Supporting Information

A Comparison Between Nickel and Palladium Precatalysts of 1,2,4triazole Based N-heterocyclic Carbenes in Hydroamination of Activated

Olefins

Chandrakanta Dash,^a Mobin M. Shaikh,^b Ray J. Butcher^c and Prasenjit Ghosh^{*a}

^{*a*}Department of Chemistry and

^bNational Single Crystal X-ray Diffraction Facility,

Indian Institute of Technology Bombay,

Powai, Mumbai 400 076.

^cDepartment of Chemistry,

Howard University,

Washington D.C. 20059, USA

Email: <u>pghosh@chem.iitb.ac.in</u>

Fax: +91-22-2572-3480

Figure S1. ORTEP drawing of **2b** with thermal ellipsoids shown at the 50 % probability level. Selected bond lengths (Å) and angles (°): Ni(2)-C(17) 1.925(8), Ni(2)-C(25) 1.931(7), Ni(2)-Br(3) 2.3037(14), Ni(2)-Br(4) 2.3059(14), C(17)-Ni(2)-Br(3) 88.8(2), C(25)-Ni(2)-Br(3) 90.5(2), C(17)-Ni(2)-Br(4) 90.3(2), C(25)-Ni(2)-Br(4) 90.3(2).

Figure S2. ORTEP drawing of **2c** with thermal ellipsoids shown at the 50 % probability level. Selected bond lengths (Å) and angles (°): Pd(1)-C(2) 2.030(8), Pd(1)-C(9) 2.010(8), Pd(1)-Br(1) 2.4349(10), Pd(1)-Br(2) 2.4392(10), C(2)-Pd(1)-Br(1) 91.8(2), C(9)-Pd(1)-Br(1) 90.1(2), C(2)-Pd(1)-Br(2) 90.3(2), C(9)-Pd(1)-Br(2) 87.8(2).

Figure S3. Orbital interaction diagram showing the major contributions of the NHC-nickel bond in 1b.

HOMO-1 9-0MOH ي. Z Ē %0 ° 6 HOMO-29 Ъ, $\mathbf{2b}$ Ш 24 % Ż 5% 25 % 8 % HOMO-17-HOMO-23 HOMO-1 φ لې Energy (eV) -10 --12 -4

Electronic Supplementary Information for Dalton Transactions

This journal is © The Royal Society of Chemistry 2010

Figure S6. Orbital interaction diagram showing the major contributions of the NHC-nickel bond in 2b.

Figure S7. Simplified orbital interaction diagram showing the major contributions of the NHC-palladium bond in 2c.

Electronic Supplementary Information for Dalton Transactions

This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Information for Dalton Transactions

The density functional theory calculations were performed on 1b, 2b, 1c and 2c using

GAUSSIAN 03¹ suite of quantum chemical programs.

Table S1. B3LYP/LANL2DZ, 6-31G* optimized coordinates of 1b.

Ground state electronic energy = -6189.8867185 hartree/particle.

Ni	0.077871	0.075937	8.282736
Br	0.113026	0.168181	10.656394
Br	0.020148	0.005255	5.910527
Ν	-0.483943	2.977783	8.280916
Ν	1.592267	2.623105	8.024727
Ν	0.077932	4.227405	8.169213
Ν	-1.433072	-2.457151	8.643456
Ν	0.601156	-2.83983	8.175426
Ν	0.029448	-4.082094	8.315766
С	0.403192	1.97432	8.198449
С	1.345641	3.973139	8.017557
Н	2.11265	4.723826	7.893304
С	-1.942439	2.853103	8.450664
Н	-2.107361	1.774208	8.514445
С	-2.377097	3.510777	9.762761
Н	-1.861366	3.048792	10.610125
Н	-3.456464	3.383011	9.899365
Н	-2.154523	4.582385	9.751572
С	-2.661291	3.408843	7.218229
Н	-2.459319	4.478299	7.102358
Н	-3.742431	3.270634	7.327266
Н	-2.332759	2.887932	6.313246
С	2.903527	1.978136	7.897886
Н	2.734359	1.040045	7.364263
Н	3.517603	2.616479	7.254133
С	3.573193	1.745456	9.252613
Н	3.773672	2.694401	9.762381
Н	4.527989	1.227456	9.108527
Н	2.931902	1.136759	9.89722
С	-0.254957	-1.823372	8.366221
С	-1.212057	-3.81039	8.598301
Н	-1.976693	-4.550897	8.783438

С	-2.713256	-1.792337	8.910791
Н	-2.481141	-0.904095	9.503359
Н	-3.300964	-2.466871	9.541916
С	-3.46388	-1.440457	7.625955
Н	-2.849904	-0.800731	6.984384
Н	-4.391648	-0.911931	7.872382
Н	-3.724299	-2.342199	7.060789
С	2.032087	-2.739673	7.836981
Н	2.217422	-1.663209	7.798118
С	2.878232	-3.370363	8.946163
Н	2.67256	-2.893746	9.910092
Н	3.941714	-3.245205	8.715685
Н	2.667109	-4.440729	9.032807
С	2.28672	-3.344452	6.453883
Н	2.031456	-4.40881	6.443901
Н	3.345939	-3.239538	6.194926
Н	1.690051	-2.824587	5.698386

 Table S2.
 B3LYP/LANL2DZ, 6-31G* optimized coordinates of 2b.

Ground state electronic energy = -6266.0339022 hartree/particle.

Ni	-0.1124	-0.0287	-0.0101
Br	0.16331	0.64457	-2.2809
Br	-0.363	-0.655	2.26864
Ν	-2.9775	0.67266	0.19846
Ν	-2.7343	-1.0535	-1.0122
Ν	-4.2497	0.33341	-0.1962
Ν	2.72778	-0.8101	0.37576
Ν	2.50539	1.30034	0.37486
Ν	3.99924	-0.3168	0.55552
С	-2.0227	-0.1447	-0.2769
С	-4.0641	-0.7234	-0.9315
Н	-4.8506	-1.2772	-1.4235
С	-2.7902	1.86184	1.05216
Н	-1.7189	1.86855	1.26532
С	-3.5566	1.69183	2.36585
Н	-4.6317	1.60172	2.18192
Н	-3.3849	2.56514	3.00425
Н	-3.2047	0.80191	2.89532

С	-3.1811	3.12462	0.27868
Н	-2.5944	3.21743	-0.6413
Н	-2.997	4.00843	0.89901
Н	-4.2432	3.10415	0.01425
С	-2.1768	-2.1573	-1.8044
Н	-2.9785	-2.4742	-2.4835
Н	-1.3625	-1.7498	-2.4094
С	-1.7128	-3.3188	-0.965
Н	-2.3745	-3.6217	-0.1544
С	-0.5875	-3.9919	-1.2046
Н	0.09038	-3.7061	-2.006
Н	-0.3084	-4.858	-0.6112
С	1.78904	0.14238	0.26021
С	3.82748	0.97323	0.54727
Н	4.61693	1.70223	0.65301
С	2.52024	-2.2696	0.34764
Н	1.44499	-2.3841	0.18996
С	2.89683	-2.8781	1.70104
Н	3.95622	-2.7121	1.92135
Н	2.71126	-3.9576	1.68268
Н	2.28907	-2.4349	2.49509
С	3.28731	-2.8827	-0.8275
Н	2.9762	-2.4325	-1.7761
Н	3.09244	-3.9596	-0.8728
Н	4.3649	-2.7323	-0.7085
С	1.96097	2.66399	0.30169
Н	0.88488	2.54403	0.1541
Н	2.12524	3.1613	1.26403
С	2.56656	3.4491	-0.8297
Н	2.41044	3.02461	-1.8199
С	3.22853	4.59443	-0.6633
Н	3.38355	5.03052	0.32202
Н	3.62959	5.14817	-1.5075

 Table S3.
 B3LYP/SDD, 6-31G* optimized coordinates of 1c.

Ground state electronic energy = -6148.5188855 hartree/particle.

Pd	-0.03511	-0.23441	0.020966
Br	-0.08352	2.256082	0.085031

Br	0.009741	-2.7229	-0.05231
Ν	-0.39051	-0.56894	3.058237
Ν	1.598374	0.030813	2.612836
Ν	0.233989	-0.47305	4.277518
Ν	-1.68353	-0.42376	-2.56742
Ν	0.337317	0.055539	-3.01574
Ν	-0.29371	-0.00367	-4.2347
С	-0.47408	-0.19432	-1.97472
С	-1.52433	-0.29465	-3.92343
Н	-2.32372	-0.42719	-4.63788
С	-2.93873	-0.71604	-1.86389
Н	-3.55022	-1.32382	-2.53863
Η	-2.67467	-1.33564	-1.00401
С	-3.67592	0.55401	-1.43848
Η	-3.04595	1.164441	-0.78429
Η	-4.59019	0.284963	-0.89776
Η	-3.95838	1.158288	-2.30769
С	1.779246	0.365171	-2.96682
Η	2.017724	0.337918	-1.90065
С	2.572327	-0.71987	-3.70062
Η	2.37581	-1.70617	-3.26793
Η	3.644316	-0.51132	-3.61646
Η	2.307466	-0.74379	-4.76232
С	2.031277	1.775065	-3.5076
Н	1.724828	1.849093	-4.55578
Н	3.099866	2.007001	-3.44239
Η	1.479184	2.514663	-2.91977
С	0.405021	-0.26899	2.018039
С	1.445427	-0.10887	3.968451
Η	2.234836	0.069843	4.683929
С	2.833562	0.406906	1.913416
Η	3.421615	1.013402	2.609782
Η	2.536591	1.048833	1.080868
С	3.625504	-0.81038	1.435601
Η	3.943437	-1.43309	2.279158
Η	4.521242	-0.47867	0.898646
Η	3.020051	-1.42579	0.763153
С	-1.81297	-0.95969	3.008858
Н	-2.0428	-0.98027	1.940747
С	-1.99263	-2.36403	3.590752
Н	-1.3974	-3.08987	3.028721

Н	-3.04652	-2.65496	3.524001
Н	-1.69238	-2.39075	4.642945
С	-2.6693	0.102271	3.704615
Н	-3.72791	-0.16609	3.62141
Н	-2.52288	1.084703	3.24404
Η	-2.4134	0.171975	4.766566

Table S4. B3LYP/SDD, 6-31G* optimized coordinates of 2c.

Ground state electronic energy = -6224.6661602 hartree/particle.

Pd	0.09908	0.00145	4.4E-05
Br	-0.2484	0.60874	-2.401
Br	0.38815	-0.5814	2.40447
Ν	3.09591	0.66533	0.17836
Ν	2.8079	-1.0289	-1.0709
Ν	4.356	0.31212	-0.2398
Ν	-2.8308	-0.8263	0.41431
Ν	-2.6519	1.29028	0.43863
Ν	-4.1099	-0.3611	0.60786
С	2.12148	-0.1246	-0.3055
С	4.14336	-0.7244	-0.997
Н	4.91463	-1.2796	-1.5111
С	2.94339	1.8472	1.05162
Н	1.87576	1.87255	1.27957
С	3.34788	3.1113	0.28707
Н	4.40614	3.07579	0.00924
Н	3.18656	3.99054	0.91999
Н	2.75115	3.22594	-0.624
С	3.72778	1.64626	2.3502
Н	3.36537	0.76049	2.87967
Н	3.58582	2.51738	2.99873
Н	4.79762	1.53464	2.14802
С	2.22703	-2.1224	-1.8647
Н	2.99894	-2.4061	-2.5913
Н	1.37674	-1.714	-2.4165
С	1.82512	-3.312	-1.0328
Н	2.54667	-3.6453	-0.2874
С	0.67983	-3.9715	-1.2055
Н	-0.0558	-3.6529	-1.9408

Н	0.44108	-4.8557	-0.6215
С	-1.9138	0.14829	0.30559
С	-3.9652	0.93267	0.61246
Н	-4.7699	1.64296	0.73157
С	-2.5933	-2.2819	0.35989
Н	-1.5214	-2.3684	0.16383
С	-2.9144	-2.9155	1.71607
Н	-2.2906	-2.4745	2.49907
Н	-2.7111	-3.9911	1.67531
Н	-3.9692	-2.7721	1.97196
С	-3.3839	-2.8955	-0.7992
Н	-4.4603	-2.7745	-0.6432
Н	-3.1636	-3.9664	-0.8665
Н	-3.1143	-2.4248	-1.7505
С	-2.1381	2.66721	0.37062
Н	-1.0491	2.5724	0.3486
Н	-2.42	3.18896	1.29158
С	-2.6402	3.39445	-0.8472
Н	-2.3758	2.93577	-1.7986
С	-3.3354	4.53075	-0.7928
Н	-3.5968	5.00043	0.15404
Н	-3.6589	5.04362	-1.6941

Table S5. Natural charge analyses of 1b and 2b.

Table S6. Mulliken charge analyses of 1b and 2b.

Table S7. Natural charge analyses of 1c and 2c.

Table S8. Mulliken charge analyses of 1c and 2c.

Table S9. Electronic configuration of 1b and 2b.

0.01 0.01 d_{L} 0.01 δd 0.01 0.01 0.01 db0.01 0.01 0.01 5d0.010.05 5p8.97 9.07 9.06 8.00 4d0.490.50 0.08 5_S Ζ specie/compound Pd²⁺ Pd Br ۳ ש ۳ 1c Pd Ē Б Б Z 7

 Table S10.
 Electronic configuration of 1c and 2c.

	hybrid orbitals of	C _{ca}	C _{carbene}		M (M = Ni, Pd)	
compound	$C_{carbene}$ -M bond (M = Ni, Pd)	s (%)	<i>p</i> (%)	s (%)	d (%)	
N-N Br N N Br N-N N Br N-N 1b	$[C(sp^{1.69})-Ni(sd^{1.04})]$	37.18	62.81	49.05	50.85	
N-N Br N N Br N-N N Br N-N	$[C(sp^{1.70})-Ni(sd^{1.03})]$	37.08	62.92	49.24	50.68	
N Br N N Br N N Br N N Dr	$[C(sp^{1.64}) - Pd(sd^{1.18})]$	37.85	62.15	45.65	54.07	
N-N Br N Pd () N Br N-N	$[C(sp^{1.65})-Pd(sd^{1.20})]$	37.70	62.30	45.26	54.46	

Table S11. Hybrid orbitals of the $C_{carbene}$ -Ni and $C_{carbene}$ -Pd bond in 1b, 2b, 1c and 2c.

Table S12. Charge decomposition analysis (CDA) results showing the $NHC \xrightarrow{\sigma} MBr_2 (M = Ni, Pd)$ donation (*d*), the $NHC \xrightarrow{\pi} MBr_2 (M = Ni, Pd)$ donation (*b*), *d/b* ratio and the NHC $\leftrightarrow MBr_2 (M = Ni, Pd)$ repulsive polarization (*r*) for **1b**, **2b**, **1c** and **2c**.

compound	NHC $\xrightarrow{\sigma}$ MBr ₂	NHC $\leftarrow \pi$ MBr ₂	<i>d/b</i> ratio	repulsive polarization
	(<i>d</i>)	<i>(b)</i>		(r)
N-N Br N N Br N-N 1b	0.260	0.140	1.86	-0.023
N-N Br N N Br N-N	0.249	0.145	1.72	-0.028
2b N-N Br N Pd () N Br N-N 1c	0.481	0.132	3.64	-0.175
N-N Br N N Br N-N 2c	0.453	0.139	3.26	-0.182

Table S13. Bond distance and bond energy of C_{carbene}-Ni or C_{carbene}-Pd bonds in 1b, 2b,

1c and 2c.

compound	d/(C _{carbene} -Ni) or d/(C _{carbene} -Pd) (Å)	$D_{e}(C_{carbene}-Ni)$ or $D_{e}(C_{carbene}-Pd)$ (kcal/mol)
N Br N N Br N-N	1.93	68.8
N - N = N - N - N - N - N - N - N - N -	1.93	68.9
2b N-N Br N N Br N-N 1c	2.05	74.7
N Br N N Br N N Br N N N	2.05	74.8
2c		

Transactions	2010
lton	istry

nd blank
nd bla
ld bu
nd
Д
5
÷
E
Õ
00
Ϋ́
Ľ
\sum_{n}
1
1
R
Ч
Ă
σ
Ē
ری ل
Ē
0
δņ
Ą
\tilde{L}
Ē
đ
Ч
μ
E
Õ
do an
14
12
\underline{O}
E.
H
\mathbf{D}
ŏ
A
2
E.
H
Ξ.
ž
y Ni
l by Ni
ed by Ni
'zed by Ni
ılyzed by Ni
italyzed by Ni
catalyzed by Ni
s catalyzed by Ni
nes catalyzed by Ni
nines catalyzed by Ni
unines catalyzed by Ni
amines catalyzed by Ni
tic amines catalyzed by Ni
atic amines catalyzed by Ni
phatic amines catalyzed by Ni
liphatic amines catalyzed by Ni
aliphatic amines catalyzed by Ni
th aliphatic amines catalyzed by Ni
vith aliphatic amines catalyzed by Ni
with aliphatic amines catalyzed by Ni
on with aliphatic amines catalyzed by Ni
tion with aliphatic amines catalyzed by Ni
ction with aliphatic amines catalyzed by Ni
eaction with aliphatic amines catalyzed by Ni
reaction with aliphatic amines catalyzed by Ni
on reaction with aliphatic amines catalyzed by Ni
tion reaction with aliphatic amines catalyzed by Ni
ation reaction with aliphatic amines catalyzed by Ni
ination reaction with aliphatic amines catalyzed by Ni
mination reaction with aliphatic amines catalyzed by Ni
pamination reaction with aliphatic amines catalyzed by Ni
lroamination reaction with aliphatic amines catalyzed by Ni
ydroamination reaction with aliphatic amines catalyzed by Ni
hydroamination reaction with aliphatic amines catalyzed by Ni
of hydroamination reaction with aliphatic amines catalyzed by Ni
t of hydroamination reaction with aliphatic amines catalyzed by Ni
tts of hydroamination reaction with aliphatic amines catalyzed by Ni
ents of hydroamination reaction with aliphatic amines catalyzed by Ni
ments of hydroamination reaction with aliphatic amines catalyzed by Ni
riments of hydroamination reaction with aliphatic amines catalyzed by Ni
beriments of hydroamination reaction with aliphatic amines catalyzed by Ni
xperiments of hydroamination reaction with aliphatic amines catalyzed by Ni
experiments of hydroamination reaction with aliphatic amines catalyzed by Ni
k experiments of hydroamination reaction with aliphatic amines catalyzed by Ni

										•
$\frac{blank}{Yield^b}$		14	15	40	39	46	5	L	1	
$\operatorname{AgOTf}_{\operatorname{Yield}^b}$	3	15	24	56	62	46	С	٢	1	
PdCl ₂ /AgOTf Yield ^b	49	37	20	58	51	53	16	12	8	
PdBr ₂ /AgOTf Yield ^b	43	15	11	45	45	47	L	9	1	
NiCl ₂ /AgOTf Yield ^b	16	30	28	67	61	56	43	15	9	
NiBr ₂ /AgOTf Yield ^b	8	21	20	55	72	49	18	14	4	
product	CN		o N Coolet	CN	COOtBu	CN	COOMe	Cooet	N COOfBu	2 - - - -
reagent	CN	COOMe	COOET	CN CN	COOtBu	Č Š	COOMe	COOEt	COOtBu	- - - -
gent	HZ	Hz	HZ	H	H	H	H	HN	HN	

^{*a*} Reaction conditions: 0.50 mmol of aliphatic amines, 1.00 mmol of activated olefin, 5 mol % of NiCl₂ or NiBr₂ or PdBr₂ or PdCl₂/ 10 mol % AgOTf , 10 mol% AgOTf and blank and 5 mL of dry CH₃CN at room temperature under inert conditions (1 hour). ^{*b*} The yields (%) were determined by GC using diethylene glycol-di-*n*-butyl ether as an internal standard.

Electronic Supplementary Information for Dal This journal is © The Royal Society of Chemi

 Table S14.
 Selected results of control and bla

Table S15. Selected results of control experiments of hydroamination reaction with aliphatic amines catalyzed by NHC ligand precursors **1a** and **2a**.

NHC	reagent ^a	reagent ^a	product	ligand/KO ^t Bu	ligand/Et ₃ N
ligand				Yield ^b	Yield ^b
precursor					
1 a	ONH	CN	0 N CN	4	1
2a	ONH	CN	0 N CN	8	5

^{*a*} Reaction conditions: 0.50 mmol of aliphatic amines, 1.00 mmol of activated olefin, 10 mol % of **1a** or **2a**, 12 mol % base and 5 mL of dry CH_3CN at room temperature under inert conditions (1 hour). ^{*b*} The yields (%) were determined by GC using diethylene glycol-di-*n*-butyl ether as an internal standard.

References

[1]. Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.

Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin,

J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,

G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.

Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,

X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.

E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.

Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S.

Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.

Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J.

Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,

D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian,

Inc., Wallingford, CT, 2004.