Supporting Information for

The Amido-Bridged Zirconocene's Reactivity and Catalytic Behavior for Ethylene Polymerization

Cun Wang*, Martin Van Meurs, Ludger P. Stubbs, Boon-Ying Tay, Xiang-Jie Tan, Srinivasulu

Aitipamula, Jacob Chacko, He-Kuan Luo, Pui-Kwan Wong and Suming Ye

Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833.

Fig. S1 ¹H NMR spectrum of 2a ((400 MHz, C₆D₆/1,2-C₆H₄F₂, 298 K).

Supplementary Material (ESI) for Dalton Transactions

Fig. S2 ¹H NMR spectrum of **2b** ((400 MHz, C₆D₆/1,2-C₆H₄F₂, 298 K).

Fig. S3 ¹H NMR spectrum of 3a ((400 MHz, C₆D₆, 298 K).

Fig. S4 Dynamic ¹H NMR spectra of 3b ((400 MHz, $C_6D_5CD_3/1,2-C_6H_4F_2$).

Fig. S5 ¹H NMR spectrum of 4 ((400 MHz, C₆D₆/1,2-C₆H₄F₂, 298 K).

Fig. S6 ¹H NMR spectrum of **5** ((400 MHz, C₆D₆, 298 K).

Fig. S7 ¹H NMR monitoring of the reaction of **3b** with 1 equiv of $(Me_3SiCH_2)_2AIMe$ in situ, about 30% conversion rate to **2b** was obtained ((400 MHz, $C_6D_6/1,2-C_6H_4F_2$, 298 K).

Fig. S8. ¹H NMR monitoring of the reaction of **3b** with 1 equiv of **6** ((400 MHz, $C_6D_6/1, 2-C_6H_4F_2, 298$ K).

Fig. S9 ¹H NMR monitoring of the reaction of **3b** with half equiv of **7** ((400 MHz, $C_6D_6/1, 2-C_6H_4F_2, 298$ K).

Fig. S10 ¹H NMR spectrum of polyethylene obtained by using **3a** and (*i*-Bu)₃Al (listed in Table 2, entry 2).

Fig. S11 ¹H NMR spectrum of polyethylene obtained by using **3b** and (*i*-Bu)₃Al (listed in Table 2, entry 2).

Fig. S12 ¹H NMR spectrum of polyethylene obtained by using 2a and (*i*-Bu)₃Al (listed in Table 2, entry 4).

Fig. S13 ¹H NMR spectrum of polyethylene obtained by using 2b and (*i*-Bu)₃Al (listed in Table 2, entry 5).

Fig. S14 ¹H NMR spectrum of polyethylene obtained by using **2b** and Me₃Al (listed in Table 2, entry 6).

Fig. S15 ¹H NMR spectrum of polyethylene obtained by using 2b and Et₃Al (listed in Table 2, entry 7).

Fig. S16 ¹³C NMR spectrum of polyethylene obtained by using 2b and Et_3AI (listed in Table 2, entry 7).

Fig. S17 ¹H NMR spectrum of polyethylene obtained by using **2b** and Et₃Al (listed in Table 2, entry 8).

Fig. S18 ¹H NMR spectrum of polyethylene obtained by using 2b and Et₃Al (listed in Table 2, entry 9).

Fig. S19¹H NMR spectrum of polyethylene obtained by using 2b and (Me₃SiCH₂)₃Al (listed in Table 2, entry10).

Fig. S20 ¹H NMR spectrum of polyethylene obtained by using **2b** and Me₃Al (listed in Table 2, entry11).

Determination of the content of 1-octene in copolymer: Usually the branch distributions in polymer can be determined by ¹³C NMR anaylsis.¹ In our case that the product copolymer contains significant amounts of 1-octene, ¹H NMR spectroscopy is a much more convenient method by the integration of signals.² Since our product has low molecular weight and the end group signals can not be neglected, we calculated the content of 1-octene by a modification of the literature method.

$$O = [I(CH_3) - 3 \cdot I(H_b) - 3/2 \cdot I(H_c)]/3 = [34.97 - 3 - 5.205]/3 = 8.92$$

 $E = [I(CH_2 \text{ and } CH) + I(H_d) + 5/2 \bullet I(H_a) + 2 \bullet I(H_c) - 13O]/4 = [176.43 + 5.18 + 6.96 + 9.6 - 115.98]/4 = 20.54$

Mol % 1-octene = 100O/(O + E) = 892/(8.92 + 20.54) = 30

Fig. S21 ¹H NMR spectrum of the copolymer of ethylene with 1-octene using **1** and MAO (400 MHz, benzene- d_6 , 298 K)

Fig. S22 ¹³C NMR spectrum of the copolymer of ethylene with 1-octene using **1** and MAO (100 MHz, benzene- d_6 , 298 K).

Fig. S23 ¹H NMR spectrum of the copolymer of ethylene with 1-octene using **2b** and Et₃Al (100 MHz, benzene- d_6 , 298 K).

Fig. S24 ¹³C NMR spectrum of the copolymer of ethylene with 1-octene using **2b** and Et₃AI (100 MHz, benzene- d_6 , 298 K).

Fig. S25 GPC trace of the polyethylene (Table 2, entry 1).

Fig. S27 GPC trace of the polyethylene (listed in Table 2, entry 3).

Fig. S28 GPC trace of the polyethylene (listed in Table 2, entry 4).

Fig. S29 GPC trace of the polyethylene (listed in Table 2, entry 5).

Fig. S30. GPC trace of the polyethylene (listed in Table 2, entry 6).

Fig. S31 GPC trace of the polyethylene (listed in Table 2, entry 7).

Fig. S32. GPC trace of the polyethylene (listed in Table 2, entry 8).

Fig. S33. GPC trace of the polyethylene (listed in Table 2, entry 9).

Distribution Plots

Fig. S34 GPC trace of the polyethylene (listed in Table 2, entry 10).

Fig. S35 GPC trace of the polyethylene (listed in Table 2, entry 11).

Fig. S36 GPC trace of the copolymer of ethylene with 1-octene using 1 and MAO.

Fig. S37 GPC trace of the copolymer of ethylene with 1-octene using 2b and Et₃Al.

1 (a) Pooter, M. De.; Smith, P. B.; Dohrer, K. K.; K. Bennett, K. F.; Meadows, M. D.; Smith, C. G.;
Schouwenaars, H. P.; Geerards, R. A. J. Appl. Polym. Sci. 1991, 42, 399. (b) Randall, J. C. JMS-Rev.
Macromol. Chem. Phys. 1989, C29 (2 & 3), 201. (c) Wang, W.-J.; Kolodka, E.; Zhu, S.; Hamielec, A. E.
J. Polym. Sci. A 1999, 37, 2949. (d) Liu, W.; Ray III, D. G.; Rinaldi, P. L. Macromolecules 1999, 32, 3817.

2 Joe, D. J.; Wu, C. J.; Bok, T.; Lee, E. J.; Lee, C. H., Han, W.-S.; Kang, S. O.; Lee, B. Y. *Dalton Trans.* **2006**, 4056.