# **Electronic Supplementary Information**

#### Characterization of a Rhodium-Sparteine Complex, $[((-)-sparteine) Rh(\eta^4-COD)]^+$ : Crystal Structure and DNMR/DFT Studies on Ligand-Rotation Dynamics

Antonio G. De Crisci, Vincent T. Annibale, Gordon K. Hamer, Alan J. Lough, and Ulrich Fekl\*

University of Toronto, at the following campus locations: A. G. De C., V. T.A., G. K. H. and U. F. at UTM, Department of Chemical and Physical Sciences, 3359 Mississauga Road N, Mississauga, ON, Canada L5L 1C6; A. J. L. at the X-ray Crystallography Lab, University of Toronto, 80 St. George St., Toronto, ON, Canada M5S 3H6.

\* Corresponding author. E-mail: ulrich.fekl@utoronto.ca

### **Table of Contents**

| DFT Computed Atomic Coordinates and Atom labeling for $1^+$                                                                      | . Page S3             |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| DFT Computed Atomic Coordinates and Atom labeling for $1_a^+$                                                                    | Page S6               |
| DFT Computed Atomic Coordinates and Atom labeling for $\mathbf{1_b}^+$                                                           | Page S9               |
| DFT Computed Atomic Coordinates and Atom labeling for $1_c^+$                                                                    | Page S12              |
| DFT Computed Atomic Coordinates and Atom labeling for $\mathbf{1_d}^+$                                                           | Page S15              |
| DFT Computed Atomic Coordinates and Atom labeling for $1_e^+$                                                                    | Page S18              |
| DFT Computed Atomic Coordinates and Atom labeling for $\mathbf{1_f}^+$                                                           | Page S21              |
| DFT Computed Atomic Coordinates and Atom labeling for $\mathbf{1_n}^+$                                                           | Page S24              |
| Figure S1: Highest Occupied Molecular Orbital (HOMO) of 1 <sup>+</sup>                                                           | Page S27              |
| Figure S2: Lowest Unoccupied Molecular Orbital (LUMO) of <b>1</b> <sup>+</sup>                                                   | Page S27              |
| Figure S3: Highest Occupied Molecular Orbital (HOMO) of $\mathbf{1_c}^+$                                                         | .Page S28             |
| Figure S4: Highest Occupied Molecular Orbital (HOMO) of $\mathbf{1_f}^+$                                                         | .Page S28             |
| Figure S5: Relaxed Potential Energy Scan (PES) correlation                                                                       | .Page S29             |
| Figure S6: Final, geometry optimized structure from PES scan results                                                             | Page S29              |
| Figure S7: (-)Sparteine overlap from $1^+$ and $1_a^+$                                                                           | Page S30              |
| Table S1: DFT computed Energies for CPCM computed compounds $1^+$ , $1_a^+$ , $1_c^+$ , $1_f^+$ , $1_n^+$                        | <sup>+</sup> Page S30 |
| Table S2: DFT calculated free energies and enthalpies for $1^+$ , $1_a^+$ , $1_b^+$ , $1_c^+$ , $1_d^+1_e^+$ , $1_f^+$ , $1_n^+$ | <sup>+</sup> Page S30 |

| Table S3: Selective 1D EXSY data taken at -20 °C in CD <sub>2</sub> Cl <sub>2</sub>                            | .Page S31   |
|----------------------------------------------------------------------------------------------------------------|-------------|
| Figure S8: <sup>1</sup> H and <sup>13</sup> C NMR of <b>1</b> BF <sub>4</sub>                                  | Page S32    |
| Figure S9: Phase sensitive gHSQC of <b>1</b> BF <sub>4</sub> in CD <sub>2</sub> Cl <sub>2</sub> at -50 °C      | Page S33    |
| Figure S10: gCOSY and phase sensitive NOESY of 1BF <sub>4</sub> in CD <sub>2</sub> Cl <sub>2</sub> , at -50 °C | Page S34    |
| Table S4 to S8; X-ray Crystal Structure Information                                                            | Page S35-42 |

DFT computed atomic coordinates and atom labels for  $1^+$ , ground state (singlet) RB3LYP/SDD with augmented d functions on nitrogen <sup>1</sup>



| Center<br>Number | Atomic<br>Number | Atomic<br>Type | Coord<br>X | inates (Ange<br>Y | stroms)<br>Z |
|------------------|------------------|----------------|------------|-------------------|--------------|
| 1                | 6                | 0              | 3.657860   | -1.022457         | 0.953599     |
| 2                | 6                | 0              | 2.097955   | 0.900102          | 1.546331     |
| 3                | 6                | 0              | -2.337104  | -2.026859         | 1.998662     |
| 4                | 6                | 0              | 0.674773   | 1.427536          | 1.865294     |
| 5                | 6                | 0              | 3.889507   | -2.328184         | 0.173208     |
| 6                | 6                | 0              | 2.191777   | -0.503520         | 0.873876     |
| 7                | 6                | 0              | 2.819510   | 1.953050          | 0.679272     |

| 0  | ~  | 0 | 1.065005  | 0.115000  | 0.00000       |
|----|----|---|-----------|-----------|---------------|
| 8  | 6  | 0 | -1.967995 | -3.115300 | 0.960237      |
| 9  | 6  | 0 | -2.311349 | -0.629171 | 1.398263      |
| 10 | 6  | 0 | -1.330843 | 2.606599  | 1.112014      |
| 11 | 7  | 0 | -0 175833 | 1 736397  | 0.650150      |
| 12 | 6  | 0 | 0.040274  | 2 502925  | 0.030130      |
| 12 | 0  | 0 | -0.940274 | -2.392833 | -0.044446     |
| 13 | 6  | 0 | 3.447418  | -2.116512 | -1.284699     |
| 14 | 7  | 0 | 1.576321  | -0.484675 | -0.530486     |
| 15 | 45 | 0 | -0.658190 | -0.392591 | -0.020156     |
| 16 | 6  | 0 | 2.015982  | 2.046421  | -0 629437     |
| 17 | 6  | Õ | 2 86/330  | 0 253253  | 0.149665      |
| 10 | 0  | 0 | -2.00+333 | -0.233233 | 0.149005      |
| 18 | 6  | 0 | 0.61/23/  | 2.606661  | -0.311261     |
| 19 | 6  | 0 | 1.958513  | -1.720162 | -1.319029     |
| 20 | 6  | 0 | 2.036373  | 0.692035  | -1.355950     |
| 21 | 6  | 0 | -2.197707 | 3.218688  | -0.013803     |
| 22 | 6  | 0 | -1 249142 | -2.041247 | -1 313581     |
| 22 | 6  | Õ | -3 608667 | 1 1800/2  | 0.804840      |
| 23 | 0  | 0 | -3.008007 | -1.107742 | -0.804840     |
| 24 | 6  | 0 | -1.369976 | 3.909015  | -1.11623/     |
| 25 | 6  | 0 | -0.227722 | 2.970358  | -1.546493     |
| 26 | 6  | 0 | -2.653973 | -1.818192 | -1.855942     |
| 27 | 1  | 0 | 3.890152  | -1.164464 | 2.017771      |
| 28 | 1  | 0 | 2 601006  | 0 803958  | 2 518251      |
| 20 | 1  | Õ | 1 622223  | 2 050363  | 2.810201      |
| 29 | 1  | 0 | -1.022223 | -2.039303 | 2.831020      |
| 30 | l  | 0 | 0.124902  | 0./12384  | 2.48/308      |
| 31 | 1  | 0 | 0.796657  | 2.351041  | 2.456589      |
| 32 | 1  | 0 | 4.946778  | -2.613729 | 0.225391      |
| 33 | 1  | 0 | -3.328619 | -2.226594 | 2.435947      |
| 34 | 1  | 0 | 3 314654  | -3 153603 | 0.621002      |
| 25 | 1  | Õ | 4 361108  | 0 260520  | 0.578570      |
| 20 | 1  | 0 | 4.501198  | -0.209329 | 1 490210      |
| 36 | 1  | 0 | -1.550308 | -3.985158 | 1.480319      |
| 37 | 1  | 0 | 1.571554  | -1.213040 | 1.440819      |
| 38 | 1  | 0 | 2.833907  | 2.924066  | 1.190221      |
| 39 | 1  | 0 | -2.184334 | 0.156635  | 2.142757      |
| 40 | 1  | 0 | 3.862677  | 1.685659  | 0.487642      |
| 41 | 1  | Õ | -0.899292 | 3 433358  | 1 700789      |
| 12 | 1  | 0 | 1 059074  | 2.028270  | 1.705166      |
| 42 | 1  | 0 | -1.938074 | 2.028879  | 1./95100      |
| 43 | 1  | 0 | 0.04//23  | -3.023166 | 0.095518      |
| 44 | 1  | 0 | -2.861598 | -3.472078 | 0.438310      |
| 45 | 1  | 0 | 0.805982  | 3.553758  | 0.229546      |
| 46 | 1  | 0 | 4.085754  | -1.363978 | -1.766699     |
| 47 | 1  | 0 | 3 557979  | -3 039265 | -1 868831     |
| 18 | 1  | Õ | 1 300526  | 2 569030  | -0.926751     |
| 40 | 1  | 0 | 1.399320  | 1.070208  | -0.920731     |
| 49 | 1  | 0 | -4.129094 | -1.970298 | -0.239133     |
| 50 | 1  | 0 | -3.113182 | 0.793334  | 0.027695      |
| 51 | 1  | 0 | 2.487334  | 2.770578  | -1.307744     |
| 52 | 1  | 0 | 3.064771  | 0.517027  | -1.700129     |
| 53 | 1  | 0 | -2.887328 | 3.931299  | 0.457411      |
| 54 | 1  | Õ | -0.944312 | 4 853012  | -0 745642     |
| 55 | 1  | 0 | 1 620405  | 1 552522  | 2 3 5 0 6 0 0 |
| 55 | 1  | 0 | 1.029403  | -1.332322 | -2.330099     |
| 56 | 1  | 0 | -2.816949 | 2.453021  | -0.48815/     |
| 57 | 1  | 0 | -0.484225 | -2.096392 | -2.087342     |
| 58 | 1  | 0 | 1.399108  | 0.718564  | -2.247087     |
| 59 | 1  | 0 | -4.387654 | -0.621543 | -1.326121     |
| 60 | 1  | 0 | -3 068352 | -2 766463 | -2 234794     |
| 61 | 1  | ñ | -0 638085 | 2.700405  | -2.01/252     |
| 62 | 1  | 0 | -0.030003 | 2.0041/9  | -2.014232     |
| 02 | 1  | U | 0.415958  | 3.401088  | -2.2881//     |
| 63 | 1  | 0 | -2.016179 | 4.163147  | -1.964748     |

64 1 0 -2.578971 -1.147194 -2.720584

\_\_\_\_\_

NBasis= 377 NAE= 103 NBE= 103 NFC= 0 NFV= 0 NROrb= 377 NOA= 103 NOB= 103 NVA= 274 NVB= 274 SCF: E(RB+HF-LYP) = -1119.10819216 a.u.

| Item                                     |                 | Value   | Thre | eshold  | Con | verged? |
|------------------------------------------|-----------------|---------|------|---------|-----|---------|
| Maximum F                                | orce            | 0.00002 | 9 (  | 0.0004  | 50  | YES     |
| RMS For                                  | ce              | 0.00000 | 4 (  | 0.00030 | 00  | YES     |
| Maximum I                                | Displacement    | 0.00157 | 2 (  | 0.0018  | 00  | YES     |
| RMS Dis                                  | placement       | 0.00025 | 2 (  | 0.00120 | 00  | YES     |
| Predicted change in Energy=-8.519194D-08 |                 |         |      |         |     |         |
| Optimization completed.                  |                 |         |      |         |     |         |
| Stationa                                 | ry point found. |         |      |         |     |         |
|                                          |                 |         |      |         |     |         |

DFT computed atomic coordinates and atom labels for  $\mathbf{1}_{a}^{+}$ , as transition state (singlet) RB3LYP/SDD with augmented d functions on nitrogen<sup>1</sup>



| Center<br>Number | Atomic<br>Number | Aton<br>Type | nic<br>e X | Coordinates<br>X Y | (Angstroms)<br>Z |
|------------------|------------------|--------------|------------|--------------------|------------------|
| 1                | 6                | 0            | 3.882283   | 3 -0.731032        | 0.859974         |
| 2                | 6                | 0            | 2.261919   | 9 1.164537         | 1.432190         |
| 3                | 6                | 0            | -3.769810  | 6 -0.630547        | 0.269492         |
| 4                | 6                | 0            | 0.828117   | 7 1.612756         | 1.807732         |
| 5                | 6                | 0            | 4.075745   | 5 -2.132803        | 0.250712         |
| 6                | 6                | 0            | 2.389830   | 0 -0.293675        | 0.912557         |
| 7                | 6                | 0            | 2.831868   | 3 2.154539         | 0.394674         |
| 8                | 6                | 0            | -3.166750  | 6 -1.310901        | 1.528305         |
| 9                | 6                | 0            | -2.733050  | 6 -0.504874        | -0.846622        |
| 10               | 6                | 0            | -1.3047    | 55 2.564940        | 1.184399         |
| 11               | 7                | 0            | -0.12019   | 96 1.805932        | 0.655313         |

| S | 7 |
|---|---|
| - |   |

| 12             | 6  | 0 | -1 636829  | -1 184219 | 1 559065      |
|----------------|----|---|------------|-----------|---------------|
| 13             | 6  | 0 | 3 41 53 34 | -2 179713 | -1 140633     |
| 14             | 7  | Õ | 1 636457   | -0 465797 | -0 388265     |
| 15             | 45 | Ő | -0 721637  | -0 401006 | -0 186464     |
| 16             | 6  | õ | 1 908177   | 2 061329  | -0.834922     |
| 17             | 6  | Ő | -1 982018  | -1 628867 | -1 369130     |
| 18             | 6  | Ő | 0.520911   | 2 621523  | -0.433879     |
| 10             | 6  | 0 | 1 924230   | -1 800988 | -1.011538     |
| $\frac{1}{20}$ | 6  | 0 | 1 938413   | 0.616413  | -1 392467     |
| 20             | 6  | 0 | -2 3/32/8  | 2 928550  | 0.106830      |
| 21             | 6  | 0 | -0.751188  | 2.728330  | 0.000000      |
| 22             | 6  | 0 | 2 208/38   | -2.1/2482 | 0.981812      |
| 23             | 6  | 0 | 1 702745   | -3.071310 | 1 1 2 5 0 4 4 |
| 24             | 6  | 0 | -1./02/43  | 2 700006  | 1 500115      |
| 23             | 6  | 0 | -0.4/1//0  | 2.799000  | -1.399113     |
| 20             | 0  | 0 | -1.220038  | -3.42/030 | 0.246399      |
| 27             | 1  | 0 | 4.2/1943   | -0.703811 | 1.880030      |
| 28             | 1  | 0 | 2.840995   | 1.214119  | 2.360340      |
| 29             | 1  | 0 | -4.119598  | 0.3/3//3  | 0.534025      |
| 30             | 1  | 0 | 0.3/22/3   | 0.892965  | 2.500275      |
| 31             | 1  | 0 | 0.919383   | 2.56/1/1  | 2.355926      |
| 32             | 1  | 0 | 5.144349   | -2.369402 | 0.184194      |
| 33             | 1  | 0 | -4.656889  | -1.1/8901 | -0.083//3     |
| 34             | l  | 0 | 3.621744   | -2.89/194 | 0.900600      |
| 35             | l  | 0 | 4.479187   | -0.016072 | 0.280680      |
| 36             | 1  | 0 | -3.585443  | -0.857142 | 2.433405      |
| 37             | 1  | 0 | 1.890506   | -0.964689 | 1.628334      |
| 38             | 1  | 0 | 2.829189   | 3.175357  | 0.797501      |
| 39             | 1  | 0 | -2.923986  | 0.312610  | -1.546138     |
| 40             | 1  | 0 | 3.869213   | 1.923314  | 0.134947      |
| 41             | 1  | 0 | -0.940156  | 3.492603  | 1.662672      |
| 42             | 1  | 0 | -1.772286  | 1.956254  | 1.967590      |
| 43             | 1  | 0 | -1.241916  | -0.612288 | 2.401440      |
| 44             | 1  | 0 | -3.439562  | -2.373491 | 1.562241      |
| 45             | 1  | 0 | 0.718634   | 3.634167  | -0.028686     |
| 46             | 1  | 0 | 3.941699   | -1.507491 | -1.832027     |
| 47             | 1  | 0 | 3.481365   | -3.186635 | -1.572948     |
| 48             | 1  | 0 | 1.448256   | -2.570316 | -0.385641     |
| 49             | 1  | 0 | -3.246224  | -3.189575 | -0.554826     |
| 50             | 1  | 0 | -1.622301  | -1.538132 | -2.398779     |
| 51             | 1  | 0 | 2.283831   | 2.709722  | -1.638403     |
| 52             | 1  | 0 | 2.933188   | 0.454430  | -1.832897     |
| 53             | 1  | 0 | -3.087524  | 3.596112  | 0.559890      |
| 54             | 1  | 0 | -1.382214  | 4.622721  | -0.872009     |
| 55             | 1  | 0 | 1.423941   | -1.831146 | -1.987876     |
| 56             | 1  | 0 | -2.876081  | 2.027912  | -0.206827     |
| 57             | 1  | 0 | 0.224728   | -2.275158 | 1.461922      |
| 58             | 1  | 0 | 1.217918   | 0.502066  | -2.215896     |
| 59             | 1  | 0 | -2.076198  | -3.763798 | -1.728453     |
| 60             | 1  | 0 | -1.662787  | -4.141285 | 0.961367      |
| 61             | 1  | 0 | -0.789922  | 1.814592  | -1.984306     |
| 62             | 1  | 0 | 0.029484   | 3.316260  | -2.428005     |
| 63             | 1  | 0 | -2.440847  | 3.694832  | -1.931922     |
| 64             | 1  | 0 | -0.340946  | -3.926326 | -0.175859     |
|                |    |   |            | - *       |               |

NBasis= 377 NAE= 103 NBE= 103 NFC= 0 NFV= 0



NROrb= 377 NOA= 103 NOB= 103 NVA= 274 NVB= 274 SCF E(RB+HF-LYP) = -1119.08169388 a.u. \*\*\*\*\*\* 1 imaginary frequencies (negative Signs) \*\*\*\*\*\* -42.5612 cm<sup>-1</sup>

| Item                                     | Value    | Threshold Co | onverged? |  |  |
|------------------------------------------|----------|--------------|-----------|--|--|
| Maximum Force                            | 0.000036 | 0.000450     | YES       |  |  |
| RMS Force                                | 0.000005 | 0.000300     | YES       |  |  |
| Maximum Displacement                     | 0.001703 | 0.001800     | YES       |  |  |
| RMS Displacement                         | 0.000371 | 0.001200     | YES       |  |  |
| Predicted change in Energy=-9.691608D-08 |          |              |           |  |  |
| Optimization completed.                  |          |              |           |  |  |
|                                          |          |              |           |  |  |

-- Stationary point found.

DFT computed atomic coordinates and atomic labels for  $\mathbf{1}_{b}^{+}$ , as ground state (singlet) RB3LYP/SDD with augmented d functions on nitrogen<sup>1</sup>



| Center | Atomic | Ator | nic  | Coord  | inates (Angs | stroms)   |
|--------|--------|------|------|--------|--------------|-----------|
| Number | Number | Тур  | e    | X      | Y            | Z         |
| 1      | 6      | 0    | -0.6 | 02867  | -0.134785    | -0.052917 |
| 2      | 6      | 0    | 0.0  | 17403  | 0.050757     | 2.431260  |
| 3      | 6      | 0    | 6.9  | 86978  | -0.146969    | 1.948974  |
| 4      | 6      | 0    | 1.1  | 40222  | 0.090824     | 3.492344  |
| 5      | 6      | 0    | -0.1 | 82727  | -0.627063    | -1.452288 |
| 6      | 6      | 0    | 0.4  | 83197  | -0.407293    | 1.023092  |
| 7      | 6      | 0    | -1.1 | 19114  | -0.858930    | 2.948485  |
| 8      | 6      | 0    | 5.4  | 26138  | -0.170107    | 1.959499  |
| 9      | 6      | 0    | 7.7  | 17041  | -1.421121    | 1.547825  |
| 10     | 6      | 0    | 2.5  | 510216 | -1.085240    | 5.123782  |
| 11     | 7      | 0    | 1.7  | 708499 | -1.267082    | 3.851373  |
| 12     | 6      | 0    | 4.8  | 383854 | -1.286355    | 2.842041  |
| 13     | 6      | 0    | 0.1  | 196449 | -2.118808    | -1.384781 |

| 14              | 7  | 0 | 0 955227             | -1 855880 | 1 070620  |
|-----------------|----|---|----------------------|-----------|-----------|
| 15              | 45 | 0 | 2.839101             | -1 901422 | 2 165050  |
| 16              | 6  | õ | -0 516228            | -2.272369 | 3 089595  |
| 17              | 6  | Ő | 7 299132             | -2 457508 | 0 784510  |
| 18              | 6  | Ő | 0.578655             | -2 234950 | 4 183930  |
| 19              | 6  | Ő | 1 293032             | -2 336737 | -0 323767 |
| 20              | 6  | 0 | -0.059426            | -2 768228 | 1 701448  |
| 20              | 6  | 0 | 3 094877             | -2 395891 | 5 676922  |
| $\frac{21}{22}$ | 6  | 0 | 4 799235             | -2.575871 | 2 491953  |
| 22              | 6  | 0 | 5 949319             | -2.605244 | 0.099799  |
| $\frac{23}{24}$ | 6  | 0 | 2 007267             | -3 475558 | 5 866812  |
| $\frac{24}{25}$ | 6  | 0 | 1 150733             | -3 607139 | 4 589070  |
| 26              | 6  | 0 | 4 798239             | -3 107483 | 1.044229  |
| 20              | 1  | 0 | -0 787439            | 0 947735  | -0.069866 |
| $\frac{27}{28}$ | 1  | 0 | -0 342799            | 1 082810  | 2 326135  |
| 20              | 1  | 0 | 7 335161             | 0.131581  | 2.920195  |
| 30              | 1  | 0 | 1 977297             | 0.714023  | 3 158708  |
| 31              | 1  | 0 | 0 724318             | 0.545820  | 4 405775  |
| 32              | 1  | 0 | -0.997663            | -0.466664 | -2 168005 |
| 32              | 1  | 0 | 7 311130             | 0.674861  | 1 280365  |
| 34              | 1  | 0 | 0.677677             | -0.043448 | -1 814165 |
| 35              | 1  | 0 | -1 553711            | -0.600085 | 0 210/80  |
| 36              | 1  | 0 | 5 080200             | 0.708070  | 0.219409  |
| 37              | 1  | 0 | 1 376574             | 0.798079  | 0.742052  |
| 38              | 1  | 0 | 1.370374             | -0 /07233 | 3 917650  |
| 30              | 1  | 0 | 8 735661             | -0.497233 | 1 036065  |
| 40              | 1  | 0 | -1 078585            | -0.861058 | 2 270630  |
| 40              | 1  | 0 | 1 835712             | -0.646837 | 5 877775  |
| 41              | 1  | 0 | 3 20/000             | -0.351288 | 1 023635  |
| 42              | 1  | 0 | J.294909<br>4 977018 | -0.331288 | 3 008211  |
| 4J<br>44        | 1  | 0 | 5 044743             | -0.2/3018 | 0.036072  |
| 44              | 1  | 0 | 0.082704             | -1.81/030 | 5.078007  |
| 45              | 1  | 0 | -0.6012/04           | -1.814039 | -1 170032 |
| 40              | 1  | 0 | 0.586656             | -2.728920 | -2 350156 |
| 47              | 1  | 0 | 2 185606             | 1 781225  | -2.550150 |
| 40<br>70        | 1  | 0 | 2.183000             | -1.781233 | -0.041330 |
| 50              | 1  | 0 | 8 001015             | -3 276480 | 0.625718  |
| 51              | 1  | 0 | -1 282487            | -2 07/685 | 3 1/3828  |
| 52              | 1  | 0 | -0.949116            | -2.974085 | 1.061872  |
| 53              | 1  | 0 | 3 581589             | -2.033007 | 6 635328  |
| 54              | 1  | 0 | 1 358182             | -3 204853 | 6 712889  |
| 55              | 1  | 0 | 1.559557             | -3 397658 | -0 247389 |
| 56              | 1  | 0 | 3 869969             | -2 773010 | 5 004367  |
| 57              | 1  | Ő | 4 893898             | -3 420944 | 3 253745  |
| 58              | 1  | Ő | 0 395823             | -3 762369 | 1 764536  |
| 59              | 1  | Ő | 6.039657             | -3 329045 | -0 719608 |
| 60              | 1  | 0 | 1 758841             | -4 013404 | 3 769515  |
| 61              | 1  | 0 | 0 316049             | -4 299844 | 4 760659  |
| 62              | 1  | 0 | 2 470686             | -4 436622 | 6 119566  |
| 63              | 1  | 0 | 4 733476             | -4 199774 | 1 015909  |
| 64              | 1  | 0 | 3 828920             | -2 759577 | 0 554098  |
| τŪ              | 1  | 0 | 5.020720             | 2.107011  | 0.00 1070 |

NBasis= 377 NAE= 103 NBE= 103 NFC= 0 NFV= 0 NROrb= 377 NOA= 103 NOB= 103 NVA= 274 NVB= 274 SCF E(RB+HF-LYP) = -1119.07740550 Electronic Supplementary Information for Dalton Transactions S11 This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2010

| Item                                     | Value   | Threshold | Converged? |  |  |  |
|------------------------------------------|---------|-----------|------------|--|--|--|
| Maximum Force                            | 0.00001 | 4 0.00045 | 50 YES     |  |  |  |
| RMS Force                                | 0.00000 | 0.0003    | 00 YES     |  |  |  |
| Maximum Displacement                     | 0.00161 | 9 0.00180 | 00 YES     |  |  |  |
| RMS Displacement                         | 0.00022 | 5 0.00120 | 00 YES     |  |  |  |
| Predicted change in Energy=-1.299953D-08 |         |           |            |  |  |  |
| Optimization completed.                  |         |           |            |  |  |  |
| Stationary point found.                  |         |           |            |  |  |  |

DFT computed atomic coordinates for  $\mathbf{1_c}^+$ , as ground state (singlet) RB3LYP/SDD with augmented d functions on nitrogen<sup>1</sup>



| Center<br>Number | Atomic<br>Number | Atomi<br>Type | c Coord<br>X | inates (Angs<br>Y | stroms)<br>Z |
|------------------|------------------|---------------|--------------|-------------------|--------------|
|                  |                  |               |              |                   |              |
| 1                | 6                | 0             | -0.032959    | -0.308038         | -0.125663    |
| 2                | 6                | 0             | -0.530309    | -0.394551         | 2.370162     |
| 3                | 6                | 0             | 7.264965     | 0.168614          | 3.534884     |
| 4                | 6                | 0             | -0.188265    | 0.095453          | 3.791645     |
| 5                | 6                | 0             | 0.998585     | -0.113315         | -1.250413    |
| 6                | 6                | 0             | 0.553948     | -0.082796         | 1.298075     |
| 7                | 6                | 0             | -0.817940    | -1.911328         | 2.435316     |

| 8  | 6  | 0 | 5.822968  | -0.426280 | 3.629139  |
|----|----|---|-----------|-----------|-----------|
| 9  | 6  | 0 | 7.420460  | 1.679382  | 3.643546  |
| 10 | 6  | 0 | 1.111992  | -0.188136 | 5.830483  |
| 11 | 7  | 0 | 1.000666  | -0.608355 | 4.385530  |
| 12 | 6  | 0 | 4.882223  | 0.218494  | 2.621548  |
| 13 | 6  | 0 | 2.203297  | -1.031369 | -0.985240 |
| 14 | 7  | 0 | 1.853805  | -0.853946 | 1.577470  |
| 15 | 45 | 0 | 2.756576  | 0.034564  | 3.287797  |
| 16 | 6  | 0 | 0.491535  | -2.582923 | 2.895095  |
| 17 | 6  | 0 | 6.631991  | 2.585073  | 4.267162  |
| 18 | 6  | 0 | 0.815367  | -2.110607 | 4.334712  |
| 19 | 6  | 0 | 2.800223  | -0.724884 | 0.400834  |
| 20 | 6  | 0 | 1.590888  | -2.319435 | 1.840018  |
| 21 | 6  | 0 | 2.284306  | -0.868421 | 6.559618  |
| 22 | 6  | 0 | 4.241182  | 1.468376  | 2.788181  |
| 23 | 6  | 0 | 5.361939  | 2.298989  | 5.051737  |
| 24 | 6  | 0 | 2.189884  | -2.405075 | 6.455849  |
| 25 | 6  | 0 | 2.016932  | -2.829051 | 4.982275  |
| 26 | 6  | 0 | 4.079165  | 2.096281  | 4.164074  |
| 27 | 1  | 0 | -0.864293 | 0.400009  | -0.242482 |
| 28 | 1  | 0 | -1.434220 | 0.146734  | 2.061417  |
| 29 | 1  | 0 | 7.702189  | -0.141863 | 2.574619  |
| 30 | 1  | 0 | 0.028811  | 1.170220  | 3.794784  |
| 31 | 1  | 0 | -1.067222 | -0.070797 | 4.437543  |
| 32 | 1  | 0 | 0.542055  | -0.336245 | -2.221981 |
| 33 | 1  | 0 | 7.883782  | -0.314920 | 4.308759  |
| 34 | 1  | 0 | 1.331307  | 0.935185  | -1.287184 |
| 35 | 1  | 0 | -0.464772 | -1.312392 | -0.215713 |
| 36 | 1  | 0 | 5.891791  | -1.503956 | 3.427079  |
| 37 | 1  | 0 | 0.843258  | 0.974175  | 1.375029  |
| 38 | 1  | 0 | -1.626265 | -2.112448 | 3.149661  |
| 39 | 1  | 0 | 8.312985  | 2.066009  | 3.148046  |
| 40 | 1  | 0 | -1.147556 | -2.308430 | 1.470184  |
| 41 | 1  | 0 | 0.167285  | -0.443257 | 6.339803  |
| 42 | 1  | 0 | 1.212940  | 0.903572  | 5.855375  |
| 43 | 1  | 0 | 5.068089  | -0.092279 | 1.595243  |
| 44 | 1  | 0 | 5.445785  | -0.329371 | 4.652013  |
| 45 | 1  | 0 | -0.078053 | -2.342136 | 4.945001  |
| 46 | 1  | 0 | 1.906364  | -2.085072 | -1.075353 |
| 47 | 1  | 0 | 2.994914  | -0.867059 | -1.727829 |
| 48 | 1  | 0 | 3.156132  | 0.310475  | 0.396176  |
| 49 | 1  | 0 | 5.509188  | 1.421580  | 5.690385  |
| 50 | 1  | 0 | 6.934219  | 3.631448  | 4.218950  |
| 51 | 1  | 0 | 0.360263  | -3.672273 | 2.943390  |
| 52 | 1  | 0 | 1.277537  | -2.806127 | 0.906320  |
| 53 | 1  | 0 | 2.274268  | -0.548598 | 7.609352  |
| 54 | 1  | 0 | 1.331020  | -2.761413 | 7.044042  |
| 55 | 1  | 0 | 3.652751  | -1.377149 | 0.610098  |
| 56 | 1  | 0 | 3.238745  | -0.531031 | 6.131357  |
| 57 | 1  | 0 | 4.021437  | 2.091844  | 1.924182  |
| 58 | 1  | 0 | 2.545840  | -2.764337 | 2.135636  |
| 59 | 1  | 0 | 5.160989  | 3.136892  | 5.730574  |
| 60 | 1  | 0 | 3.381667  | 1.441129  | 4.780428  |
| 61 | 1  | 0 | 2.934737  | -2.597708 | 4.423402  |
| 62 | 1  | 0 | 1.853117  | -3.912794 | 4.913999  |
| 63 | 1  | 0 | 3.083921  | -2.871541 | 6.886253  |

| 64 1 0 3.538069 3.042114 | 4.059510 |  |
|--------------------------|----------|--|
|--------------------------|----------|--|

-----

NBasis= 377 NAE= 103 NBE= 103 NFC= 0 NFV= 0 NROrb= 377 NOA= 103 NOB= 103 NVA= 274 NVB= 274 SCF: E(RB+HF-LYP) = -1119.07794836 a.u.

| Item                                     | Value T  | hreshold Con | nverged? |  |  |  |
|------------------------------------------|----------|--------------|----------|--|--|--|
| Maximum Force                            | 0.000021 | 0.000450     | YES      |  |  |  |
| RMS Force                                | 0.000002 | 0.000300     | YES      |  |  |  |
| Maximum Displacement                     | 0.001110 | 0.001800     | YES      |  |  |  |
| RMS Displacement                         | 0.000205 | 0.001200     | YES      |  |  |  |
| Predicted change in Energy=-1.021577D-08 |          |              |          |  |  |  |
| Optimization completed.                  |          |              |          |  |  |  |
| - Stationary point found                 |          |              |          |  |  |  |

-- Stationary point found.

DFT computed atomic coordinates and atomic labels for  $\mathbf{1_d}^+$ , as ground state (singlet) RB3LYP/SDD with augmented d functions on nitrogen<sup>1</sup>



| Center | Atomic | Atomi | c Coord   | linates (Ang | stroms)   |
|--------|--------|-------|-----------|--------------|-----------|
| Number | Number | Туре  | X         | Y            | Z         |
| 1      | 6      | 0     | -0.070017 | -0.143904    | -0.016062 |
| 2      | 6      | 0     | -0.316456 | -0.006070    | 2.523609  |
| 3      | 6      | 0     | 0.379031  | 0.109425     | 3.894735  |
| 4      | 6      | 0     | 0.798408  | -0.550344    | -1.220338 |
| 5      | 6      | 0     | 0.646958  | -0.343843    | 1.349414  |
| 6      | 6      | 0     | -1.440945 | -1.059864    | 2.639460  |

| 7        | 6  | 0      | 1.504689             | -0.993410 | 5.754795             |
|----------|----|--------|----------------------|-----------|----------------------|
| 8        | 7  | 0      | 0.958406             | -1.196081 | 4.364789             |
| 9        | 6  | 0      | 1.258521             | -2.007437 | -1.040836            |
| 10       | 7  | 0      | 1.262007             | -1.737782 | 1.531437             |
| 11       | 45 | 0      | 2.636052             | -1.666584 | 3.122619             |
| 12       | 6  | 0      | -0.755186            | -2.397520 | 2.986095             |
| 13       | 6  | 0      | -0.094284            | -2.280453 | 4.382543             |
| 14       | 6  | 0      | 2.016039             | -2.161946 | 0.292187             |
| 15       | 6  | 0      | 0.207466             | -2.781730 | 1.838977             |
| 16       | 6  | 0      | 2.118624             | -2.279914 | 6.335885             |
| 17       | 6  | 0      | 1.090371             | -3.430012 | 6.329349             |
| 18       | 6  | 0      | 0.493833             | -3.603571 | 4.916802             |
| 19       | 1  | 0      | -0.342755            | 0.917851  | -0.081373            |
| 20       | 1  | 0      | -0.744952            | 0.979927  | 2.301255             |
| 21       | 1  | 0      | 1.196883             | 0.838619  | 3.860868             |
| 22       | 1  | 0      | -0.357640            | 0.463975  | 4.635229             |
| 23       | 1  | 0      | 0.228365             | -0.433624 | -2.149555            |
| 24       | 1  | 0      | 1.674923             | 0.110442  | -1.298631            |
| 25       | 1  | 0      | -1 008842            | -0 709881 | -0.051825            |
| 26       | 1  | Ő      | 1 505427             | 0 340471  | 1 378841             |
| 27       | 1  | Ő      | -2.145552            | -0 772303 | 3 429859             |
| 28       | 1  | 0<br>0 | -2.023327            | -1 142303 | 1 716523             |
| 29       | 1  | 0<br>0 | 0.685500             | -0.647625 | 6 406862             |
| 30       | 1  | 0      | 2 247675             | -0.187553 | 5 706750             |
| 31       | 1  | 0      | -0.884666            | -1.955440 | 5 084623             |
| 32       | 1  | 0      | 0.307501             | -2 687450 | -1 098792            |
| 32       | 1  | 0      | 1 0//282             | -2.00/430 | -1.090792            |
| 34       | 1  | 0      | 2 015224             | -2.304733 | 0 2/0/8/             |
| 25       | 1  | 0      | 1 501781             | 2 2001/0  | 2 051464             |
| 26       | 1  | 0      | -1.301/81            | -3.200140 | 0.022022             |
| 27       | 1  | 0      | -0.39/403            | -2.949510 | 7 255022             |
| 20       | 1  | 0      | 2.40/308             | 2 205756  | 7.046204             |
| 20       | 1  | 0      | 0.200212             | -5.205750 | 0 452004             |
| 39<br>40 | 1  | 0      | 2.323771             | -3.198117 | 0.452884             |
| 40       | 1  | 0      | 5.005551<br>0.729794 | -2.5/5/82 | 5./52121<br>2.052760 |
| 41       | 1  | 0      | 0./38/84             | -3./13012 | 2.055709             |
| 42       | 1  | 0      | 1.27/201             | -3.965328 | 4.236222             |
| 43       | 1  | 0      | -0.304624            | -4.35/246 | 4.92956/             |
| 44       | 1  | 0      | 1.55934/             | -4.363/22 | 0.000882             |
| 45       | l  | 0      | 4.886066             | -0.629657 | 3.523029             |
| 46       | 6  | 0      | 4.692945             | -1.141268 | 2.566173             |
| 47       | 6  | 0      | 4.63/190             | -2.553854 | 2.616944             |
| 48       | 6  | 0      | 5.116///             | -0.298144 | 1.3/2894             |
| 49       | l  | 0      | 4.799298             | -3.015795 | 3.599144             |
| 50       | 6  | 0      | 4.986605             | -3.49/082 | 1.4/4808             |
| 51       | 6  | 0      | 6.670816             | -0.366570 | 1.143431             |
| 52       | 1  | 0      | 4.623198             | -0.617240 | 0.447402             |
| 53       | 1  | 0      | 4.820057             | 0.743233  | 1.555024             |
| 54       | 1  | 0      | 4.531022             | -3.187540 | 0.529620             |
| 55       | 1  | 0      | 4.599749             | -4.497326 | 1.711502             |

| 56 | 6 | 0 | 6.542770 | -3.576859 | 1.258162  |
|----|---|---|----------|-----------|-----------|
| 57 | 6 | 0 | 7.097785 | -1.354055 | 0.064241  |
| 58 | 1 | 0 | 7.026729 | 0.631168  | 0.860880  |
| 59 | 1 | 0 | 7.158469 | -0.609875 | 2.099489  |
| 60 | 6 | 0 | 7.046973 | -2.706060 | 0.113721  |
| 61 | 1 | 0 | 7.047167 | -3.305466 | 2.197756  |
| 62 | 1 | 0 | 6.816812 | -4.617692 | 1.049741  |
| 63 | 1 | 0 | 7.484944 | -0.904482 | -0.851252 |
| 64 | 1 | 0 | 7.396271 | -3.248388 | -0.766114 |
|    |   |   |          |           |           |

NBasis= 377 NAE= 103 NBE= 103 NFC= 0 NFV= 0 NROrb= 377 NOA= 103 NOB= 103 NVA= 274 NVB= 274 SCF: E(RB+HF-LYP)= -1119.06904153 a.u.

| Item                                     | Value  | Thre | eshold Conv | verged? |
|------------------------------------------|--------|------|-------------|---------|
| Maximum Force                            | 0.0000 | )12  | 0.000450    | YES     |
| RMS Force                                | 0.0000 | 01   | 0.000300    | YES     |
| Maximum Displacement                     | 0.0010 | )29  | 0.001800    | YES     |
| RMS Displacement                         | 0.0001 | 63   | 0.001200    | YES     |
| Predicted change in Energy=-5.145593D-09 |        |      |             |         |
| Optimization completed.                  |        |      |             |         |
|                                          |        |      |             |         |

-- Stationary point found.

DFT computed atomic coordinates and atomic labels for  $1_e^+$ , as ground state (singlet) RB3LYP/SDD with augmented d functions on nitrogen<sup>1</sup>



Z-Matrix orientation:

| Center | Atomic | Atomic | Coordi    | nates (Angst | troms)    | - |
|--------|--------|--------|-----------|--------------|-----------|---|
| Number | Number | Туре   | Х         | Y            | Z         |   |
| 1      | 6      | 0      | 0.552984  | -0.144991    | 0.027668  |   |
| 2      | 6      | 0      | 0.394667  | 0.038739     | 2.565356  |   |
| 3      | 6      | 0      | 1.117133  | -0.009612    | 3.926800  |   |
| 4      | 6      | 0      | 1.245828  | -0.763983    | -1.198790 |   |
| 5      | 6      | 0      | 1.220802  | -0.535918    | 1.377345  |   |
| 6      | 6      | 0      | -0.957449 | -0.695609    | 2.708890  |   |
| 7      | 6      | 0      | 1.931899  | -1.329806    | 5.805313  |   |
| 8      | 7      | 0      | 1.348046  | -1.411396    | 4.418889  |   |
| 9      | 6      | 0      | 1.300086  | -2.290808    | -1.023970 |   |
| 10     | 7      | 0      | 1.464031  | -2.043222    | 1.550703  |   |
| 11     | 45     | 0      | 2.824433  | -2.321233    | 3.137868  |   |
| 12     | 6      | 0      | -0.624974 | -2.159556    | 3.061270  |   |

| 13 | 6 | 0 | 0.058485  | -2.197329 | 4.452691  |
|----|---|---|-----------|-----------|-----------|
| 14 | 6 | 0 | 2.037091  | -2.645380 | 0.281290  |
| 15 | 6 | 0 | 0.185825  | -2.781620 | 1.898322  |
| 16 | 6 | 0 | 2.208338  | -2.720174 | 6.404292  |
| 17 | 6 | 0 | 0.928511  | -3.580907 | 6.411105  |
| 18 | 6 | 0 | 0.302764  | -3.619421 | 5.000887  |
| 19 | 1 | 0 | 0.576658  | 0.951286  | -0.032571 |
| 20 | 1 | 0 | 0.224277  | 1.099116  | 2.337544  |
| 21 | 1 | 0 | 2.094537  | 0.484102  | 3.869315  |
| 22 | 1 | 0 | 0.507969  | 0.537121  | 4.666611  |
| 23 | 1 | 0 | 0.702854  | -0.494223 | -2.112231 |
| 24 | 1 | 0 | 2.265967  | -0.364682 | -1.304735 |
| 25 | 1 | 0 | -0.504813 | -0.434197 | 0.016318  |
| 26 | 1 | 0 | 2.225995  | -0.093622 | 1.389899  |
| 27 | 1 | 0 | -1.554690 | -0.233007 | 3.504555  |
| 28 | 1 | 0 | -1.555493 | -0.636394 | 1.794282  |
| 29 | 1 | 0 | 1.227448  | -0.782093 | 6.453429  |
| 30 | 1 | 0 | 2.852677  | -0.736549 | 5.745317  |
| 31 | 1 | 0 | -0.623100 | -1.680088 | 5.154063  |
| 32 | 1 | 0 | 0.286323  | -2.712719 | -1.045802 |
| 33 | 1 | 0 | 1.850215  | -2.762202 | -1.848615 |
| 34 | 1 | 0 | 3.066020  | -2.288010 | 0.196372  |
| 35 | 1 | 0 | -1.548539 | -2.748070 | 3.144500  |
| 36 | 1 | 0 | -0.467096 | -2.797819 | 1.015092  |
| 37 | 1 | 0 | 2.599003  | -2.592847 | 7.421526  |
| 38 | 1 | 0 | 0.206315  | -3.156880 | 7.124780  |
| 39 | 1 | 0 | 2.064600  | -3.728920 | 0.429956  |
| 40 | 1 | 0 | 2.994248  | -3.231651 | 5.827497  |
| 41 | 1 | 0 | 0.468351  | -3.816577 | 2.113154  |
| 42 | 1 | 0 | 0.969711  | -4.170957 | 4.322715  |
| 43 | 1 | 0 | -0.656913 | -4.152469 | 5.023221  |
| 44 | 1 | 0 | 1.153704  | -4.597273 | 6.754823  |
| 45 | 1 | 0 | 3.992270  | -4.189676 | 1.427165  |
| 46 | 6 | 0 | 4.322654  | -3.695512 | 2.339247  |
| 47 | 6 | 0 | 4.782771  | -2.356905 | 2.224239  |
| 48 | 6 | 0 | 4.746041  | -4.669416 | 3.436801  |
| 49 | 1 | 0 | 4.783362  | -1.899482 | 1.234178  |
| 50 | 6 | 0 | 5.736430  | -1.684427 | 3.208075  |
| 51 | 6 | 0 | 6.224184  | -5.183370 | 3.255341  |
| 52 | 1 | 0 | 4.667690  | -4.217932 | 4.437047  |
| 53 | 1 | 0 | 4.057800  | -5.524217 | 3.422692  |
| 54 | 1 | 0 | 5.431357  | -1.860325 | 4.252772  |
| 55 | 1 | 0 | 5.696897  | -0.600306 | 3.043859  |
| 56 | 6 | 0 | 7.223701  | -2.182579 | 3.046644  |
| 57 | 6 | 0 | 7.231934  | -4.496522 | 4.164797  |
| 58 | 1 | 0 | 6.247041  | -6.260507 | 3.457391  |
| 59 | 1 | 0 | 6.511038  | -5.056444 | 2.201036  |
| 60 | 6 | 0 | 7.656125  | -3.214122 | 4.077719  |
| 61 | 1 | 0 | 7.345156  | -2.584366 | 2.029807  |
| 62 | 1 | 0 | 7.888077  | -1.313896 | 3.120490  |
| 63 | 1 | 0 | 7.636537  | -5.108226 | 4.971975  |
| 64 | 1 | 0 | 8.377354  | -2.868740 | 4.819223  |
|    |   |   |           |           |           |

NBasis= 377 NAE= 103 NBE= 103 NFC= 0 NFV= 0 NROrb= 377 NOA= 103 NOB= 103 NVA= 274 NVB= 274 SCF E(RB+HF-LYP) = -1119.07866513 Electronic Supplementary Information for Dalton Transactions S20 This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2010

| Item                       | Value      | Threshold Co | onverged? |
|----------------------------|------------|--------------|-----------|
| Maximum Force              | 0.000024   | 0.000450     | YES       |
| RMS Force                  | 0.000003   | 0.000300     | YES       |
| Maximum Displacement       | 0.001523   | 0.001800     | YES       |
| RMS Displacement           | 0.000220   | 0.001200     | YES       |
| Predicted change in Energy | y=-2.19343 | 5D-08        |           |
| Optimization completed.    | -          |              |           |
| · · · · · · · · · ·        |            |              |           |

-- Stationary point found.

DFT computed atomic coordinates and atomic labels for  $\mathbf{1_f}^+$ , as ground state (singlet) RB3LYP/SDD with augmented d functions on nitrogen<sup>1</sup>



| Center | Atomic | Atomic | c Co      | ordinates (A | ngstroms) |
|--------|--------|--------|-----------|--------------|-----------|
| Number | Number | Туре   | Х         | Y            | Ζ         |
| 1      | 6      | 0      | -1.268539 | 2.590000     | -1.488862 |
| 2      | 6      | 0      | -1.815961 | -1.901731    | -1.457333 |
| 3      | 6      | 0      | 3.127977  | -0.939173    | -1.450795 |
| 4      | 6      | 0      | 1.540683  | 0.917296     | -1.461544 |
| 5      | 6      | 0      | -0.505310 | -2.307640    | -1.127753 |
| 6      | 6      | 0      | -2.598003 | 3.107088     | -0.898123 |
| 7      | 6      | 0      | -3.077556 | -2.517372    | -0.850955 |
| 8      | 6      | 0      | 4.443473  | -1.433115    | -0.823367 |
| 9      | 6      | 0      | 1.271477  | 2.364469     | -0.934850 |
| 10     | 6      | 0      | -0.163023 | 2.605218     | -0.413594 |
| 11     | 6      | 0      | -0.141678 | -3.334871    | -0.063196 |
| 12     | 6      | 0      | -3.585791 | -1.715738    | 0.378117  |
| 13     | 6      | 0      | 2.255934  | 2.662184     | 0.215851  |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14       | 6  | 0 | -2.965927 | 2.313369  | 0.374709  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|---|-----------|-----------|-----------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15       | 6  | 0 | 4.264834  | -1.638993 | 0.694611  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16       | 6  | 0 | 2.444616  | 0.173345  | 0.656303  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17       | 6  | 0 | -2 462357 | -1 023348 | 1 140369  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18       | 6  | 0 | -0 875574 | -3 099407 | 1 288567  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19       | 6  | Õ | 3 727796  | -0 347403 | 1 343223  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20       | 6  | Õ | 2.013367  | 1 556873  | 1 262488  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21       | 6  | Õ | -1 781631 | 2 221844  | 1 356505  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21       | 6  | Ő | -1 224544 | -1 625404 | 1 532339  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23       | 6  | Ő | 0 553646  | 1 648960  | 1 777858  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23       | 45 | 0 | -0.879017 | -0 354000 | -0 182124 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25       | 1  | Ő | 3 270238  | -0 734582 | -2 519781 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26       | 1  | 0 | 1 692116  | 0.909764  | -2 546836 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20       | 1  | 0 | -1 952033 | -1 388652 | -2.540050 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27       | 1  | 0 | -0.951101 | 3 219408  | -2.412030 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20       | 1  | 0 | -3.864093 | 2 548021  | -1.613000 |
| 30 $1$ $0$ $-1.407338$ $-1.32020$ $-1.871197$ $31$ $1$ $0$ $-2.69867$ $-2.126863$ $-1.872191$ $32$ $1$ $0$ $-3.405383$ $3.032978$ $-1.636171$ $33$ $1$ $0$ $1.428711$ $3.070930$ $-1.758841$ $34$ $1$ $0$ $4.747770$ $-2.367895$ $-1.310844$ $35$ $1$ $0$ $2.368281$ $-1.740963$ $-1.362097$ $36$ $1$ $0$ $0.574684$ $0.274285$ $-1.335583$ $37$ $1$ $0$ $5.233102$ $-0.692830$ $-1.009360$ $38$ $1$ $0$ $-2.488273$ $4.173931$ $-0.653534$ $39$ $1$ $0$ $-2.878592$ $-3.558215$ $-0.571867$ $40$ $1$ $0$ $-2.878592$ $-3.558215$ $-0.571867$ $41$ $1$ $0$ $3.290404$ $2.643016$ $-0.134665$ $42$ $1$ $0$ $-4.291143$ $-0.945902$ $0.041699$ $43$ $1$ $0$ $-3.287022$ $1.305104$ $0.089682$ $45$ $1$ $0$ $-9.488801$ $2.788969$ $0.892202$ $48$ $1$ $0$ $-3.287022$ $1.305104$ $0.638771$ $47$ $1$ $0$ $-3.287022$ $1.305104$ $0.874048$ $49$ $1$ $0$ $-3.287022$ $1.305104$ $0.874048$ $49$ $1$ $0$ $-5.215770$ $-1.926677$ $1.159112$ $51$ $1$ $0$ $-6$                                | 29       | 1  | 0 | 1 407558  | 1 572026  | 1 801107  |
| 31 $1$ $0$ $0.209807$ $-2.120803$ $-1.872191$ $32$ $1$ $0$ $-3.405383$ $3.032978$ $-1.636171$ $33$ $1$ $0$ $1.428711$ $3.070930$ $-1.758841$ $34$ $1$ $0$ $4.747770$ $-2.367895$ $-1.310844$ $35$ $1$ $0$ $2.368281$ $-1.740963$ $-1.362097$ $36$ $1$ $0$ $0.574684$ $0.274285$ $-1.335583$ $37$ $1$ $0$ $5.233102$ $-0.692830$ $-1.009360$ $38$ $1$ $0$ $-2.488273$ $4.173931$ $-0.653534$ $39$ $1$ $0$ $-2.878592$ $-3.558215$ $-0.571867$ $40$ $1$ $0$ $-2.878592$ $-3.558215$ $-0.571867$ $40$ $1$ $0$ $-3.290404$ $2.643016$ $-0.134665$ $42$ $1$ $0$ $-4.291143$ $-0.945902$ $0.041699$ $43$ $1$ $0$ $-3.287022$ $1.305104$ $0.089682$ $45$ $1$ $0$ $-9.46648$ $-3.279789$ $0.101575$ $46$ $1$ $0$ $2.061572$ $3.656514$ $0.638771$ $47$ $1$ $0$ $-3.287022$ $1.305104$ $0.874048$ $49$ $1$ $0$ $-5.215770$ $-1.926677$ $1.159112$ $51$ $1$ $0$ $-6.556688$ $0.820676$ $52$ $1$ $0$ $-1.793240$ $-3.698275$ $1.332266$ $53$ $1$ $0$ $-2.802261$ $-$                                | 30       | 1  | 0 | -1.407558 | 1.372020  | -1.87119/ |
| 3210 $-3.403383$ $3.032978$ $-1.030171$ $33$ 10 $1.428711$ $3.070930$ $-1.758841$ $34$ 10 $4.747770$ $-2.367895$ $-1.310844$ $35$ 10 $2.368281$ $-1.740963$ $-1.362097$ $36$ 10 $0.574684$ $0.274285$ $-1.335583$ $37$ 10 $5.233102$ $-0.692830$ $-1.009360$ $38$ 10 $-2.488273$ $4.173931$ $-0.653534$ $39$ 10 $-2.878592$ $-3.558215$ $-0.571867$ $40$ 10 $-0.346397$ $-4.351919$ $-0.432798$ $41$ 10 $3.290404$ $2.643016$ $-0.134665$ $42$ 10 $-4.291143$ $-0.945902$ $0.041699$ $43$ 10 $-0.156674$ $3.618349$ $0.026060$ $44$ 10 $-3.287022$ $1.305104$ $0.89682$ $45$ 10 $0.940648$ $-3.279789$ $0.101575$ $46$ 10 $2.061572$ $3.656514$ $0.638771$ $47$ 10 $-3.808801$ $2.788969$ $0.892202$ $48$ 10 $3.561147$ $-2.467694$ $0.874048$ $49$ 10 $-4.152535$ $-2.373952$ $1.056149$ $50$ 10 $5.215770$ $-1.926677$ $1.159112$ $51$ 10 $1.625714$ $-0.566688$ $0.820676$ $52$ 1<                                                                                                    | 22       | 1  | 0 | 0.209807  | -2.120803 | -1.6/2191 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22<br>22 | 1  | 0 | -3.403363 | 3.032978  | -1.0501/1 |
| 3410 $4.747770$ $-2.307893$ $-1.310844$ $35$ 10 $2.368281$ $-1.740963$ $-1.362097$ $36$ 10 $0.574684$ $0.274285$ $-1.335583$ $37$ 10 $5.233102$ $-0.692830$ $-1.009360$ $38$ 10 $-2.488273$ $4.173931$ $-0.653534$ $39$ 10 $-2.878592$ $-3.558215$ $-0.571867$ $40$ 10 $-0.346397$ $-4.351919$ $-0.432798$ $41$ 10 $3.290404$ $2.643016$ $-0.134665$ $42$ 10 $-4.291143$ $-0.945902$ $0.041699$ $43$ 10 $-0.156674$ $3.618349$ $0.026060$ $44$ 10 $-3.287022$ $1.305104$ $0.089682$ $45$ 10 $0.940648$ $-3.279789$ $0.101575$ $46$ 10 $2.061572$ $3.656514$ $0.638771$ $47$ 10 $-3.808801$ $2.788969$ $0.892202$ $48$ 10 $3.561147$ $-2.467694$ $0.874048$ $49$ 10 $-4.152535$ $-2.373952$ $1.056149$ $50$ 10 $5.215770$ $-1.926677$ $1.159112$ $51$ 10 $1.625714$ $-0.566688$ $0.820676$ $52$ 10 $-1.541803$ $3.229380$ $1.733230$ $55$ 10 $-2.033082$ $1.609240$ $2.228099$ $59$ 1<                                                                                                    | 22       | 1  | 0 | 1.428/11  | 2 267805  | -1./30041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54<br>25 | 1  | 0 | 4./4///0  | -2.30/893 | -1.310844 |
| 3610 $0.374684$ $0.274285$ $-1.335383$ $37$ 10 $5.233102$ $-0.692830$ $-1.009360$ $38$ 10 $-2.488273$ $4.173931$ $-0.653534$ $39$ 10 $-2.878592$ $-3.558215$ $-0.571867$ $40$ 10 $-0.346397$ $-4.351919$ $-0.432798$ $41$ 10 $3.290404$ $2.643016$ $-0.134665$ $42$ 10 $-4.291143$ $-0.945902$ $0.041699$ $43$ 10 $-0.156674$ $3.618349$ $0.026060$ $44$ 10 $-3.287022$ $1.305104$ $0.089682$ $45$ 10 $0.940648$ $-3.279789$ $0.101575$ $46$ 10 $2.061572$ $3.656514$ $0.638771$ $47$ 10 $-3.808801$ $2.788969$ $0.892202$ $48$ 10 $3.561147$ $-2.467694$ $0.874048$ $49$ 10 $-4.152535$ $-2.373952$ $1.056149$ $50$ 10 $5.215770$ $-1.926677$ $1.159112$ $51$ 10 $1.625714$ $-0.566688$ $0.820676$ $52$ 10 $-1.793240$ $-3.698275$ $1.332266$ $53$ 10 $-2.802261$ $-0.183781$ $1.743121$ $56$ 10 $-2.33082$ $1.609240$ $2.228099$ $57$ 10 $2.636965$ $1.738327$ $2.147025$ $58$ 1 <td< td=""><td>20</td><td>1</td><td>0</td><td>2.308281</td><td>-1./40905</td><td>-1.302097</td></td<> | 20       | 1  | 0 | 2.308281  | -1./40905 | -1.302097 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>27 | 1  | 0 | 0.5/4084  | 0.274285  | -1.333383 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20       | 1  | 0 | 3.233102  | -0.092830 | -1.009300 |
| 3910 $-2.878592$ $-3.538215$ $-0.371867$ $40$ 10 $-0.346397$ $-4.351919$ $-0.432798$ $41$ 10 $3.290404$ $2.643016$ $-0.134665$ $42$ 10 $-4.291143$ $-0.945902$ $0.041699$ $43$ 10 $-0.156674$ $3.618349$ $0.026060$ $44$ 10 $-3.287022$ $1.305104$ $0.089682$ $45$ 10 $0.940648$ $-3.279789$ $0.101575$ $46$ 10 $2.061572$ $3.656514$ $0.638771$ $47$ 10 $-3.808801$ $2.788969$ $0.892202$ $48$ 10 $3.561147$ $-2.467694$ $0.874048$ $49$ 10 $-4.152535$ $-2.373952$ $1.056149$ $50$ 10 $5.215770$ $-1.926677$ $1.159112$ $51$ 10 $1.625714$ $-0.566688$ $0.820676$ $52$ 10 $-1.793240$ $-3.698275$ $1.332266$ $53$ 10 $4.497523$ $0.436371$ $1.285248$ $54$ 10 $-1.541803$ $3.229380$ $1.733230$ $55$ 10 $-2.033082$ $1.609240$ $2.228099$ $59$ 10 $3.514311$ $-0.511611$ $2.408436$ $60$ 10 $0.468895$ $2.589225$ $2.346579$ $61$ 10 $-0.706258$ $-1.166920$ $2.376084$ $62$ 10                                                                                                        | 38       | 1  | 0 | -2.488273 | 4.1/3931  | -0.053534 |
| 4010 $-0.346397$ $-4.351919$ $-0.432798$ 4110 $3.290404$ $2.643016$ $-0.134665$ 4210 $-4.291143$ $-0.945902$ $0.041699$ 4310 $-0.156674$ $3.618349$ $0.026060$ 4410 $-3.287022$ $1.305104$ $0.089682$ 4510 $0.940648$ $-3.279789$ $0.101575$ 4610 $2.061572$ $3.656514$ $0.638771$ 4710 $-3.808801$ $2.788969$ $0.892202$ 4810 $3.561147$ $-2.467694$ $0.874048$ 4910 $-4.152535$ $-2.373952$ $1.056149$ 5010 $5.215770$ $-1.926677$ $1.159112$ 5110 $1.625714$ $-0.566688$ $0.820676$ 5210 $-1.793240$ $-3.698275$ $1.332266$ 5310 $-4.497523$ $0.436371$ $1.285248$ 5410 $-1.541803$ $3.229380$ $1.733230$ 5510 $-2.033082$ $1.609240$ $2.228099$ 5910 $3.514311$ $-0.511611$ $2.408436$ 6010 $0.468895$ $2.589225$ $2.346579$ 6110 $-0.706258$ $-1.166920$ $2.376084$ 6210 $0.334485$ $0.828989$ $2.470781$ 6370 $2.656674$ $0.301089$ <                                                                                                                                              | 39       | 1  | 0 | -2.8/8592 | -3.338213 | -0.5/180/ |
| 4110 $3.290404$ $2.643016$ $-0.134665$ 4210 $-4.291143$ $-0.945902$ $0.041699$ 4310 $-0.156674$ $3.618349$ $0.026060$ 4410 $-3.287022$ $1.305104$ $0.089682$ 4510 $0.940648$ $-3.279789$ $0.101575$ 4610 $2.061572$ $3.656514$ $0.638771$ 4710 $-3.808801$ $2.788969$ $0.892202$ 4810 $3.561147$ $-2.467694$ $0.874048$ 4910 $-4.152535$ $-2.373952$ $1.056149$ 5010 $5.215770$ $-1.926677$ $1.159112$ 5110 $1.625714$ $-0.566688$ $0.820676$ 5210 $-1.793240$ $-3.698275$ $1.332266$ 5310 $4.497523$ $0.436371$ $1.285248$ 5410 $-1.541803$ $3.229380$ $1.733230$ 5510 $-2.033082$ $1.609240$ $2.228099$ 5710 $2.636965$ $1.738327$ $2.147025$ 5810 $-2.033082$ $1.609240$ $2.228099$ 5910 $3.514311$ $-0.511611$ $2.408436$ 6010 $0.468895$ $2.589225$ $2.346579$ 6110 $-0.706258$ $-1.166920$ $2.376084$ 6210 $0.334485$ $0.828989$                                                                                                                                                   | 40       | 1  | 0 | -0.34039/ | -4.351919 | -0.432/98 |
| 4210 $-4.291143$ $-0.945902$ $0.041699$ $43$ 10 $-0.156674$ $3.618349$ $0.026060$ $44$ 10 $-3.287022$ $1.305104$ $0.089682$ $45$ 10 $0.940648$ $-3.279789$ $0.101575$ $46$ 10 $2.061572$ $3.656514$ $0.638771$ $47$ 10 $-3.808801$ $2.788969$ $0.892202$ $48$ 10 $3.561147$ $-2.467694$ $0.874048$ $49$ 10 $-4.152535$ $-2.373952$ $1.056149$ $50$ 10 $5.215770$ $-1.926677$ $1.159112$ $51$ 10 $1.625714$ $-0.566688$ $0.820676$ $52$ 10 $-1.793240$ $-3.698275$ $1.332266$ $53$ 10 $4.497523$ $0.436371$ $1.285248$ $54$ 10 $-1.541803$ $3.229380$ $1.733230$ $55$ 10 $-2.802261$ $-0.183781$ $1.743121$ $56$ 10 $-2.033082$ $1.609240$ $2.228099$ $57$ 10 $2.636965$ $1.738327$ $2.147025$ $58$ 10 $-2.033082$ $1.609240$ $2.228099$ $59$ 10 $3.514311$ $-0.511611$ $2.408436$ $60$ 10 $0.468895$ $2.589225$ $2.346579$ $61$ 10 $-0.706258$ $-1.166920$ $2.376084$ $62$ 10 <td>41</td> <td>1</td> <td>0</td> <td>3.290404</td> <td>2.643016</td> <td>-0.134665</td>                   | 41       | 1  | 0 | 3.290404  | 2.643016  | -0.134665 |
| 4310 $-0.156674$ $3.618349$ $0.026060$ 4410 $-3.287022$ $1.305104$ $0.089682$ 4510 $0.940648$ $-3.279789$ $0.101575$ 4610 $2.061572$ $3.656514$ $0.638771$ 4710 $-3.808801$ $2.788969$ $0.892202$ 4810 $3.561147$ $-2.467694$ $0.874048$ 4910 $-4.152535$ $-2.373952$ $1.056149$ 5010 $5.215770$ $-1.926677$ $1.159112$ 5110 $1.625714$ $-0.566688$ $0.820676$ 5210 $-1.793240$ $-3.698275$ $1.332266$ 5310 $4.497523$ $0.436371$ $1.285248$ 5410 $-1.541803$ $3.229380$ $1.733230$ 5510 $-2.802261$ $-0.183781$ $1.743121$ 5610 $-0.238650$ $-3.455673$ $2.106180$ 5710 $2.636965$ $1.738327$ $2.147025$ 5810 $-2.033082$ $1.609240$ $2.228099$ 5910 $3.514311$ $-0.511611$ $2.408436$ 6010 $0.334485$ $0.828989$ $2.470781$ 6370 $2.656674$ $0.301089$ $-0.804484$ 6470 $-0.533672$ $1.650540$ $0.719706$                                                                                                                                                                              | 42       | 1  | 0 | -4.291143 | -0.945902 | 0.041699  |
| 4410 $-3.287022$ $1.305104$ $0.089682$ $45$ 10 $0.940648$ $-3.279789$ $0.101575$ $46$ 10 $2.061572$ $3.656514$ $0.638771$ $47$ 10 $-3.808801$ $2.788969$ $0.892202$ $48$ 10 $3.561147$ $-2.467694$ $0.874048$ $49$ 10 $-4.152535$ $-2.373952$ $1.056149$ $50$ 10 $5.215770$ $-1.926677$ $1.159112$ $51$ 10 $1.625714$ $-0.566688$ $0.820676$ $52$ 10 $-1.793240$ $-3.698275$ $1.332266$ $53$ 10 $4.497523$ $0.436371$ $1.285248$ $54$ 10 $-1.541803$ $3.229380$ $1.733230$ $55$ 10 $-2.802261$ $-0.183781$ $1.743121$ $56$ 10 $-0.238650$ $-3.455673$ $2.106180$ $57$ 10 $2.636965$ $1.738327$ $2.147025$ $58$ 10 $-2.033082$ $1.609240$ $2.228099$ $59$ 10 $3.514311$ $-0.511611$ $2.408436$ $60$ 10 $0.468895$ $2.589225$ $2.346579$ $61$ 10 $-0.706258$ $-1.166920$ $2.376084$ $62$ 10 $0.334485$ $0.828989$ $2.470781$ $63$ 70 $2.656674$ $0.301089$ $-0.804484$ $64$ 70                                                                                                             | 43       | 1  | 0 | -0.1566/4 | 3.618349  | 0.026060  |
| 4510 $0.940648$ $-3.279789$ $0.101575$ 4610 $2.061572$ $3.656514$ $0.638771$ 4710 $-3.808801$ $2.788969$ $0.892202$ 4810 $3.561147$ $-2.467694$ $0.874048$ 4910 $-4.152535$ $-2.373952$ $1.056149$ 5010 $5.215770$ $-1.926677$ $1.159112$ 5110 $1.625714$ $-0.566688$ $0.820676$ 5210 $-1.793240$ $-3.698275$ $1.332266$ 5310 $4.497523$ $0.436371$ $1.285248$ 5410 $-1.541803$ $3.229380$ $1.733230$ 5510 $-2.802261$ $-0.183781$ $1.743121$ 5610 $-0.238650$ $-3.455673$ $2.106180$ 5710 $2.636965$ $1.738327$ $2.147025$ 5810 $-2.033082$ $1.609240$ $2.228099$ 5910 $3.514311$ $-0.511611$ $2.408436$ 6010 $0.468895$ $2.589225$ $2.346579$ 6110 $-0.706258$ $-1.166920$ $2.376084$ 6210 $0.334485$ $0.828989$ $2.470781$ 6370 $2.656674$ $0.301089$ $-0.804484$ 6470 $-0.533672$ $1.650540$ $0.719706$                                                                                                                                                                              | 44       | 1  | 0 | -3.28/022 | 1.305104  | 0.089682  |
| 4610 $2.061572$ $3.656514$ $0.638771$ $47$ 10 $-3.808801$ $2.788969$ $0.892202$ $48$ 10 $3.561147$ $-2.467694$ $0.874048$ $49$ 10 $-4.152535$ $-2.373952$ $1.056149$ $50$ 10 $5.215770$ $-1.926677$ $1.159112$ $51$ 10 $1.625714$ $-0.566688$ $0.820676$ $52$ 10 $-1.793240$ $-3.698275$ $1.332266$ $53$ 10 $4.497523$ $0.436371$ $1.285248$ $54$ 10 $-1.541803$ $3.229380$ $1.733230$ $55$ 10 $-2.802261$ $-0.183781$ $1.743121$ $56$ 10 $-0.238650$ $-3.455673$ $2.106180$ $57$ 10 $2.636965$ $1.738327$ $2.147025$ $58$ 10 $-2.033082$ $1.609240$ $2.228099$ $59$ 10 $3.514311$ $-0.511611$ $2.408436$ $60$ 10 $0.468895$ $2.589225$ $2.346579$ $61$ 10 $-0.706258$ $-1.166920$ $2.376084$ $62$ 10 $0.334485$ $0.828989$ $2.470781$ $63$ 70 $2.656674$ $0.301089$ $-0.804484$ $64$ 70 $-0.533672$ $1.650540$ $0.719706$                                                                                                                                                               | 45       | 1  | 0 | 0.940648  | -3.279789 | 0.101575  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46       | 1  | 0 | 2.061572  | 3.656514  | 0.638771  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47       | 1  | 0 | -3.808801 | 2.788969  | 0.892202  |
| 4910 $-4.152535$ $-2.373952$ $1.056149$ 5010 $5.215770$ $-1.926677$ $1.159112$ 5110 $1.625714$ $-0.566688$ $0.820676$ 5210 $-1.793240$ $-3.698275$ $1.332266$ 5310 $4.497523$ $0.436371$ $1.285248$ 5410 $-1.541803$ $3.229380$ $1.733230$ 5510 $-2.802261$ $-0.183781$ $1.743121$ 5610 $-0.238650$ $-3.455673$ $2.106180$ 5710 $2.636965$ $1.738327$ $2.147025$ 5810 $-2.033082$ $1.609240$ $2.228099$ 5910 $3.514311$ $-0.511611$ $2.408436$ 6010 $0.468895$ $2.589225$ $2.346579$ 6110 $-0.706258$ $-1.166920$ $2.376084$ 6210 $0.334485$ $0.828989$ $2.470781$ 6370 $2.656674$ $0.301089$ $-0.804484$ 6470 $-0.533672$ $1.650540$ $0.719706$                                                                                                                                                                                                                                                                                                                                         | 48       | 1  | 0 | 3.561147  | -2.46/694 | 0.874048  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49       | 1  | 0 | -4.152535 | -2.373952 | 1.056149  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50       | l  | 0 | 5.215770  | -1.926677 | 1.159112  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51       | 1  | 0 | 1.625714  | -0.566688 | 0.820676  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52       | 1  | 0 | -1.793240 | -3.698275 | 1.332266  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53       | 1  | 0 | 4.497523  | 0.436371  | 1.285248  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54       | 1  | 0 | -1.541803 | 3.229380  | 1.733230  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55       | 1  | 0 | -2.802261 | -0.183781 | 1.743121  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56       | 1  | 0 | -0.238650 | -3.455673 | 2.106180  |
| 58       1       0       -2.033082       1.609240       2.228099         59       1       0       3.514311       -0.511611       2.408436         60       1       0       0.468895       2.589225       2.346579         61       1       0       -0.706258       -1.166920       2.376084         62       1       0       0.334485       0.828989       2.470781         63       7       0       2.656674       0.301089       -0.804484         64       7       0       -0.533672       1.650540       0.719706                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57       | 1  | 0 | 2.636965  | 1.738327  | 2.147025  |
| 59       1       0       3.514311       -0.511611       2.408436         60       1       0       0.468895       2.589225       2.346579         61       1       0       -0.706258       -1.166920       2.376084         62       1       0       0.334485       0.828989       2.470781         63       7       0       2.656674       0.301089       -0.804484         64       7       0       -0.533672       1.650540       0.719706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58       | 1  | 0 | -2.033082 | 1.609240  | 2.228099  |
| 60       1       0       0.468895       2.589225       2.346579         61       1       0       -0.706258       -1.166920       2.376084         62       1       0       0.334485       0.828989       2.470781         63       7       0       2.656674       0.301089       -0.804484         64       7       0       -0.533672       1.650540       0.719706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 59       | 1  | 0 | 3.514311  | -0.511611 | 2.408436  |
| 6110-0.706258-1.1669202.37608462100.3344850.8289892.47078163702.6566740.301089-0.8044846470-0.5336721.6505400.719706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60       | 1  | 0 | 0.468895  | 2.589225  | 2.346579  |
| 62         1         0         0.334485         0.828989         2.470781           63         7         0         2.656674         0.301089         -0.804484           64         7         0         -0.533672         1.650540         0.719706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61       | 1  | 0 | -0.706258 | -1.166920 | 2.376084  |
| 63         7         0         2.656674         0.301089         -0.804484           64         7         0         -0.533672         1.650540         0.719706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 62       | 1  | 0 | 0.334485  | 0.828989  | 2.470781  |
| 64 7 0 -0.533672 1.650540 0.719706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63       | 7  | 0 | 2.656674  | 0.301089  | -0.804484 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64       | 7  | 0 | -0.533672 | 1.650540  | 0.719706  |

NBasis= 377 NAE= 103 NBE= 103 NFC= 0 NFV= 0 NROrb= 377 NOA= 103 NOB= 103 NVA= 274 NVB= 274 SCF: E(RB+HF-LYP) = -1119.08340764 a.u. Electronic Supplementary Information for Dalton Transactions S23 This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2010

| Item                       | Value       | Threshold | Converged? |
|----------------------------|-------------|-----------|------------|
| Maximum Force              | 0.000050    | 0.000450  | YES        |
| RMS Force                  | 0.000004    | 0.000300  | YES        |
| Maximum Displacement       | 0.001647    | 0.001800  | YES        |
| RMS Displacement           | 0.000378    | 0.001200  | YES        |
| Predicted change in Energy | y=-7.890476 | D-07      |            |
| Optimization completed.    |             |           |            |
| Ctation and the Court      |             |           |            |

-- Stationary point found.

DFT computed atomic coordinates and atomic labels for  $\mathbf{1_n}^+$ , as ground state (singlet) RB3LYP/SDD with augmented d functions on nitrogen<sup>1</sup>



| 18 | 6  | 0 | -1.167649 | -3.004972 | 1.462547  |
|----|----|---|-----------|-----------|-----------|
| 19 | 6  | 0 | 4.043377  | -0.073679 | 1.058536  |
| 20 | 6  | 0 | 2.078313  | 1.504807  | 1.249345  |
| 21 | 6  | 0 | -1.686464 | 2.322597  | 1.306011  |
| 22 | 6  | 0 | -1.395416 | -1.491997 | 1.576775  |
| 23 | 6  | 0 | 0.617577  | 1.682562  | 1.737210  |
| 24 | 45 | 0 | -0.822824 | -0.382144 | -0.152077 |
| 25 | 1  | 0 | 1.934151  | 0.642907  | -2.442490 |
| 26 | 1  | 0 | -1.817433 | -1.457819 | -2.413172 |
| 27 | 1  | 0 | -0.779039 | 3.333741  | -2.349111 |
| 28 | 1  | 0 | -3.877904 | -2.404699 | -1.707504 |
| 29 | 1  | 0 | -1.387352 | 1.721699  | -1.962901 |
| 30 | 1  | 0 | 0.289831  | -2.316395 | -1.632886 |
| 31 | 1  | 0 | -3.238583 | 3.339081  | -1.656219 |
| 32 | 1  | 0 | 1.534146  | 2.804564  | -1.888774 |
| 33 | 1  | 0 | 0.379416  | 0.336673  | -1.729974 |
| 34 | 1  | 0 | -2.230985 | 4.361575  | -0.631635 |
| 35 | 1  | 0 | -3.061331 | -3.425546 | -0.537613 |
| 36 | 1  | 0 | -0.644654 | -4.406751 | -0.143922 |
| 37 | 1  | 0 | 3.407268  | 2.312816  | -0.285321 |
| 38 | 1  | 0 | -4.293406 | -0.679492 | -0.180815 |
| 39 | 1  | 0 | 0.084583  | 3.594644  | -0.029781 |
| 40 | 1  | 0 | -3.229937 | 1.528322  | -0.002807 |
| 41 | 1  | 0 | 0.697986  | -3.428446 | 0.428710  |
| 42 | 1  | 0 | 2.316940  | 3.514443  | 0.400609  |
| 43 | 1  | 0 | -3.675384 | 3.010251  | 0.850092  |
| 44 | 1  | 0 | -4.330764 | -2.040533 | 0.930361  |
| 45 | 1  | 0 | 2.020647  | -0.655144 | 1.516959  |
| 46 | 1  | 0 | -2.137121 | -3.517934 | 1.479591  |
| 47 | 1  | 0 | -1.385736 | 3.311678  | 1.689417  |
| 48 | 1  | 0 | -2.866748 | 0.076222  | 1.566726  |
| 49 | 1  | 0 | -0.621213 | -3.354140 | 2.345772  |
| 50 | 1  | 0 | 2.692196  | 1.767036  | 2.121369  |
| 51 | 1  | 0 | -1.981018 | 1.726365  | 2.176173  |
| 52 | 1  | 0 | 0.566996  | 2.653229  | 2.257186  |
| 53 | 1  | 0 | -0.918043 | -1.022623 | 2.439769  |
| 54 | 1  | 0 | 0.368050  | 0.907028  | 2.470796  |
| 55 | 7  | 0 | 2.092414  | -0.245796 | -0.548879 |
| 56 | 7  | 0 | -0.468556 | 1.679153  | 0.678788  |
| 57 | 1  | 0 | 2.322033  | -2.348644 | -0.655804 |
| 58 | 1  | 0 | 2.409329  | -1.498853 | -2.204784 |
| 59 | 1  | 0 | 4.625774  | -2.405399 | -1.465476 |
| 60 | 1  | Õ | 4.688396  | -0.639168 | -1.592836 |
| 61 | 1  | Õ | 4.242806  | -2.244973 | 1.000910  |
| 62 | 1  | Ō | 5.720006  | -1.375428 | 0.585937  |
| 63 | 1  | Õ | 4.233027  | -0.037436 | 2.140639  |
| 64 | 1  | Õ | 4.563781  | 0.785038  | 0.611569  |
| 0. |    | Ŭ |           | 0.702050  | 0.01100)  |

NBasis= 377 NAE= 103 NBE= 103 NFC= 0 NFV= 0 NROrb= 377 NOA= 103 NOB= 103 NVA= 274 NVB= 274 SCF E(RB+HF-LYP) = -1119.06643025 \*\*\*\*\*\* 1 imaginary frequencies (negative Signs) \*\*\*\*\* Frequencies -- -317.8203 Electronic Supplementary Information for Dalton Transactions S26 This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2010

| Item                      | Value 7    | Threshold Con | nverged? |
|---------------------------|------------|---------------|----------|
| Maximum Force             | 0.000010   | 0.000450      | YES      |
| RMS Force                 | 0.000001   | 0.000300      | YES      |
| Maximum Displacement      | 0.000613   | 0.001800      | YES      |
| RMS Displacement          | 0.000082   | 0.001200      | YES      |
| Predicted change in Energ | y=-6.09870 | 8D-09         |          |
| Optimization completed.   |            |               |          |
| Stationary point found    | 1          |               |          |

-- Stationary point found.

#### **Molecular Orbitals**



**Figure S1:** Highest Occupied Molecular Orbital (HOMO) of  $1^+$  calculated at RB3LYP/SDD with isovalue of 0.04<sup>2</sup>. View #1 (left) and View #2 (right).



**Figure S2:** Lowest Unoccupied Molecular Orbital (LUMO) of  $1^+$  calculated at RB3LYP/SDD with isovalue of 0.04.<sup>2</sup> View #1 (left) and View #2 (right).



**Figure S3:** Highest Occupied Molecular Orbital (HOMO) of  $1_c^+$  calculated at RB3LYP/SDD with isovalue of 0.04.<sup>2</sup> Arrow pointing to H60 (agostic proton), revealing a 1.14 Å C-H bond.



**Figure S4:** Highest Occupied Molecular Orbital (HOMO) of  $1_f^+$  calculated at RB3LYP/SDD with isovalue of 0.04.<sup>2</sup> Arrow pointing to Rh-H46 agostic interaction, revealing a 1.17 Å C-H bond and a Rh-H46 bond length of 1.96 Å for the pseudo square planar metal center.



**Figure S5:** Relaxed Potential Energy Scan (PES) calculation. Plot correlates the energy of the molecule with respect to to the elongation of the Rh15-N11 bond (or Rh-N1 bond in crystal structure atomic numbering). At a Rh-N bond length of 3.18 Å (0.9 Å larger than the ground state value) the energy of the 1<sup>+</sup>, approaches the energy of complex,  $1_a^+$  (denoted by the red, horizontal line in the plot). Starting Rh-N bond length, 2.28354 Å. Final Rh-N bond length: 3.78354 Å. Final structure shown below in Figure S6.



**Figure S6:** Geometry optimized structure from the final coordinates of the PES scan (B3LYP) showing the elongated Rh-N at 3.78 Å (or 1.5 Å longer than the ground state molecule,  $1^+$ ). At this distance, the energy of the molecule is 32.78 kcal/mol ( $\Delta E$ ) higher than the ground state energy.



**Figure S7:** Geometry of (-)sparteine from  $1^+$  (green) and  $1_a^+$  (orange) showing the flexing of the (-)sparteine at the transition state where rhodium (not shown) is defined as the 0,0,0 point of the Cartesian coordinates.<sup>3</sup>

**Table S1:** DFT computed Energies for CPCM computed molecules of complexes in a.u. units calculated at B3LYP/SDD (energies for non-CPCM molecules on Pages S3 to 26 below atomic coordinates).

| Compound           | SCF Energy with CPCM Solvent model of Select<br>Compounds (dichloromethane, UFF) |
|--------------------|----------------------------------------------------------------------------------|
| 1+                 | -1119.15924504                                                                   |
| $1_{a}^{+}$        | -1119.13231009                                                                   |
| $1_{c}^{+}$        | -1119.13069812                                                                   |
| $1_{\mathbf{f}}^+$ | -1119.13461581                                                                   |
| $1_n^+$            | -1119.11727193                                                                   |

**Table S2:** Tabulated thermodynamic values (DFT) of complexes in a.u. units calculated at B3LYP/SDD from vibrational analysis at 298.15 K in gas phase.

| Compound                                    | Sum of electronic and thermal | Sum of electronic and thermal |  |  |
|---------------------------------------------|-------------------------------|-------------------------------|--|--|
|                                             | Free Energies;                | Enthalpies;                   |  |  |
|                                             | G <sub>298.15</sub> (a.u.)    | H <sub>298.15</sub> (a.u.)    |  |  |
| <b>1</b> <sup>+</sup>                       | -1118.566161                  | -1118.493462                  |  |  |
| $1_a^+$                                     | -1118.541382                  | -1118.469949                  |  |  |
| $1_{b}^{+}$                                 | -1118.539056                  | -1118.464229                  |  |  |
| $1_{c}^{+}$                                 | -1118.541246                  | -1118.465359                  |  |  |
| $1_d^+$                                     | -1118.533126                  | -1118.456044                  |  |  |
| $1_{e}^{+}$                                 | -1118.542239                  | -1118.465715                  |  |  |
| $1_{\rm f}^+$                               | -1118.546655                  | -1118.472336                  |  |  |
| $1_{n}^{+}$                                 | -1118.529084                  | -1118.455394                  |  |  |
| With CPCM Solvent model of Select Compounds |                               |                               |  |  |
|                                             | (dichloromethane, U           | FF)                           |  |  |
| 1+                                          | -1118.617615                  | -1118.545432                  |  |  |
| $1_{a}^{+}$                                 | -1118.592620                  | -1118.521487                  |  |  |
| 1 <sub>c</sub> <sup>+</sup>                 | -1118.594288                  | -1118.518421                  |  |  |
| $1_{f}^{+}$                                 | -1118.598534                  | -1118.524437                  |  |  |
| $1_{n}^{+}$                                 | -1118.581381                  | -1118.507376                  |  |  |

#### **Table S3:** EXSY data taken at -20 °C in CD<sub>2</sub>Cl<sub>2</sub>.

t

| (ms) | c/d ratio | tanh-1 (c/d) | k (sec-1) |
|------|-----------|--------------|-----------|
| 20   | 0.0463    | 0.0463       | 2.317     |
| 40   | 0.0877    | 0.0879       | 2.198     |
| 60   | 0.1316    | 0.1324       | 2.206     |
| 80   | 0.1774    | 0.1793       | 2.241     |
| 100  | 0.2185    | 0.2221       | 2.221     |
| 120  | 0.2545    | 0.2602       | 2.168     |
| 140  | 0.2926    | 0.3014       | 2.153     |
| 160  | 0.3310    | 0.3440       | 2.150     |
| 180  | 0.3709    | 0.3895       | 2.164     |
| 200  | 0.4136    | 0.4399       | 2.200     |
| 220  | 0.4436    | 0.4767       | 2.167     |
| 240  | 0.4750    | 0.5165       | 2.152     |
| 260  | 0.5168    | 0.5720       | 2.200     |
| 280  | 0.5355    | 0.5978       | 2.135     |
| 300  | 0.5674    | 0.6437       | 2.146     |
| 320  | 0.5947    | 0.6849       | 2.140     |
| 340  | 0.6342    | 0.7484       | 2.201     |
| 360  | 0.6510    | 0.7770       | 2.158     |
| 380  | 0.6638    | 0.7996       | 2.104     |
| 400  | 0.6939    | 0.8554       | 2.139     |





**Figure S8:** <sup>1</sup>H (500 MHz; -10 °C) and <sup>13</sup>C NMR (125 MHz; -40 °C) of  $1BF_4$  in CD<sub>2</sub>Cl<sub>2</sub>. 'x' denotes ether peaks.



**Figure S9:** Phase sensitive gHSQC of  $1BF_4$  in  $CD_2Cl_2$  at -50 °C. Blue is positive, red is negative.



**Figure S10:** gCOSY (top) and phase sensitive NOESY (bottom) of  $1BF_4$  in  $CD_2Cl_2$ , at-50 °C. Blue is positive, red is negative.

### **Detailed Crystal Structure Information**

| Table S4.       Crystal data and structure refinement for k08228 (CCDC 730 876). |                                             |                         |  |
|----------------------------------------------------------------------------------|---------------------------------------------|-------------------------|--|
| Identification code                                                              | k08228 (CCDC 730 876)                       |                         |  |
| Empirical formula                                                                | C23 H38 B F4 N2 Rh                          |                         |  |
| Formula weight                                                                   | 532.27                                      |                         |  |
| Temperature                                                                      | 150(1) K                                    |                         |  |
| Wavelength                                                                       | 0.71073 Å                                   |                         |  |
| Crystal system                                                                   | Orthorhombic                                |                         |  |
| Space group                                                                      | C 2 2 21                                    |                         |  |
| Unit cell dimensions                                                             | a = 14.1899(3) Å                            | α=90°.                  |  |
|                                                                                  | b = 14.3150(3) Å                            | β=90°.                  |  |
|                                                                                  | c = 23.4356(5) Å                            | $\gamma = 90^{\circ}$ . |  |
| Volume                                                                           | 4760.44(17) Å <sup>3</sup>                  |                         |  |
| Z                                                                                | 8                                           |                         |  |
| Density (calculated)                                                             | 1.485 Mg/m <sup>3</sup>                     |                         |  |
| Absorption coefficient                                                           | 0.761 mm <sup>-1</sup>                      |                         |  |
| F(000)                                                                           | 2208                                        |                         |  |
| Crystal size                                                                     | 0.22 x 0.20 x 0.10 mm <sup>3</sup>          |                         |  |
| Theta range for data collection                                                  | 2.67 to 27.48°.                             |                         |  |
| Index ranges                                                                     | -18<=h<=18, -18<=k<=18, -30                 | <=l<=30                 |  |
| Reflections collected                                                            | 16475                                       |                         |  |
| Independent reflections                                                          | 5411 [R(int) = 0.054]                       |                         |  |
| Completeness to theta = $27.48^{\circ}$                                          | 99.6 %                                      |                         |  |
| Absorption correction                                                            | Semi-empirical from equivalen               | ts                      |  |
| Max. and min. transmission                                                       | 0.922 and 0.852                             |                         |  |
| Refinement method                                                                | Full-matrix least-squares on F <sup>2</sup> |                         |  |
| Data / restraints / parameters                                                   | 5411 / 4 / 292                              |                         |  |
| Goodness-of-fit on F <sup>2</sup>                                                | 1.086                                       |                         |  |
| Final R indices [I>2sigma(I)]                                                    | R1 = 0.0402, wR2 = 0.0922                   |                         |  |
| R indices (all data)                                                             | R1 = 0.0533, wR2 = 0.0987                   |                         |  |
| Absolute structure parameter                                                     | -0.02(3)                                    |                         |  |
| Largest diff. peak and hole                                                      | 1.217 and -0.724 e.Å <sup>-3</sup>          |                         |  |

|       | Х       | у       | Z       | U(eq) |
|-------|---------|---------|---------|-------|
| Rh(1) | 3138(1) | 6432(1) | 6347(1) | 19(1) |
| N(1)  | 1814(2) | 6351(2) | 5850(1) | 20(1) |
| N(16) | 2245(2) | 5931(2) | 7074(2) | 22(1) |
| C(2)  | 1835(3) | 6704(3) | 5245(2) | 27(1) |
| C(3)  | 1802(4) | 7765(3) | 5199(2) | 36(1) |
| C(4)  | 953(4)  | 8180(3) | 5515(2) | 38(1) |
| C(5)  | 960(3)  | 7809(3) | 6120(2) | 33(1) |
| C(6)  | 901(3)  | 6745(3) | 6096(2) | 26(1) |
| C(7)  | 631(3)  | 6304(3) | 6653(2) | 29(1) |
| C(8)  | 466(3)  | 5258(3) | 6568(2) | 29(1) |
| C(9)  | 1434(3) | 4852(3) | 6390(2) | 24(1) |
| C(10) | 1721(3) | 5299(3) | 5827(2) | 25(1) |
| C(11) | 2133(3) | 4929(3) | 6887(2) | 24(1) |
| C(12) | 1839(3) | 4240(3) | 7360(2) | 34(1) |
| C(13) | 2422(3) | 4361(4) | 7907(2) | 43(1) |
| C(14) | 2327(3) | 5347(4) | 8109(2) | 37(1) |
| C(15) | 2709(3) | 6001(3) | 7654(2) | 29(1) |
| C(17) | 1328(3) | 6435(3) | 7144(2) | 26(1) |
| C(18) | 4011(3) | 6133(3) | 5620(2) | 26(1) |
| C(19) | 4007(3) | 7085(3) | 5703(2) | 29(1) |
| C(20) | 4823(3) | 7636(3) | 5949(2) | 36(1) |
| C(21) | 4756(3) | 7752(3) | 6596(2) | 36(1) |
| C(22) | 4247(3) | 6951(3) | 6875(2) | 28(1) |
| C(23) | 4430(3) | 6016(3) | 6759(2) | 27(1) |
| C(24) | 5200(3) | 5673(3) | 6358(2) | 31(1) |
| C(25) | 4785(3) | 5470(3) | 5769(2) | 30(1) |
| F(1)  | 3644(2) | 7977(2) | 4078(2) | 62(1) |
| F(2)  | 3588(2) | 7096(2) | 3271(1) | 52(1) |
| F(3)  | 2236(2) | 7439(2) | 3739(1) | 46(1) |
| F(4)  | 3293(2) | 6435(2) | 4130(1) | 46(1) |
| B(1)  | 3187(4) | 7252(3) | 3801(2) | 31(1) |

**Table S5.** Atomic coordinates  $(x \ 10^4)$  and equivalent isotropic displacement parameters  $(Å^2x \ 10^3)$  for k08228 (CCDC 730 876). U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| Rh(1)-C(22) | 2.134(4) |
|-------------|----------|
| Rh(1)-C(18) | 2.149(4) |
| Rh(1)-C(23) | 2.155(4) |
| Rh(1)-C(19) | 2.161(4) |
| Rh(1)-N(1)  | 2.214(3) |
| Rh(1)-N(16) | 2.242(3) |
| N(1)-C(2)   | 1.506(5) |
| N(1)-C(10)  | 1.513(5) |
| N(1)-C(6)   | 1.527(5) |
| N(16)-C(17) | 1.496(5) |
| N(16)-C(11) | 1.508(5) |
| N(16)-C(15) | 1.513(5) |
| C(2)-C(3)   | 1.523(6) |
| C(3)-C(4)   | 1.535(6) |
| C(4)-C(5)   | 1.514(7) |
| C(5)-C(6)   | 1.525(6) |
| C(6)-C(7)   | 1.498(6) |
| C(7)-C(17)  | 1.529(6) |
| C(7)-C(8)   | 1.530(6) |
| C(8)-C(9)   | 1.548(6) |
| C(9)-C(10)  | 1.520(6) |
| C(9)-C(11)  | 1.535(6) |
| C(11)-C(12) | 1.540(6) |
| C(12)-C(13) | 1.536(7) |
| C(13)-C(14) | 1.495(7) |
| C(14)-C(15) | 1.518(6) |
| C(18)-C(19) | 1.377(6) |
| C(18)-C(25) | 1.493(6) |
| C(19)-C(20) | 1.515(7) |
| C(20)-C(21) | 1.527(7) |
| C(21)-C(22) | 1.505(6) |
| C(22)-C(23) | 1.390(6) |

## Table S6. Bond lengths [Å] and angles [°] for k08228 (CCDC 730 876).

| C(23)-C(24)       | 1.523(6)   |
|-------------------|------------|
| C(24)-C(25)       | 1.530(6)   |
| F(1)-B(1)         | 1.385(6)   |
| F(2)-B(1)         | 1.384(6)   |
| F(3)-B(1)         | 1.383(6)   |
| F(4)-B(1)         | 1.409(5)   |
| C(22)-Rh(1)-C(18) | 95.96(17)  |
| C(22)-Rh(1)-C(23) | 37.83(17)  |
| C(18)-Rh(1)-C(23) | 79.06(18)  |
| C(22)-Rh(1)-C(19) | 80.42(18)  |
| C(18)-Rh(1)-C(19) | 37.26(17)  |
| C(23)-Rh(1)-C(19) | 87.00(16)  |
| C(22)-Rh(1)-N(1)  | 161.56(15) |
| C(18)-Rh(1)-N(1)  | 93.52(15)  |
| C(23)-Rh(1)-N(1)  | 160.53(14) |
| C(19)-Rh(1)-N(1)  | 98.00(15)  |
| C(22)-Rh(1)-N(16) | 95.05(15)  |
| C(18)-Rh(1)-N(16) | 149.83(15) |
| C(23)-Rh(1)-N(16) | 92.97(15)  |
| C(19)-Rh(1)-N(16) | 172.64(15) |
| N(1)-Rh(1)-N(16)  | 84.44(12)  |
| C(2)-N(1)-C(10)   | 107.6(3)   |
| C(2)-N(1)-C(6)    | 104.4(3)   |
| C(10)-N(1)-C(6)   | 107.9(3)   |
| C(2)-N(1)-Rh(1)   | 117.5(2)   |
| C(10)-N(1)-Rh(1)  | 98.3(2)    |
| C(6)-N(1)-Rh(1)   | 120.1(2)   |
| C(17)-N(16)-C(11) | 113.5(3)   |
| C(17)-N(16)-C(15) | 104.4(3)   |
| C(11)-N(16)-C(15) | 111.6(3)   |
| C(17)-N(16)-Rh(1) | 114.9(2)   |
| C(11)-N(16)-Rh(1) | 98.2(2)    |
| C(15)-N(16)-Rh(1) | 114.6(2)   |
| N(1)-C(2)-C(3)    | 113.6(3)   |
| C(2)-C(3)-C(4)    | 112.1(4)   |

Electronic Supplementary Information for Dalton Transactions 339 This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2010

| C(5)-C(4)-C(3)    | 108.1(4) |
|-------------------|----------|
| C(4)-C(5)-C(6)    | 108.4(4) |
| C(7)-C(6)-C(5)    | 113.8(4) |
| C(7)-C(6)-N(1)    | 112.9(3) |
| C(5)-C(6)-N(1)    | 109.7(3) |
| C(6)-C(7)-C(17)   | 116.0(3) |
| C(6)-C(7)-C(8)    | 109.8(4) |
| C(17)-C(7)-C(8)   | 108.5(4) |
| C(7)-C(8)-C(9)    | 105.5(3) |
| C(10)-C(9)-C(11)  | 117.1(3) |
| C(10)-C(9)-C(8)   | 108.3(3) |
| C(11)-C(9)-C(8)   | 110.0(4) |
| N(1)-C(10)-C(9)   | 114.3(3) |
| N(16)-C(11)-C(9)  | 110.9(3) |
| N(16)-C(11)-C(12) | 115.4(4) |
| C(9)-C(11)-C(12)  | 109.0(3) |
| C(13)-C(12)-C(11) | 112.5(4) |
| C(14)-C(13)-C(12) | 108.8(4) |
| C(13)-C(14)-C(15) | 109.1(4) |
| N(16)-C(15)-C(14) | 115.8(3) |
| N(16)-C(17)-C(7)  | 114.9(3) |
| C(19)-C(18)-C(25) | 126.8(4) |
| C(19)-C(18)-Rh(1) | 71.8(3)  |
| C(25)-C(18)-Rh(1) | 111.5(3) |
| C(18)-C(19)-C(20) | 124.4(5) |
| C(18)-C(19)-Rh(1) | 70.9(3)  |
| C(20)-C(19)-Rh(1) | 113.3(3) |
| C(19)-C(20)-C(21) | 112.7(4) |
| C(22)-C(21)-C(20) | 112.2(4) |
| C(23)-C(22)-C(21) | 124.1(4) |
| C(23)-C(22)-Rh(1) | 71.9(3)  |
| C(21)-C(22)-Rh(1) | 111.6(3) |
| C(22)-C(23)-C(24) | 124.4(4) |
| C(22)-C(23)-Rh(1) | 70.3(3)  |
| C(24)-C(23)-Rh(1) | 115.0(3) |
| C(23)-C(24)-C(25) | 110.0(3) |

Electronic Supplementary Information for Dalton Transactions S40 This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2010

| C(18)-C(25)-C(24) | 111.9(4) |
|-------------------|----------|
| F(3)-B(1)-F(2)    | 109.8(4) |
| F(3)-B(1)-F(1)    | 111.2(4) |
| F(2)-B(1)-F(1)    | 110.4(4) |
| F(3)-B(1)-F(4)    | 108.8(4) |
| F(2)-B(1)-F(4)    | 108.2(4) |
| F(1)-B(1)-F(4)    | 108.4(4) |
|                   |          |

Symmetry transformations used to generate equivalent atoms:

**Table S7.** Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for k08228 (CCDC 730 876). The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [ h<sup>2</sup> a<sup>\*2</sup>U<sup>11</sup> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sup>12</sup> ]

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Rh(1) | 16(1)           | 20(1)           | 22(1)           | -1(1)           | 1(1)            | -1(1)           |
| N(1)  | 17(1)           | 22(2)           | 20(2)           | -2(1)           | 1(1)            | 6(2)            |
| N(16) | 16(2)           | 29(2)           | 21(2)           | 0(2)            | -1(1)           | -3(1)           |
| C(2)  | 28(2)           | 31(2)           | 21(2)           | -3(2)           | -5(2)           | 8(2)            |
| C(3)  | 42(3)           | 35(2)           | 31(2)           | 10(2)           | 2(2)            | 9(2)            |
| C(4)  | 40(3)           | 35(2)           | 39(3)           | 2(2)            | 3(2)            | 20(2)           |
| C(5)  | 37(2)           | 27(2)           | 35(3)           | -6(2)           | 3(2)            | 14(2)           |
| C(6)  | 18(2)           | 27(2)           | 32(2)           | -7(2)           | -1(2)           | 5(2)            |
| C(7)  | 17(2)           | 32(2)           | 39(2)           | -8(2)           | 3(2)            | 0(2)            |
| C(8)  | 16(2)           | 32(2)           | 38(3)           | -2(2)           | -2(2)           | -5(2)           |
| C(9)  | 23(2)           | 21(2)           | 30(2)           | 0(2)            | 2(2)            | -2(2)           |
| C(10) | 22(2)           | 25(2)           | 27(2)           | -6(2)           | -1(2)           | -3(2)           |
| C(11) | 21(2)           | 20(2)           | 31(2)           | 0(2)            | 2(2)            | 1(2)            |
| C(12) | 32(2)           | 30(2)           | 41(3)           | 13(2)           | 3(2)            | 4(2)            |
| C(13) | 28(2)           | 60(3)           | 40(3)           | 22(3)           | 2(2)            | -5(2)           |
| C(14) | 21(2)           | 59(3)           | 31(3)           | 9(2)            | 4(2)            | -1(2)           |
| C(15) | 22(2)           | 41(2)           | 23(2)           | 1(2)            | -2(2)           | -1(2)           |
| C(17) | 19(2)           | 31(2)           | 27(2)           | -2(2)           | 4(2)            | 0(2)            |
| C(18) | 20(2)           | 33(2)           | 23(2)           | -2(2)           | 4(2)            | 1(2)            |
| C(19) | 31(2)           | 32(2)           | 23(2)           | 10(2)           | 8(2)            | 4(2)            |

| Electronic Supplementary Information for Dalton Transactions | СЛ | 1 |
|--------------------------------------------------------------|----|---|
| This journal is © The Royal Society of Chemistry 2010        | 54 | Т |

| C(20) | 34(3) | 36(3) | 38(3)  | 2(2)   | 14(2) | -15(2) |
|-------|-------|-------|--------|--------|-------|--------|
| C(21) | 32(2) | 28(2) | 48(3)  | -15(2) | 8(2)  | -17(2) |
| C(22) | 29(2) | 34(2) | 20(2)  | -3(2)  | -3(2) | -10(2) |
| C(23) | 15(2) | 42(3) | 26(2)  | 10(2)  | -1(2) | 2(2)   |
| C(24) | 23(2) | 37(2) | 33(2)  | 5(2)   | 3(2)  | 7(2)   |
| C(25) | 20(2) | 36(2) | 33(3)  | 0(2)   | 4(2)  | -1(2)  |
| F(1)  | 43(2) | 44(2) | 100(3) | -25(2) | 3(2)  | -9(1)  |
| F(2)  | 45(2) | 73(2) | 37(2)  | 8(2)   | 8(1)  | 0(2)   |
| F(3)  | 29(1) | 51(2) | 59(2)  | 8(2)   | -5(1) | -2(1)  |
| F(4)  | 55(2) | 40(1) | 44(2)  | 10(1)  | 6(1)  | 2(2)   |
| B(1)  | 29(2) | 26(2) | 39(3)  | 3(2)   | -1(3) | -8(2)  |
|       |       |       |        |        |       |        |

**Table S8.** Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x 10 <sup>3</sup>)for k08228(CCDC 730 876).

| Х    | У                                                                                                                   | Z                                                    | U(eq)                                                                                                                                                                                             |
|------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                     |                                                      |                                                                                                                                                                                                   |
| 1291 | 6439                                                                                                                | 5035                                                 | 32                                                                                                                                                                                                |
| 2416 | 6476                                                                                                                | 5057                                                 | 32                                                                                                                                                                                                |
| 1769 | 7945                                                                                                                | 4791                                                 | 43                                                                                                                                                                                                |
| 2389 | 8029                                                                                                                | 5359                                                 | 43                                                                                                                                                                                                |
| 995  | 8870                                                                                                                | 5518                                                 | 46                                                                                                                                                                                                |
| 360  | 7999                                                                                                                | 5321                                                 | 46                                                                                                                                                                                                |
| 416  | 8062                                                                                                                | 6335                                                 | 39                                                                                                                                                                                                |
| 1546 | 8002                                                                                                                | 6316                                                 | 39                                                                                                                                                                                                |
| 390  | 6589                                                                                                                | 5819                                                 | 31                                                                                                                                                                                                |
| 19   | 6586                                                                                                                | 6774                                                 | 35                                                                                                                                                                                                |
| -9   | 5148                                                                                                                | 6266                                                 | 35                                                                                                                                                                                                |
| 244  | 4965                                                                                                                | 6926                                                 | 35                                                                                                                                                                                                |
| 1338 | 4171                                                                                                                | 6314                                                 | 29                                                                                                                                                                                                |
| 2332 | 5030                                                                                                                | 5706                                                 | 30                                                                                                                                                                                                |
| 1247 | 5134                                                                                                                | 5534                                                 | 30                                                                                                                                                                                                |
| 2760 | 4717                                                                                                                | 6741                                                 | 29                                                                                                                                                                                                |
|      | 1291<br>2416<br>1769<br>2389<br>995<br>360<br>416<br>1546<br>390<br>19<br>-9<br>244<br>1338<br>2332<br>1247<br>2760 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | X $y$ $L$ 129164395035241664765057176979454791238980295359995887055183607999532141680626335154680026316390658958191965866774-95148626624449656926133841716314233250305706124751345534276047176741 |

Electronic Supplementary Information for Dalton Transactions S42 This journal is  $\ensuremath{\mathbb{O}}$  The Royal Society of Chemistry 2010

| H(12A) | 1164     | 4336     | 7450     | 41 |
|--------|----------|----------|----------|----|
| H(12B) | 1915     | 3593     | 7218     | 41 |
| H(13A) | 2193     | 3926     | 8205     | 51 |
| H(13B) | 3092     | 4217     | 7830     | 51 |
| H(14A) | 2684     | 5432     | 8469     | 44 |
| H(14B) | 1657     | 5492     | 8185     | 44 |
| H(15A) | 2642     | 6651     | 7793     | 34 |
| H(15B) | 3391     | 5876     | 7608     | 34 |
| H(17A) | 1460     | 7111     | 7187     | 31 |
| H(17B) | 1026     | 6219     | 7501     | 31 |
| H(18A) | 3640(30) | 5850(30) | 5362(14) | 31 |
| H(19A) | 3620(30) | 7400(30) | 5466(17) | 34 |
| H(20A) | 4840     | 8261     | 5769     | 43 |
| H(20B) | 5420     | 7313     | 5855     | 43 |
| H(21A) | 5399     | 7799     | 6757     | 43 |
| H(21B) | 4420     | 8341     | 6683     | 43 |
| H(22A) | 4120(30) | 7090(30) | 7241(6)  | 33 |
| H(23A) | 4250(30) | 5580(20) | 7014(15) | 33 |
| H(24A) | 5489     | 5098     | 6515     | 37 |
| H(24B) | 5699     | 6154     | 6325     | 37 |
| H(25A) | 5290     | 5517     | 5478     | 36 |
| H(25B) | 4538     | 4823     | 5761     | 36 |
|        |          |          |          |    |

<sup>1</sup> Molecular pictures made using ChemCraft: Grigoriy A. Zhurko., Chemcraft 1.6.

http://www.chemcraftprog.com/index.html.

<sup>2</sup> a) M. Suenaga, *J. Comput. Chem. Jpn.*, **2005**, 4, 25. b) M. Suenaga, *J. Comput. Chem. Jpn.*, **2008**, 7,33.

<sup>3</sup> Graphics made, using Molekel: *Molekel 5.3.0.6*, Swiss National Supercomputing Centre, Manno, Switzerland. **2009**.