Oxovanadium(IV) complexes of phenanthroline bases: the dipyridophenazine complex as a near-IR photocytotoxic agent

Pijus K. Sasmal,^{*a*} Sounik Saha, ^{*a*} Ritankar Majumdar,^{*b*} Swati De,^{*a*} Rajan R. Dighe,^{*b*} and Akhil R. Chakravarty*^{*a*}

^a Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012,

India. Fax: (+91)80-23600683; Tel: +91-80-22932533; E-mail: arc@ipc.iisc.ernet.in

^b Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.

Electronic Supplementary Information

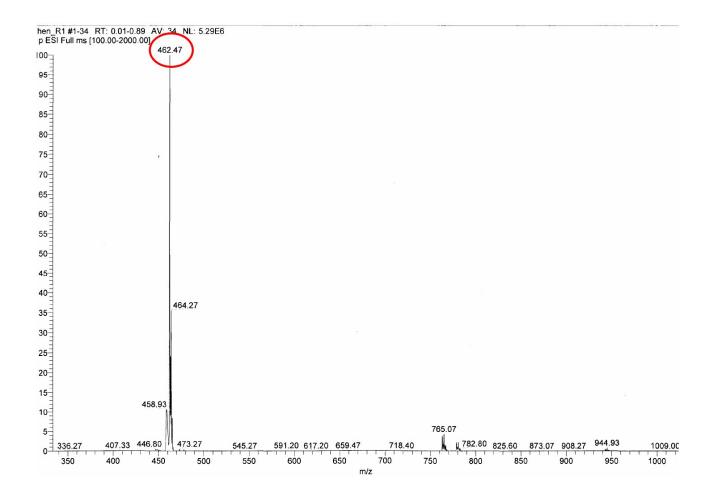


Fig. S1. The ESI-MS spectrum of complex 1 showing the parent ion peak at 462.47 (m/z) in MeOH.

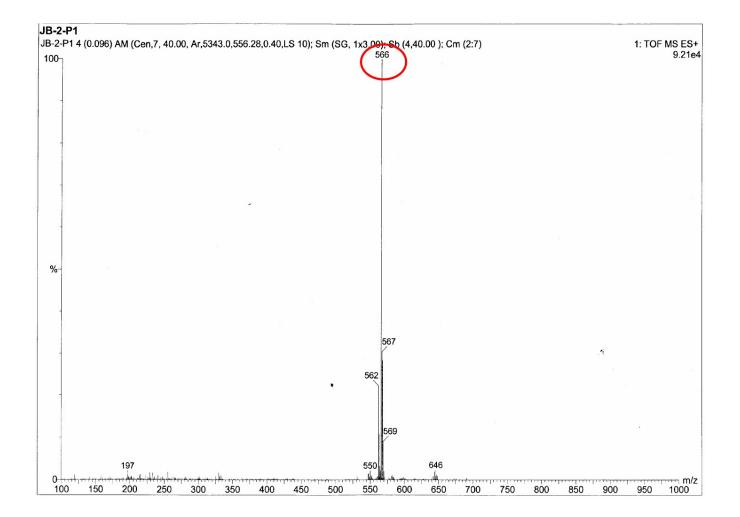


Fig. S2. The ESI-MS spectrum of complex 2 showing the parent ion peak at 566 (m/z) in MeOH.

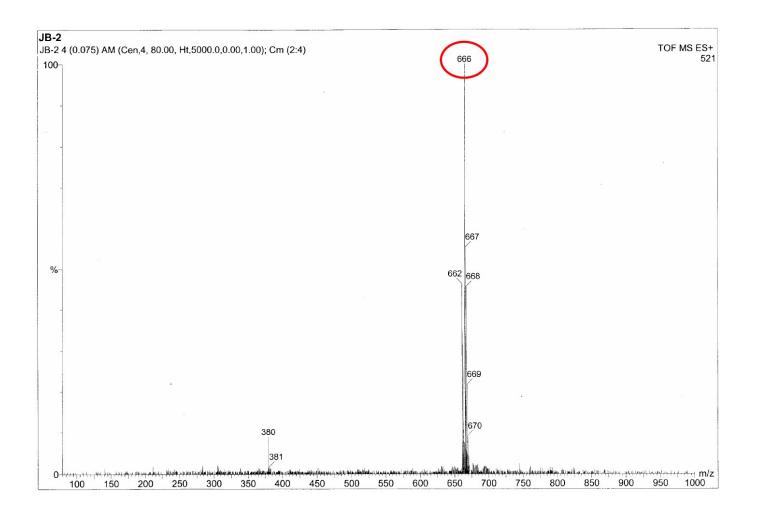
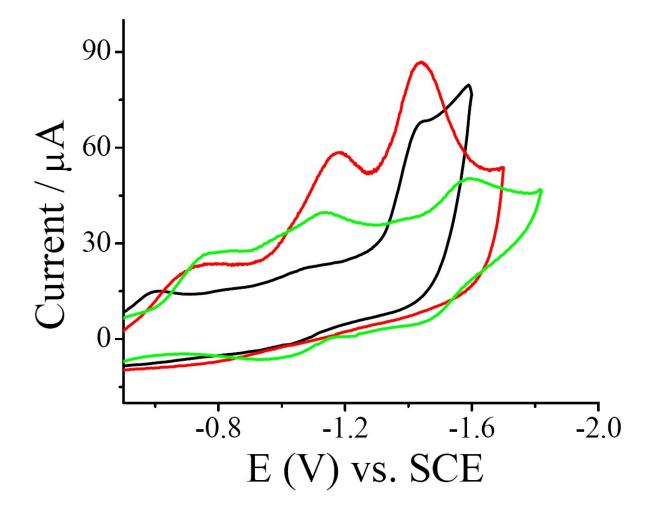
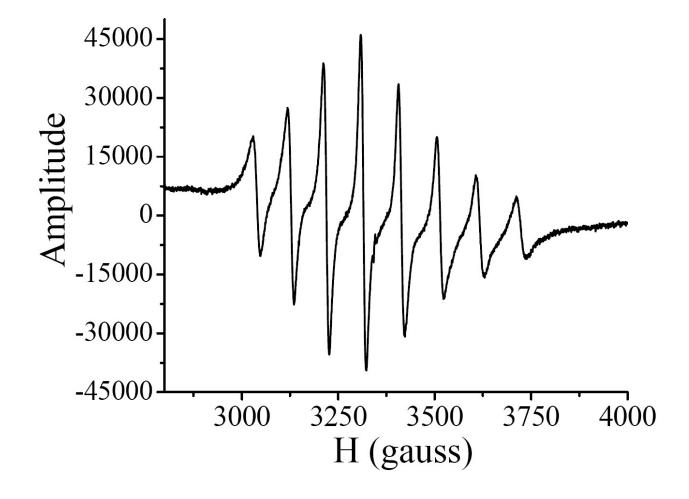
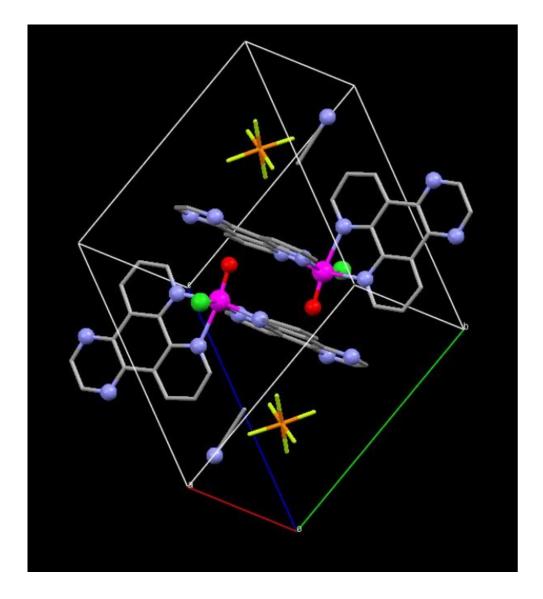
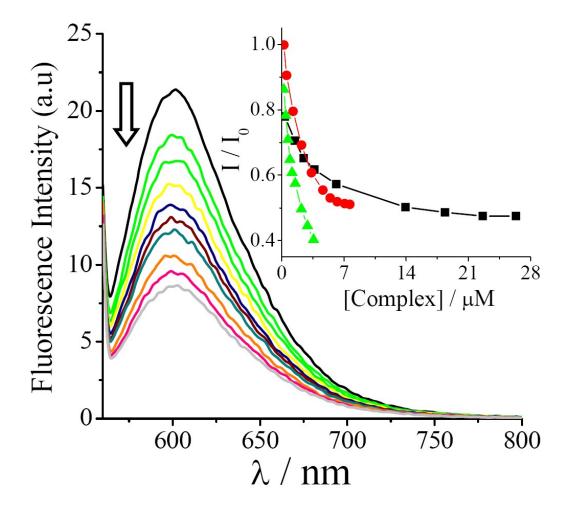



Fig. S3. The ESI-MS spectrum of complex 3 showing the parent ion peak at 666 (m/z) in MeOH.

Fig. S4. Cyclic voltammograms of the complexes (1) (black), (2) (red) and **3** (green) in 20% DMF-Tris-HCl buffer at a scan rate of 50 mV s⁻¹ using 0.1 mol KCl as the supporting electrolyte.


Fig. S5. EPR spectrum of complex 3 (5 mM) in MeOH. The experimental conditions and operating frequency are T = 298 K, v = 9.39 GHz, modulation amplitude = 4.0 G at 100 kHz, and receiver gain = 1×10^{-3} .

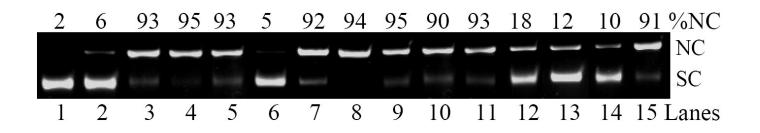

Fig. S6. Unit cell packing diagram of [VOCl(dpq)₂](PF₆)·MeCN (**2a**·MeCN).

Fig. S7. The energy-minimized structure of the dppz complex 3 generated using the atomic coordinates of $[VOCl(dpq)_2](PF_6)$ (2a·MeCN).

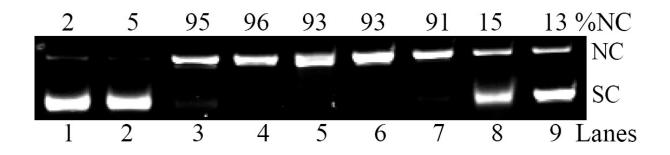
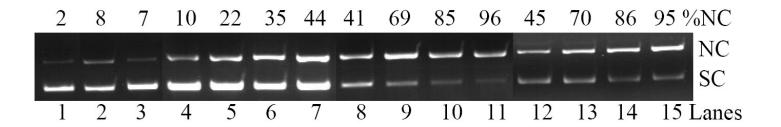
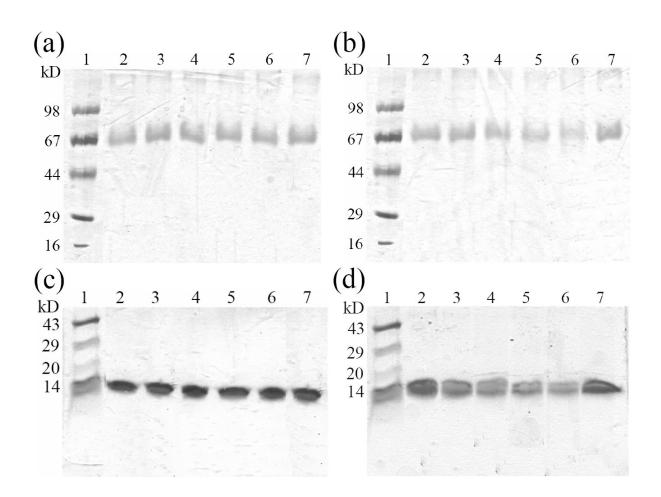


Fig. S8. Emission spectral traces of complex **3** using 350 μ M calf thymus DNA-bound ethidium bromide (1.3 μ M) at different complex concentrations in 5 mM phosphate buffer (pH, 6.85) at 25 °C. The inset shows the plots for the complexes **1** (**n**), **2** (**•**) and **3** (**△**).


Fig. S9. Cleavage of SC pUC19 DNA (0.2 μ g, 30 μ M) by [VOCl(B)₂]Cl (B = phen, 1; dpq, 2; dppz, 3) in the presence of MPA (0.2 mM) and GSH (0.2 mM) as reducing agents in 50 mM Tris-HCl/NaCl buffer (pH 7.2) containing 1.5% DMF under dark reaction condition. Detail conditions are given below in a tabular form. The inhibition of cleavage was observed in the presence of hydroxyl radical scavengers like DMSO, KI and catalase.

Lane No	Reaction conditions
1	DNA control
2	DNA + MPA
3-5	DNA + complexes 1-3 + MPA
6	DNA + GSH
7-9	DNA + complexes 1-3 + GSH
10	DNA + complex 3 + MPA + NaN ₃ (0.2 mM)
11	DNA + complex 3 + MPA + TEMP (0.2 mM)
12	DNA + complex 3 + MPA + DMSO (4 μ L)
13	DNA + complex 3 + MPA + KI (0.2 mM)
14	DNA + complex 3 + MPA + catalase (4 units)
15	DNA + complex 3 + MPA + SOD (4 units)


Fig. S10. Cleavage of SC pUC19 DNA (0.2 μ g, 30 μ M) by [VOCl(B)₂]Cl (B = phen, 1; dpq, 2; dppz, 3) (10 μ M) in the presence of H₂O₂ (0.2 mM) as an oxidizing agent in 50 mM Tris-HCl/NaCl buffer (pH 7.2) containing 1.5% DMF under dark reaction condition. Detail conditions are given below in a tabular form.

Lane No	Reaction conditions
1	DNA control
2	$DNA + H_2O_2$
3-5	DNA + complexes $1-3 + H_2O_2$
6	$DNA + 3 + H_2O_2 + NaN_3 (0.2 \text{ mM})$
7	$DNA + 3 + H_2O_2 + TEMP (0.2 mM)$
8	$DNA + 3 + H_2O_2 + DMSO (4 \ \mu L)$
9	$DNA + 3 + H_2O_2 + KI (0.2 mM)$

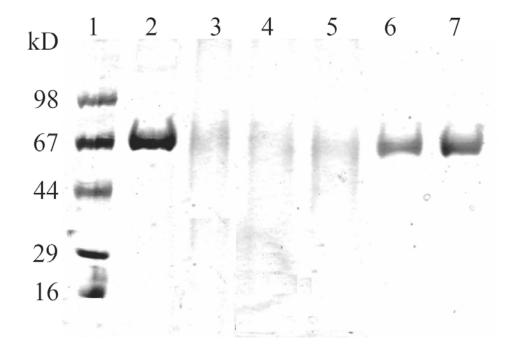
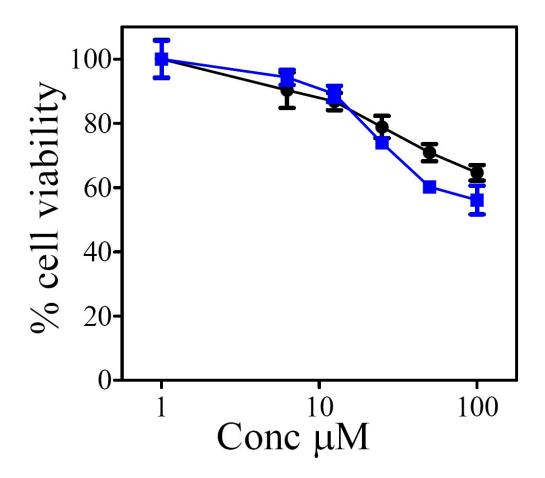


Fig. S11. Cleavage of SC pUC19 DNA (0.2 μ g, 30 μ M) by the complexes **1** – **3** (2.5 μ M) in 50 mM Tris-HCl/NaCl buffer (pH, 7.2) containing 1.5% DMF on photo-irradiation at 365 nm (6 W) using different exposure times. Detail conditions are given below in a tabular form.


Lane No	Reaction conditions
1	DNA control (60 min)
2	DNA + dpq (10 μ M) (60 min)
3	DNA + dppz (10 µM) (60 min)
4-7	DNA + complex 1 (15, 30, 45, 60 min.)
8-11	DNA + complex 2 (15, 30, 45, 60 min.)
12-15	DNA + complex 3 (15, 30, 45, 60 min.)

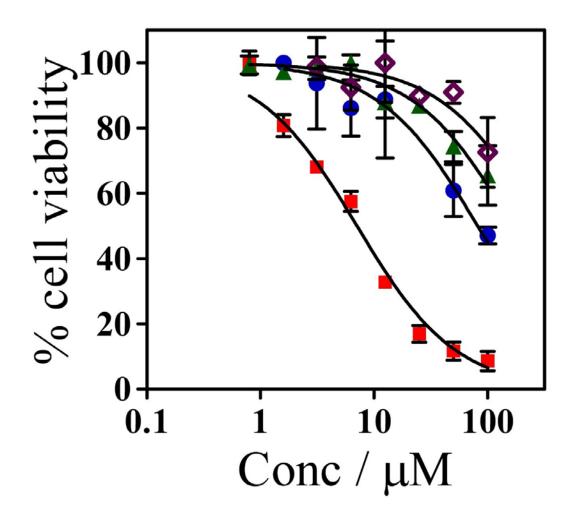

Fig. S12. Photo-induced cleavage of bovine serum albumin (BSA, 5 μ M) and lysozyme (10 μ M) in UV-A light of 365 nm by the complexes [VOCl(B)₂]Cl (B: phen, 1; dpq, 2) in 50 mM Tris-HCl buffer having 0.75% DMF (pH 7.2). Panels (a) and (b) represent complexes 1 and 2, respectively, in 12.5% SDS-PAGE: lane 1, molecular marker; lane 2, BSA control; lane 3, BSA + complex (25 μ M, 2 h); lane 4, BSA + complex (50 μ M, 2 h); lane 5, BSA + complex (75 μ M, 2 h); lane 6, BSA + complex (100 μ M, 2 h); lane 7, BSA + complex (100 μ M, in dark). Panels (c) and (d) represent complexes 1 and 2, respectively, in 16.5% tricine-SDS-PAGE: lane 1, molecular marker; lane 2, lysozyme control; lane 3, lysozyme + complex (25 μ M, 2 h); lane 4, lysozyme + complex (50 μ M, 2 h); lane 5, lysozyme + complex (75 μ M, 2 h); lane 6, lysozyme + complex (100 μ M, 2 h); lane 7, lysozyme + complex (100 μ M, in dark).

Fig. S13. 12.5% SDS-PAGE of BSA (5 μ M) on 2 h photoexposure in UV-A light (365 nm, 6 W) using complex **3** (100 μ M) in the presence of different additives in a 0.75% DMF-Tris-HCl buffer (50 mM, pH 7.2) at 25 °C: lane 1, standard molecular weight marker; lane 2, protein control on photoexposure; lane 3, BSA + **3**; lane 4, BSA + **3** + NaN₃; lane 5, BSA + **3** + TEMP; lane 6, BSA + **3** + DMSO; lane 7, BSA + **3** + KI.

Fig. S14. Photocytotoxicity of the $[VOCl(dpq)_2]Cl(2)$ in HeLa cells upon incubation for 30 min in dark followed by irradiation with UV-A light (365 nm, 0.549 J cm⁻²) as determined by MTT assay. The dark-treated cells are shown by circle (•) and the UV-A light-exposed cells are shown by squares (•). The IC₅₀ values in dark and UV-A light are greater than 100 μ M.

Fig. S15. Photocytotoxicity of $[VOCl(dppz)_2]Cl(3)(\bullet)$, dppz ligand (•), dpq ligand (\blacktriangle) and VOSO₄ (\diamond) in HeLa cells upon incubation for 30 min in dark followed by irradiation with visible light (400 to 700 nm, 20 J cm⁻²) as determined by MTT assay. The IC₅₀ values are 12, 95, >100 and >100 μ M, respectively.

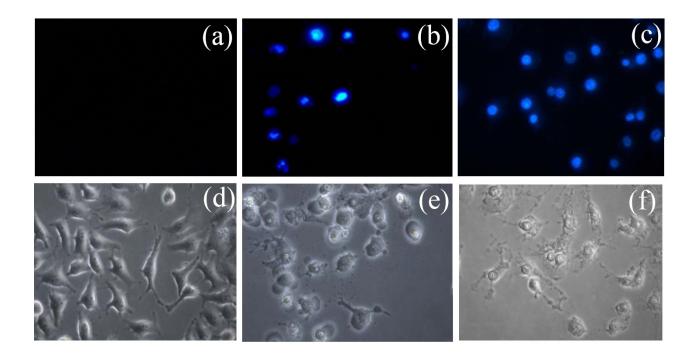


Fig. S16. DAPI staining of nuclei of HeLa cells (2 h post photoexposure) treated with 3 and UV-A light of 365 nm: (a) untreated control cells, (b) cells treated with 1 μ M of 3 and (c) cells treated with 10 μ M of 3. Panels (a)-(c) are from a fluorescence microscope with 360/40 nm excitation filter and 460/50 nm emission filter. Panels (d)-(f) are the respective bright-field images.