Supporting Information

Solvent Effect on the Construction of Two Microporous Yttrium-Organic Frameworks with High Thermostability via *In-Situ* Ligand Hydrolysis

Bao-Xia Dong, Xiao-Jun Gu and Qiang Xu*

National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan; E-mail: <u>q.xu@aist.go.jp</u>

Contents:

- 1. Figure S1. View of the coordination environment of Y^{III} centers in **1**.
- Figure S2. View of the coordination mode of the two crystallographically independent BTC molecules in 1 with the thermal ellipsoids at 30 % probability level.
- 3. Figure S3. View of the coordination environment of Y^{III} center in 2.
- 4. Figure S4. View of the coordination mode of BTC molecule in **2** with the thermal ellipsoids at 30 % probability level.
- 5. Figure S5. View of the connection mode of BTC molecule in the 1D chain of 2.
- 6. Figure S6. Nitrogen gas sorption isotherms at 77 K for the desolvated 1a and 2a.
- 7. Figure S7. Gas sorption isotherms of desolvated compound 1a at 77 K (N_2 , black) and 195 K (CO_2 , red; CH_4 , blue).
- 8. Figure S8. Gas sorption isotherms of desolvated compound 2a at 77 K (N₂, black) and 195 K (CO₂, red; CH₄, blue).
- 9. Figure S7. FTIR spectra of the as-synthesized 1 and 2.
- 10. Figure S8. PXRD pattern of the as-synthesized 2.
- 11. Table S1. Bond lengths [Å] and angles [deg] for **1** and **2**.

Figure S1. View of the coordination environment of Y^{III} centers in **1**.

BTC-1

Figure S2. View of the coordination mode of the two crystallographically independent BTC molecules in **1** with the thermal ellipsoids at 30 % probability level.

Figure S3. View of the coordination environment of Y^{III} center in 2.

Figure S4. View of the coordination mode of BTC molecule in **2** with the thermal ellipsoids at 30 % probability level.

Figure S5. View of the connection mode of BTC molecule in the 1D chain of **2**.

Figure S6. Nitrogen gas sorption isotherms at 77 K for the desolvated 1a and 2a.

Figure S7. Gas sorption isotherms of desolvated compound 1a at 77 K (N_2 , black) and 195 K (CO_2 , red; CH_4 , blue).

Figure S8. Gas sorption isotherms of desolvated compound 2a at 77 K (N₂, black) and 195 K (CO₂, red; CH₄, blue).

Figure S9. FTIR spectra of the as-synthesized 1 and 2.

Figure S10. PXRD pattern of the as-synthesized 2.

Compound 1			
Y(1)-O(7)	2.209(8)	Y(1)-O(7)#1	2.209(8)
Y(1)-O(5)#1	2.220(8)	Y(1)-O(5)	2.220(8)
Y(1)-O(3)#1	2.228(10)	Y(1)-O(3)	2.228(10)
Y(2)-O(12)#2	2.212(8)	Y(2)-O(12)	2.212(8)
Y(2)-O(10)	2.274(10)	Y(2)-O(10)#2	2.274(10)
Y(2)-O(1)	2.292(9)	Y(2)-O(1)#2	2.292(9)
Y(2)-O(1W)	2.33(2)	Y(3)-O(4)	2.236(8)
Y(3)-O(9)	2.247(9)	Y(3)-O(2)	2.251(9)
Y(3)-O(6)#3	2.310(9)	Y(3)-O(11)	2.310(9)
Y(3)-O(8)	2.337(9)	Y(3)-O(13)	2.376(13)
Symmetry transformations used to generate equivalent atoms: #1 -x-1,-y+1,z #2			
-x-1/2,-y+1/2,z #3 x+1/4,-y+3/4,z-1/4			
Compound 2			
Y(1)-O(1)	2.229(8)	Y(1)-O(6)	2.223(16)
Y(1)-O(3)	2.221(8)	Y(1)-O(2)	2.228(8)
Y(1)-O(4)	2.268(9)	Y(1)-O(5)	2.273(9)
Y(1)-O(1W)	2.31(4)		
Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z #2			
-x+1/2,y-1/2,-z+1/2 #3 -x-1/2,y-1/2,-z+1/2 #4 -x+1,-y+1,-z #5			
-x+1/2,y+1/2,-z+1/2 #6 -x-1/2,y+1/2,-z+1/2			

Table S1. Bond lengths [Å] and angles [deg] for 1 and 2.

_