1)-C(1) \\C(9)-N(1)-C(1) \\C(9)-N(1)-Pd(1) \\C(9)-N(1)-Pd(1) \\C(1)-N(1)-Pd(1) \\C(1)-N(1)-Pd(1) \\C(1)-N(2)-C(12) \\C(11)-N(2)-C(8) \\C(12)-N(2)-C(8) \\C(11)-N(2)-C(8) \\C(11)-N(2)-C(8) \\C(11)-N(2)-C(8) \\C(11)-N(2)-C(8) \\C(11)-N(2)-Pd(1) \\C(12)-N(2)-Pd(1) \\C(12)-N(2)-Pd(1) \\C(2)-C(1)-N(1) \\C(7)-C(2)-C(3) \\C(11)-N(1)-C(1) \\C(1)-N(1)-N(1) \\C(1)-N(1)-N(1)-N(1) \\C(1)-N(1)-N(1)-N(1) \\C(1)-N(1)-N(1)-N(1) \\C(1)-N(1)-N(1)-N(1) \\C(1)-N(1)-N(1)$	$\begin{array}{c} 81.69(4)\\ 176.62(4)\\ 96.89(3)\\ 81.61(4)\\ 163.27(4)\\ 99.74(3)\\ 108.90(9)\\ 110.67(8)\\ 109.54(8)\\ 113.19(7)\\ 105.98(6)\\ 108.42(6)\\ 108.42(6)\\ 108.92(9)\\ 109.73(9)\\ 109.73(9)\\ 109.14(9)\\ 113.84(7)\\ 107.88(7)\\ 107.24(7)\\ 108.49(9)\\ 118.76(10)\\ 118.76(10)\\ \end{array}$

Table S17.	Bond	lengths	[A]	and	angles	[deg]	for	12	•
------------	------	---------	-----	-----	--------	-------	-----	----	---

_

C(3)-C(2)-C(1)	127.17(10)
C(2)-C(3)-C(4)	119.50(11)
C(3)-C(4)-C(5)	121.18(11)
C(6)-C(5)-C(4)	119.45(11)
C(7)-C(6)-C(5)	118.80(11)
C(7)-C(6)-C(8)	113.67(10)
C(5)-C(6)-C(8)	127.25(10)
C(6)-C(7)-C(2)	122.30(10)
C(6)-C(7)-Pd(1)	118.68(8)
C(2)-C(7)-Pd(1)	118.88(8)
C(6)-C(8)-N(2)	108.87(9)
Cl(2)-C(13)-Cl(1)	110.41(6)

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
Pd(1)	9(1)	11(1)	10(1)	4(1)	2(1)	5(1)
Cl(1)	16(1)	19(1)	21(1)	10(1)	5(1)	6(1)
Cl(2)	15(1)	16(1)	19(1)	6(1)	6(1)	6(1)
F(1)	17(1)	19(1)	15(1)	8(1)	1(1)	9(1)
N(1)	10(1)	11(1)	11(1)	4(1)	2(1)	4(1)
N(2)	11(1)	14(1)	14(1)	4(1)	4(1)	5(1)
C(1)	11(1)	15(1)	11(1)	4(1)	1(1)	5(1)
C(2)	14(1)	14(1)	11(1)	4(1)	3(1)	8(1)
C(3)	19(1)	19(1)	12(1)	4(1)	2(1)	12(1)
C(4)	27(1)	19(1)	12(1)	6(1)	5(1)	16(1)
C(5)	26(1)	15(1)	14(1)	7(1)	9(1)	12(1)
C(6)	18(1)	12(1)	14(1)	5(1)	7(1)	8(1)
C(7)	14(1)	13(1)	11(1)	5(1)	4(1)	7(1)
C(8)	15(1)	13(1)	18(1)	7(1)	6(1)	6(1)
C(9)	14(1)	15(1)	13(1)	3(1)	5(1)	7(1)
C(10)	17(1)	13(1)	16(1)	7(1)	4(1)	5(1)
C(11)	12(1)	21(1)	18(1)	4(1)	1(1)	3(1)
C(12)	17(1)	18(1)	21(1)	6(1)	9(1)	10(1)
C(13)	14(1)	15(1)	15(1)	4(1)	1(1)	6(1)
(-)						

Table S18. Anisotropic displacement parameters (A² x 10³) for **12**. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

	х	у	Z	U(eq)	
$\mathbf{H}(1\mathbf{A})$	12420		0000	2425	16
H(1A)	12439		1007	2074	10
H(1B)	11348		10820	39/4	10
H(3A)	12104		8575	5233	19
H(4A)	10116		6414	5829	21
H(5A)	6999		4896	4853	20
H(8A)	4313		4838	3319	18
H(8B)	5070		4226	2179	18
H(9A)	9927		7906	400	22
H(9B)	10415		7259	1454	22
H(9C)	11954		8850	1255	22
$H(10\dot{A})$	11930		11386	1797	23
H(10B)	10449		11639	2459	23
H(10C)	9878		10576	1018	23
H(11A)	2285		4671	1287	29
H(11B)	3748		4575	534	29
H(11C)	3278		6056	686	29
H(12A)	4220		8171	2772	27
H(12B)	5243		7975	3910	27
H(12C)	3153		6661	3244	27
H(13A)	4350		8307	9382	19
H(13B)	3146		9156	9122	19

Table S19. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² x 10³) for **12**.

Structure Determination of 15.

Yellow cubes of 15 were crystallized from a pentane/dichloromethane solution at -30 deg. C. A crystal of dimensions 0.10 x 0.10 x 0.10 mm was mounted on a standard Bruker SMART APEX CCD-based X-ray diffractometer equipped with a low-temperature device and fine- focus Mo-target X-ray tube ($\lambda = 0.71073$ A) operated at 2000 W power (50 kV, 30 mA). The X-ray intensities were measured at 85(2) K; the detector was placed at a distance 5.055 cm from the crystal. A total of 3100 frames were collected with a scan width of 0.5° in ω and 0.45° in ϕ with an exposure time of 25 s/frame. Indexing was performed by use of the CELL NOW program which indicated that the crystal was a two-component, non-merohedral twin. The frames were integrated with the Bruker SAINT software package with a narrow frame algorithm. The integration of the data yielded a total of 92957 reflections to a maximum 2θ value of 56.66° of which 6735 were independent and 3768 were greater than $2\sigma(I)$. The final cell constants (Table 1) were based on the xyz centroids of 9448 reflections above $10\sigma(I)$. Analysis of the data showed negligible decay during data collection; the data were processed with TWINABS and corrected for absorption. For this refinement, reflections from both components were used in the refinement and well as reflections containing contributions from both domains. Merging of the data was performed in TWINABS and an HKLF 5 format file used for refinement. The structure was solved and refined with the Bruker SHELXTL (version (6.12) software package, using the space group Pccn with Z = 4 for the formula C₁₈H₂₄N₂F₂Pd•CH₂Cl₂. The complex lies on a two-fold axis of the crystal lattice. The dichloromethane is disordered over an alternate two-fold axis. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. The twin domains are related by a 180 degree rotation about the direct (1 1 0) axis) and a refined twin volume fraction of 0.886(2). Full-matrix least-squares refinement based on F^2 converged at R1 = 0.0386 and wR2 = 0.1032 [based on I > 2sigma(I)], R1 = 0.0507 and wR2 = 0.102 for all data. Additional details are presented in Table 1 and are given as Supporting Information in a CIF file.

Sheldrick, G.M. SHELXTL, v. 6.12; Bruker Analytical X-ray, Madison, WI, 2001.

Saint Plus, v. 7.34, Bruker Analytical X-ray, Madison, WI, 2006.

Sheldrick, G.M. CELL_NOW, Program for Indexing Twins and Other Problem Crystals, University of Gottingen: Gottingen, Germany, 2003.

Sheldrick, G.M. SHELXTL, v. 6.12; Bruker Analytical X-ray, Madison, WI, 2001.

Sheldrick, G.M. TWINABS, v. 2008/1. Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen: Gottingen, Germany, 2008.

Table S20. Crystal data and structure refinement for 15.

Identification code	nb153
Empirical formula	C19 H26 Cl2 F2 N2 Pd
Formula weight	497.72
Temperature	85(2) K
Wavelength	0.71073 A
Crystal system, space grou	p Orthorhombic, Pccn
Unit cell dimensions b = 1 c = 1	a = 11.1616(9) A alpha = 90 deg. 1.9919(9) A beta = 90 deg. 5.6096(10) A gamma = 90 deg.
Volume 2	089.3(3) A^3
Z, Calculated density	4, 1.582 Mg/m^3
Absorption coefficient	1.166 mm^-1
F(000) 10	08
Crystal size 0	0.10 x 0.10 x 0.10 mm
Theta range for data collec	tion 2.49 to 28.33 deg.
Limiting indices	-14<=h<=14, -16<=k<=16, -20<=l<=20
Reflections collected / unio	que $92957 / 6735 [R(int) = 0.0631]$
Completeness to theta $= 23$	3.33 100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmissio	n 0.8923 and 0.8923
Refinement method	Full-matrix least-squares on F^2
Data / restraints / paramete	ers 6735 / 0 / 128

 Goodness-of-fit on F^2 1.095

 Final R indices [I>2sigma(I)]
 R1 = 0.0386, wR2 = 0.1032

 R indices (all data)
 R1 = 0.0507, wR2 = 0.1102

 Largest diff. peak and hole
 1.143 and -1.091 e.A^-3

Table S21. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for **15**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x y	Z	U(eq)	
Pd(1)	7500	2500	5166(1)	13(1)
N(1)	6697(2)	1737(1)	4205(1)	14(1)
C(2)	6485(2)	1639(2)	2687(1)	18(1)
C(3)	5579(2)	849(2)	2767(1)	19(1)
C(4)	5272(2)	504(2)	3594(1)	20(1)
C(5)	5839(2)	963(2)	4293(1)	17(1)
C(1)	7028(2)	2068(2)	3413(1)	14(1)
C(6)	4902(2)	369(2)	2003(1)	27(1)
C(9)	3565(2)	639(3)	2112(2)	39(1)
C(7)	5342(2)	865(2)	1158(1)	34(1)
C(8)	5086(3)	-898(2)	1992(2)	37(1)
Cl(1)	2568(1)	1270(1)	4712(1)	57(1)
C(10)	3114(6)	2514(3)	5133(4)	62(2)
F(1)	6643(1)	1631(1)	6045(1)	23(1)

Pd(1)-F(1)	1.9708(11)
Pd(1)-F(1)#1	1.9708(11)
Pd(1)-N(1)#1	1.9722(15)
Pd(1)-N(1)	1.9722(15)
N(1)-C(5)	1 341(3)
N(1)-C(1)	1.351(2)
C(2)-C(1)	1.384(3)
C(2)-C(3)	1 391(3)
C(3)-C(4)	1.398(3)
C(3)- $C(6)$	1.576(3)
C(4)- $C(5)$	1.325(3) 1.376(3)
C(1)-C(1)#1	1.370(3) 1 478(4)
$C(1)^{-}C(1)^{+}$	1.770(7)
C(0)-C(7)	1.528(5) 1.533(4)
C(0)-C(0)	1.555(4) 1.526(4)
C(0) - C(9)	1.330(4) 1.740(4)
CI(1)- $C(10)$	1.740(4) 1.772(4)
C(1) - C(10) # 2 C(10) - C(1) # 2	1.772(4) 1.772(4)
C(10)-CI(1)#2	1.//2(4)
F(1)-Pd(1)-F(1)#1	91 70(7)
F(1)-Pd(1)-N(1)#1	174 52(6)
F(1)#1-Pd(1)-N(1)#1	93.64(6)
F(1)-Pd(1)-N(1)	93 64(6)
F(1)#1-Pd(1)-N(1)	174 52(6)
N(1)#1-Pd(1)-N(1)	81 04(9)
C(5)-N(1)-C(1)	119 49(16)
C(5)-N(1)-Pd(1)	124.67(12)
C(1)-N(1)-Pd(1)	11580(13)
C(1)-C(2)-C(3)	119 91(18)
C(2)-C(3)-C(4)	117.50(18)
C(2) - C(3) - C(6)	123 20(18)
C(4)- $C(3)$ - $C(6)$	129.20(10) 119.29(19)
C(5)-C(4)-C(3)	120.10(19)
N(1)-C(5)-C(4)	120.10(17) 121.63(17)
N(1)-C(3)-C(4) N(1)-C(1)-C(2)	121.05(17) 121.34(17)
N(1) - C(1) - C(2) N(1) - C(1) - C(1) + 1	121.34(17) 113 66(11)
C(2) C(1) C(1) #1	113.00(11) 124.07(11)
C(2) = C(1) = C(1) = 1 C(3) = C(6) = C(7)	111 62(18)
C(3) - C(0) - C(7)	111.03(10) 108.4(2)
C(3) - C(0) - C(3)	100.4(2) 100.5(2)
$C(7) - C(0) - C(\delta)$	109.3(2) 109.22(10)
C(3) - C(0) - C(9)	108.32(19)
U(7) - U(6) - U(9)	109.0(2)

Table S22.	Bond	lengths	[A] and	l angles	[deg]	for 1	5.
------------	------	---------	---------	----------	-------	--------------	----

C(8)-C(6)-C(9)	109.9(2)
C(10)-Cl(1)-C(10)#2	45.9(4)
Cl(1)-C(10)-Cl(1)#2	114.5(3)

Symmetry transformations used to generate equivalent atoms: $\#1 - x + 3/2, -y + 1/2, z \quad \#2 - x + 1/2, -y + 1/2, z$

	U11	U22	U33	U23	U13	U12
Pd(1)	16(1)	17(1)	7(1)	0	0	-1(1)
N(1)	17(1)	19(1)	6(1)	0(1)	0(1)	1(1)
C(2)	16(1)	26(1)	10(1)	0(1)	-1(1)	-3(1)
C(3)	17(1)	26(1)	13(1)	-3(1)	-1(1)	-4(1)
C(4)	20(1)	26(1)	15(1)	0(1)	0(1)	-6(1)
C(5)	17(1)	25(1)	10(1)	2(1)	1(1)	-3(1)
C(1)	11(1)	18(1)	11(1)	1(1)	2(1)	2(1)
C(6)	25(1)	44(1)	12(1)	-6(1)	0(1)	-16(1)
C(9)	23(1)	74(2)	21(1)	-3(1)	-5(1)	-15(1)
C(7)	35(1)	56(2)	11(1)	-6(1)	-3(1)	-21(1)
C(8)	43(2)	46(2)	23(1)	-11(1)	4(1)	-21(1)
Cl(1)	45(1)	67(1)	60(1)	0(1)	2(1)	10(1)
C(10)	62(4)	49(4)	76(5)	-10(4)	-33(4) 4(3)
F(1)	30(1)	29(1)	11(1)	2(1)	1(1)	-12(1)

Table S23. Anisotropic displacement parameters (A² x 10³) for **15**. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

	Х	y z	U(eq)	
H(2A)	6730	1883	2136	21
H(4A)	4671	-47	3673	24
H(5A)	5616	725	4851	21
H(9A)	3454	1450	2115	59
H(9B)	3277	327	2654	59
H(9C)	3112	314	1636	59
H(7A)	5223	1675	1165	51
H(7B)	4889	539	682	51
H(7C)	6196	700	1086	51
H(8A)	5940	-1064	1923	56
H(8B)	4636	-1223	1515	56
H(8C)	4800	-1216	2533	56
H(10A)	3986	2553	5024	74
H(10B)	2996	2505	5762	74

Table S24. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² x 10³) for **15**.