Electronic Supplementary Information

Potassium-mediated zincation of ferrocene and ruthenocene: potassium, the architect behind supramolecular structural variations

William Clegg,^{*a*} Ben Conway,^{*b*} Pablo García-Álvarez,^{*b*} Alan R. Kennedy,^{*b*} Jan Klett,^{*b*} Robert E. Mulvey,^{*b*} and Luca Russo^{*a*}

^a School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

^b WestChem, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK. E-mail: <u>*r.e.mulvey@strath.ac.uk*</u>

Experimental Section

General Methods. ¹H and ¹³C NMR spectra were recorded on either a Bruker DPX 400 MHz or a Bruker AV 500 MHz spectrometer. All ¹³C NMR spectra were proton decoupled. All solvents were distilled from sodium-benzophenone. Crystal structure **1** was measured at 150 K and structures **2** and **3** were measured at 123 K. All structures were measured on Oxford Diffraction Gemini A Ultra and Gemini S diffractometers with graphite-monochromated Mo K α radiation (λ =0.71073 Å). Structures were solved by direct methods (SHELX program family or SIR) and refined to convergence on F² using SHELXL. Full details are given in the associated CIFs. All synthetic work was carried out under an inert argon atmosphere.

Synthesis of [PMDETA.K(µ-TMP)(µ-Me)Zn(Me)] (1)

0.24 g (2 mmol) of KCH₂Si(CH₃)₃ was suspended in 10 mL of hexane. 0.42 mL (2 mmol) of PMDETA was added, followed by 0.34 mL (2 mmol) of TMPH to afford a clear orange solution. Next, 2 mL (2 mmol) of 1M Me₂Zn (in heptanes) was added to the reaction mixture. The Schlenk tube was next placed in the freezer (-28° C) overnight to afford colourless crystals (0.54 g, 60 % yield).

¹**H NMR** (400.13 MHz, 298K, C₆D₆):

δ 2.01 [2H, m, γH of TMP], 1.88 [12H, s, $4 \times CH_3$ of PMDETA], 1.86 [8H, s, $4 \times CH_2$ of PMDETA], 1.82 [3H, s, $1 \times CH_3$ of PMDETA], 1.57 [4H, t, $2 \times \beta CH_2$ of TMP, J = 6.0 Hz], 1.41 [12H, s, $4 \times CH_3$ of TMP], -0.35 [6H, s, $2 \times Zn$ -CH₃]. Some traces of free TMPH were found at δ 1.53, 1.22 and 1.06.

¹³C{¹H} NMR (100.62 MHz, 298K, C₆D₆):

δ 56.5 [2 × CH₂ of PMDETA at ^Hδ 1.86], 54.9 [2 × CH₂ of PMDETA at ^Hδ 1.86], 45.1 [4 × CH₃ of PMDETA at ^Hδ 1.88], 41.5 [1 × CH₃ of PMDETA at ^Hδ 1.82], 41.2 [2 × βCH₂ at ^Hδ 1.57], 34.8 [4 × CH3 of TMP at ^Hδ 1.41], 20.4 [1 × δCH₂ of TMP at ^Hδ 2.01], -2.9 [2 × Zn-CH₃ at ^Hδ -0.35]. Some traces of free TMPH were found at δ 38.2, 31.8 and 18.8.

Synthesis of $[{PMDETA.K(\mu-Me)_2Zn(Fc)}_{\infty}]$ (2)

0.24 g (2 mmol) of KCH₂Si(CH₃)₃ was suspended in 10 mL of hexane. 0.42 mL (2 mmol) of PMDETA was added, followed by 0.34 mL (2 mmol) of TMPH to afford a transparent orange solution. Next, 2 mL (2 mmol) of 1M Me₂Zn (in heptanes) was added to the reaction mixture. In

a separate Schlenk tube, 0.37 g (2 mmol) of ferrocene was dissolved in 10 mL of hexane. The base mixture was then transferred to the ferrocene-containing Schlenk tube *via* a canula and stirred overnight. An orange suspension was formed and was isolated as an orange crystalline solid (0.45 g, 46% yield).

¹**H** NMR (500.13 MHz, 298K, C₆D₆ plus a few drops of deuterated THF to aid solubility): δ 4.41 [2H, broad s, 2 × CH of metallated Cp ring], 4.38 [5H, broad s, 5 × CH of unsubstituted Cp ring], 4.31 [2H, broad s, 2 × CH of metallated Cp ring], 2.13 [4H, m, 2 × CH₂ of PMDETA], 2.08 [4H, m, 2 × CH₂ of PMDETA], 2.00 [15H, s, 5 × CH₃ of PMDETA], -0.36 [6H, s, 2 × Zn–CH₃]. THF signals can be seen at δ 3.52 and 1.41. A very small amount of free ferrocene can be seen at δ 4.00.

¹³C{¹H} NMR (100.62 MHz, 298K, C₆D₆ plus a few drops of deuterated THF to aid solubility): δ 77.6 [2 × CH from metallated Cp at ^H δ 4.31], 70.4 [2 × CH from metallated Cp at ^H δ 4.41], 67.3 [5 × CH of unsubstituted Cp at ^H δ 4.38], 57.4 [2 × CH₂ of PMDETA at ^H δ 2.08], 55.9 [2 × CH₂ of PMDETA at ^H δ 2.13], 45.3 [4 × CH₃ of PMDETA at ^H δ 2.00], 42.1 [1 × CH₃ of PMDETA at ^H δ 2.00], -6.6 [2 × Zn-CH₃ at ^H δ -0.36]. Solvent THF signals can be seen at δ 66.7 and 24.5.

Filtrate: Only free ferrocene can be seen, no metallated ferrocene resonances are present. PMDETA, TMP and peaks from the Me groups are also present. Free TMPH is also not present as the filtrate was put under vacuum for several hours.

Synthesis of [{PMDETA.K(µ-Me)₂Zn(Ru)}₂] (3)

0.24 g (2 mmol) of KCH₂Si(CH₃)₃ was suspended in 10 mL of hexane. 0.42 mL (2 mmol) of PMDETA was added, followed by 0.34 mL (2 mmol) of TMPH to afford a transparent orange solution. Next, 2 mL (2 mmol) of 1M Me₂Zn (in heptanes) was added to the reaction mixture. In a separate Schlenk tube, 0.46 g (2 mmol) of ruthenocene was dissolved in 20 mL of hexane. The base mixture was then transferred to the ruthenocene-containing Schlenk tube *via* a canula and stirred overnight. An pale yellow suspension was formed and was isolated as a pale yellow crystalline solid (0.42 g, 39% yield).

¹**H** NMR (500.13 MHz, 298K, C₆D₆ plus a few drops of deuterated THF to aid solubility): δ 4.71 [2H, broad s, 2 × CH of metallated Cp ring], 4.58 [5H, broad s, 5 × CH of unsubstituted Cp ring], 4.46 [2H, broad s, 2 × CH of metallated Cp ring], 2.33 [4H, m, 2 × CH₂ of PMDETA], 2.23 [4H, m, 2 × CH₂ of PMDETA], 2.10 [3H, s, 1 × CH₃ of PMDETA], 2.05 [12H, s, 4 × CH₃ of PMDETA], -0.69 [6H, s, 2 × Zn–CH₃]. THF signals can be seen at δ 3.49 and 1.46. A very small amount of free ruthenocene (from slight hydrolysis) can be seen at δ 4.43.

¹³C{¹H} NMR (100.62 MHz, 298K, C₆D₆ plus a few drops of deuterated THF to aid solubility): δ 79.3 [2 × CH from metallated Cp at ^H δ 4.46], 72.1 [2 × CH from metallated Cp at ^H δ 4.71], 68.8 [5 × CH of unsubstituted Cp at ^H δ 4.58], 58.0 [2 × CH₂ of PMDETA at ^H δ 2.23], 56.6 [2 × CH₂ of PMDETA at ^H δ 2.33], 45.6 [4 × CH₃ of PMDETA at ^H δ 2.05], 42.6 [1 × CH₃ of PMDETA at ^H δ 2.10], -6.9 [2 × Zn–CH₃ at ^H δ –0.69]. THF signals can be seen at δ 66.8 and 24.6. A very small amount of ruthenocene can be seen at δ 70.1.

Filtrate: Small amount of monometallated ruthenocene can be seen, mostly free ruthenocene is observed. PMDETA, TMP and Me groups can also be seen. Free TMPH is also not present as the filtrate was put under vacuum for several hours.