Supplementary Information

The Synthesis and Characterization of, and Dynamic Processes Occurring in Pd(II) Chelate Complexes of 2-pyridyldiphenylphosphine

Jianke Liu, Chacko Jacob, Kelly J. Sheridan, Firas Al-Mosule, Brian T. Heaton, Jonathan A.

Iggo,^{*} Mark Matthews, Jeremie Pelletier, Robin Whyman, Jamie F. Bickley, and Alexander

Steiner.

Department of Chemistry, Donnan and Robert Robinson Laboratories, University of

Liverpool, P. O. Box. 147, Liverpool, U. K. L69 7ZD.

AUTHOR EMAIL ADDRESS iggo@liv.ac.uk

Contents

Supplementary Figure 1.	The ${}^{31}P{}^{1}H{}$ NMR spectrum recorded at 293 K of isolated
	product from the reaction of $[Pd(PhCN)_2Cl_2]$ with 1 equivalent
	of Ph_2Ppy in CH_2Cl_2 .
Supplementary Figure 2.	(a) $^{31}P{^{1}H}$ NMR spectrum of 3 [X], (X = Cl, BF ₄ , OTf, MeSO ₃) in
	CH_2Cl_2 /MeOH recorded at 233 K (top)and 3 (Cl) at 293 K
	(bottom).
	(b) ¹ H NMR spectra of 3 [X], (X = Cl, BF ₄ , OTf, MeSO ₃)in
	$CH_2Cl_2/MeOH$ recorded at 233 K.
Supplementary Figure 3.	Aromatic region of the 1 H NMR spectra of 4 [OTf] in CD ₂ Cl ₂
	recorded at 233 K (top) and 293 K (bottom).
Supplementary Figure 4.	³¹ P{ ¹ H} NMR spectrum of "[Pd(κ ² -Ph ₂ Ppy)(κ ¹ -Ph ₂ Ppy)
	$(CH_3CN)](BF_4)_2$ " (5) in $CH_2Cl_2:CH_3CN$ (20:1) solution recorded at
	193 К.
Supplementary Figure 5.	(a) $^{31}P{^{1}H}$ NMR spectrum of 8 [X], (X = OTf, CF ₃ CO ₂ , MeSO ₃) in
	CH ₂ Cl ₂ recorded at 193 K.
	(b) Aromatic region of the ¹ H NMR spectra of 8 [X], (X = OTf,
	CF_3CO_2 , MeSO ₃) in CH_2Cl_2 recorded at 193 K.
Supplementary Figure 6.	(a) $^{31}P{^{1}H}$ NMR spectrum of 8 [X], (X = OTf, MeSO ₃ , BF ₄) in
	CH ₂ Cl ₂ recorded at 193 K.

(b) Aromatic region of the ¹H NMR spectra of $\mathbf{8}'[X]$, (X = OTf,

 $MeSO_{3}$, BF_4) in CH_2Cl_2 recorded at 193 K.

Supplementary Figure 7. ${}^{31}P{}^{1}H{}$ NMR spectrum of $[Pd(\kappa^2 - Ph_2Ppy)(\kappa^1 - Ph_2PpyH)(MeSO_3)][MeSO_3]_2$ recorded at 183 K in CH_2Cl_2 in the
presence of excess MeSO_3H. The sharp resonance at ca. $\delta(P) = -$
10 ppm is due to $[Ph_2Ppy][MeSO_3].$ Supplementary Figure 8.(a) The ${}^{15}N$ and (b) ${}^{15}N{}^{1}H{}$ NMR spectra of Ph_2Ppy recorded at
293K in CH_2Cl_2; (c) the ${}^{15}N$ and (d) ${}^{15}N{}^{1}H{}$ NMR spectra of

 $\label{eq:ph2PpyH} [MeSO_3] \ recorded \ at \ 203K \ in \ CH_2Cl_2$

VT NMR spectra, and simulations, Eyring and Arrhenius plots.

- Supplementary Figure 9. Experimental and simulated variable temperature ³¹P{¹H} NMR spectra of **10** in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.4:10. (sample 3)
- **Supplementary Figure 10.** Eyring and Arrhenius plots for **10** in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.4:10. (sample 3)
- Supplementary Figure 11. Experimental and simulated variable temperature ${}^{31}P{}^{1}H$ NMR spectra of 10 in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.4:25. (sample 4)

- Supplementary Figure 12. Eyring and Arrhenius plots for 10 in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.4:25. (sample 4)
- **Supplementary Figure 13.** Experimental and simulated variable temperature ${}^{31}P{}^{1}H$ NMR spectra **10** in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.2:15. (sample 5)
- **Supplementary Figure 14.** Eyring and Arrhenius plots for **10** in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.2:15. (sample 5)
- Supplementary Figure 15. Experimental and simulated variable temperature ${}^{31}P{}^{1}H$ NMR spectra of 10 in MeOH Pd:PPh₂py:CH₃SO₃H = 1:2.9:25. (sample 6)
- **Supplementary Figure 16.** Eyring and Arrhenius plots for **10** in MeOH Pd:PPh₂py:CH₃SO₃H = 1:2.9:25. (sample 6)
- Supplementary Figure 17. Experimental and simulated variable temperature ³¹P{¹H} NMR spectra of 10 in MeOH:CD₂Cl₂ 4:3; Pd:PPh₂py:CH₃SO₃H = 1:3.1:5. (sample 8)
- Supplementary Figure 18. Eyring and Arrhenius plots for 10 in MeOH:CD₂Cl₂ 4:3; Pd:PPh₂py:CH₃SO₃H = 1:3.1:5. (sample 8)
- **Supplementary Figure 19.** Experimental and simulated variable temperature ³¹P{¹H} NMR spectra of **10** in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.1:10. (sample 1)

- **Supplementary Figure 20.** Eyring and Arrhenius plots for **10** in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.1:10. (sample 1)
- Supplementary Figure 21. Experimental and simulated variable temperature ${}^{31}P{}^{1}H$ NMR spectra of 10 in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.1:10. (sample 2).
- **Supplementary Figure 22.** Eyring and Arrhenius plots for **10** in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.1:10. (sample 2).
- Supplementary Figure 23. Experimental and simulated variable temperature ${}^{31}P{}^{1}H$ NMR spectra of **10** in MeOH:CD₂Cl₂ (2:9) Pd:PPh₂py:CH₃SO₃H = 1:3.1:25. (sample 7)
- Supplementary Figure 24. Eyring and Arrhenius plots for 10 in MeOH: CD_2Cl_2 (2:9) Pd:PPh₂py:CH₃SO₃H = 1:3.1:25. (sample 7)
- Supplementary Figure 25. Experimental and simulated variable temperature ³¹P{¹H} NMR spectra of 10 in CD₂Cl₂ Pd:PPh₂py:CH₃SO₃H = 1:2.9:2. (sample 9). Impurities included to aid simulation, but not optimized.
- **Supplementary Figure 26.** Eyring and Arrhenius plots for **10** in CD_2Cl_2 Pd:PPh₂py:CH₃SO₃H = 1:2.9:2. (sample 9).
- **Supplementary Figure 27.** Equilibrium saturation transfer difference measurements on impure **10**. The resonance of the chelating PPh₂py ligand at *ca*. δ (P) -48 was irradiated throughout the recovery delay (3 s). Top set sample of Supp Fig 13.- **10** in MeOH

 $Pd:PPh_2py:CH_3SO_3H = 1:3.2:15$); bottom set sample of Supp.

Fig 15.- $Pd:PPh_2py:CH_3SO_3H = 1:2.9:10$). (sample 2)

Significant saturation transfer is seen to the other PPh₂py ligands in **10** but not to those of other complexes.

- Supplementary Figure 28. Experimental and simulated variable temperature ${}^{31}P{}^{1}H$ NMR spectra of 3(Cl) in CD₂Cl₂ plus 0.1 mL MeOH. Note changes in ppm scale at 233, 253, 283 and 293 K.
- **Supplementary Figure 29.** Experimental and simulated variable temperature ${}^{31}P{}^{1}H$ NMR spectra of **3**[OTf] in CD₂Cl₂ plus 0.1 mL MeOH. Note changes in ppm scale at 223, 263, and 283 K
- Supplementary Figure 30. Experimental and simulated variable temperature ${}^{31}P{}^{1}H$ NMR spectra of 3(Cl) in CD₂Cl₂:MeOH (1:1). Note changes in ppm scale at 243, and 273 K.
- **Supplementary Figure 31.** Experimental and simulated variable temperature ${}^{31}P{}^{1}H$ NMR spectra of **3**[OTf] in CD₂Cl₂:MeOH (1:1).
- Supplementary Figure 32. Variable temperature ${}^{31}P{}^{1}H$ NMR spectra of 4(Cl) in CD_2Cl_2 :MeOH (1:1).
- Supplementary Figure 33. ${}^{31}P{}^{1}H$ NMR spectra of 4 in CD₂Cl₂:MeOH (1:1), Pd:P = 1:2.8 to 1:4.6 as chloride or triflate salts, T = 193 K.
- Supplementary Figure 34. ${}^{31}P{}^{1}H$ NMR spectra of 4 in CD₂Cl₂:MeOH (1:1) , Pd:P = 1:2.8 to 1:4.6 as chloride or triflate salts, T = 213 K.

- Supplementary Figure 35. ${}^{31}P{}^{1}H$ NMR spectra of 4 in CD₂Cl₂:MeOH (1:1) , Pd:P = 1:2.8 to 1:4.6 as chloride or triflate salts, T = 233 K.
- Supplementary Figure 36. ${}^{31}P{}^{1}H$ NMR spectra of 4 in CD₂Cl₂:MeOH (1:1) , Pd:P = 1:2.8 to 1:4.6 as chloride or triflate salts, T = 243 K.
- Supplementary Figure 37. ${}^{31}P{}^{1}H$ NMR spectra of 4 in CD₂Cl₂:MeOH (1:1) , Pd:P = 1:2.8 to 1:4.6 as chloride or triflate salts, T = 263 K.
- Supplementary Figure 38. ${}^{31}P{}^{1}H$ NMR spectra of 4 in CD₂Cl₂:MeOH (1:1) , Pd:P = 1:2.8 to 1:4.6 as chloride or triflate salts, T = 273 K.
- Supplementary Figure 39. ${}^{31}P{}^{1}H$ NMR spectra of 4 in CD₂Cl₂:MeOH (1:1) , Pd:P = 1:2.8 to 1:4.6 as chloride or triflate salts, T = 283 K.
- Supplementary Figure 40. ${}^{31}P{}^{1}H$ NMR spectra of 4 in CD₂Cl₂:MeOH (1:1) , Pd:P = 1:2.8 to 1:4.6 as chloride or triflate salts, T = 293 K.
- **Supplementary Figure 41.** Simulations of the variable temperature ${}^{31}P{}^{1}H$ NMR spectra of **4**(Cl) in CD₂Cl₂:MeOH (1:1), Pd:P = 1: 4.6, together with the Eyring and Arrhenius plots.
- **Supplementary Figure 42.** Simulations of the variable temperature ${}^{31}P{}^{1}H$ NMR spectra of **4**(Cl)in CD₂Cl₂:MeOH (1:1), Pd:P = 1: 3.4, together with the Eyring and Arrhenius plots..
- **Supplementary Figure 43.** Simulations of the variable temperature ${}^{31}P{}^{1}H$ NMR spectra of **4**(Cl)in CD₂Cl₂:MeOH (1:1), Pd:P = 1: 3.03, together with the Eyring and Arrhenius plots..

Supplementary Table 1 Kinetic and thermodynamic parameters for the dynamic processes in **4**(Cl)in CD₂Cl₂:MeOH (1:1).

X-ray crystal structures

Supplementary Table 2 Crystal data for 2b.2CH₂Cl₂, 2b'[MeSO₃]₂.2CH₂Cl₂, 3BF₄, 4.2H₂O and 7.CH₂Cl₂

Crystal Structure of *trans*-[Pd(κ^1 -Ph₂Ppy)₂Cl₂] (2b)

Supplementary Figure 44.	Molecular structure of <i>trans</i> -[Pd(κ ¹ -Ph ₂ Ppy) ₂ Cl ₂] 2b with key			
	atoms labelled and H atoms removed for clarity			
Supplementary Table 3	Selected bond lengths (Å) and angles (°) for trans-[Pd(κ^1 -			
	Ph ₂ Ppy) ₂ Cl ₂] 2b			

Crystal structure of [Pd(κ¹-Ph₂Ppy)₃Cl](Cl) (4(Cl))

Supplementary Figure 45.	Molecular structure of [Pd(κ ¹ -Ph ₂ Ppy) ₃ Cl](Cl) (4 (Cl))		
	highlighting the CHN (blue) and π -stacking interactions (red)		
	between the phosphine ligands.		

Supplementary Table 4 Selected bond lengths (Å) and angles (°) for $[Pd(\kappa^{1} - Ph_{2}Ppy)_{3}Cl](Cl)$ (4(Cl))

Supplementary Figure 1.

The ³¹P{¹H} NMR spectrum recorded at 293 K of isolated

product from the reaction of $[{\sf Pd}({\sf PhCN})_2{\sf Cl}_2]$ with 1 equivalent

of Ph_2Ppy in CH_2Cl_2 .

Supplementary Figure 2.

(bottom).

Supplementary Figure 2

Aromatic region of the ¹H NMR spectra of 3(X), (X = Cl, BF₄,

OTf, MeSO₃) in CH₂Cl₂/MeOH recorded at 233 K.

Supplementary Figure 3. Aromatic region of the ¹H NMR spectra of **4**[OTf] in CD₂Cl₂

recorded at 233 K (top) and 293 K (bottom).

Supplementary Figure 4. ³¹P{¹H} NMR spectrum of "[Pd(κ^2 -Ph₂Ppy)(κ^1 -

Ph₂Ppy)(CH₃CN)](BF₄)₂" (5) in CH₂Cl₂:CH₃CN (20:1) solution

recorded at 193 K.

Supplementary Figure 5.

(a) ${}^{31}P{}^{1}H{}$ NMR spectrum of **8**[X], (X = OTf, CF₃CO₂, MeSO₃) in

CH₂Cl₂ recorded at 193 K.

Supplementary Figure 5.

(b) Aromatic region of the ¹H NMR spectra of $\mathbf{8}[X]$, (X = OTf,

 $\mathsf{CF}_3\mathsf{CO}_{2,}\,\mathsf{MeSO}_3)$ in $\mathsf{CH}_2\mathsf{Cl}_2$ recorded at 193 K.

Supplementary Figure 6.

(a) ${}^{31}P{}^{1}H{}$ NMR spectrum of **8'**[X], (X = OTf, MeSO₃, BF₄) in

CH₂Cl₂ recorded at 193 K.

Supplementary Figure 6.

(b) Aromatic region of the ¹H NMR spectra of 8'[X], (X = OTf,

 $MeSO_{3,}\ BF_4)$ in $CH_2Cl_2\ recorded\$ at 193 K.

Supplementary Figure 7.

³¹P{¹H} NMR spectrum of [Pd(κ^2 -Ph₂Ppy)(κ^1 -

Ph₂PpyH)(MeSO₃)][MeSO₃]₂ (8'[MeSO₃]) recorded at 183 K in

 CH_2Cl_2 in the presence of excess MeSO₃H. The sharp

resonance at ca. $\partial(P) = -10$ ppm is due to [Ph₂PpyH][MeSO₃].

Supplementary Figure 8.

(a) The ¹⁵N and (b) ¹⁵N{¹H} NMR spectra of Ph_2Ppy recorded at 293K in CH_2Cl_2 ; (c) the ¹⁵N and (d) ¹⁵N{¹H} NMR spectra of [Ph_2PpyH](CH_3SO_3H) recorded at 203K in CH_2Cl_2

NMR spectra of **10** in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.4:10. (sample 3). The sharp resonance at *ca*. -10 ppm is due to $[PPh_2pyH]^{+}[MeSO_3]$. (sample 3).

h	6.63E-34	Ļ	J s ⁻¹
kB	1.38E-23	;	J K ⁻¹
R	8.314	Ļ	$J \text{ mol}^{-1} \text{ K}^{-1}$
Eyring	k1	k2	
intercept	22.6	5 22.75	
gradEy	-3911	-4579)
ΔH	33	38	s kJ mol ^{–1}
ΔS	-10) -8	S J K ⁻¹ mol ⁻¹
Arrhenius	5		
Eact	35	5 4C) kJ mol ^{–1}
gradAhr	-4216	-4822	

NMR spectra of **10** in MeOH $Pd:PPh_2py:CH_3SO_3H = 1:3.4:25$.

The resonance at *ca*. -10 ppm is due to [PPh₂pyH]⁺[MeSO₃].

(sample 4)

Electronic Supplementary Information for Dalton Transactions Eyring and Arrhenius plots for பிதுவாடு பிரிக்கும் குலுக்கும் குலுக்கு காலாத 2020 4:25. (sample 4) Supplementary Figure 12.

Eyring	k1	k2	
intercept	20.756	19.798	
gradEy	-3515	-4654	
ΔH	29	39	kJ mol ⁻¹
ΔS	-25	-33 .	J K ⁻¹ mol ⁻¹
Arrhenius			
Eact	31	41	kJ mol ^{–1}
gradAhr	-3747	-4886	

 $J s^{-1}$

 $J K^{-1}$

 $J \text{ mol}^{-1} \text{ K}^{-1}$

NMR spectra of **10** in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.2:15.

Supplementary Figure 14. Eyring and Arrhenius plots for Eyring and Arrhenius plots for **10** in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.2:15. (sample 5).

h	6.63E-34		J s ⁻¹
kB	1.38E-23		J K ⁻¹
R	8.314		$J \text{ mol}^{-1} \text{ K}^{-1}$
Eyring	k1	k2	
intercept	20.72	19.74	
gradEy	-3500	-3857	
ΔH	29	32	kJ mol ⁻¹
ΔS	-25	-33	$J K^{-1} mol^{-1}$
Arrhenius	;		
Eact	31	34	kJ mol ⁻¹
gradAhr	-3734	-4104	

Electronic Supplementary Information for Dalton Transactions Supplementary Figure 15. This 运行定任的安全的主要以前的过去分子了的自己,在一个个人的任何。31P{¹H}

NMR spectra of **10** in MeOH Pd:PPh₂py:CH₃SO₃H = 1:2.9:25.

Electronic Supplementary Information for Dalton Transactions Supplementary Figure 16. Eyring and Arrhenius plots for 10 المكافية الملكة المكافية المكافية المحافظة المحاف

h	6.63E-34		J s ⁻¹
kB	1.38E-23		J K ⁻¹
R	8.314		$J \text{ mol}^{-1} \text{ K}^{-1}$
Eyring	k1	k2	
intercept	21.7	20.75	
gradEy	-3736	-4101	
ΔH	31	34	kJ mol ⁻¹
ΔS	-17	-25	J K ⁻¹ mol ⁻¹
Arrhenius	i		
Eact	34	31	. kJ mol ⁻¹
gradAhr	-4046	-3719)

NMR spectra of **10** MeOH:CD₂Cl₂ 4:3; Pd:PPh₂py:CH₃SO₃H =

1:3.1:5. (sample 8)

Electronic Supplementary Information for Dalton Transactions Supplementary Figure 18. Eyring and Arrhenius plots for 10 Merch Scherberger Scherberger 1:3.1:5. (sample 8)

h	6.63E-34	ŀ	J s ⁻¹
kB	1.38E-23	}	J K ⁻¹
R	8.314	Ļ	$J \text{ mol}^{-1} \text{ K}^{-1}$
Eyring	k1	k2	
intercept	21.38	3 20.71	L
gradEy	-2905	-3684	ŀ
ΔH	24	l 31	kJ mol ⁻¹
ΔS	-20) -25	5 J K ⁻¹ mol ⁻¹
Arrhenius			
Eact	28	33	8 kJ mol ⁻¹
gradAhr	-3323	-3978	3

Supplementary Figure 19. Experimental and simulated variable temperature ³¹P{¹H} NMR Electronic Supplementary information transactions spectra of 10 in MeOH. TPid iም ምስኒ ታንድርጉት ያያንያቶ ፍርስ ዓይን የተና ነው ነዋ አንቶች በታ 1)

Supplementary Figure 20. Eyring and Arrhenius plots for **10** in MeOH. Pd:PPh₂py:CH₃SO₃H = 1:3.1:10. (sample 1)

h	6.63E-34		J s ⁻¹
kB	1.38E-23		J K ⁻¹
R	8.314		$J \text{ mol}^{-1} \text{K}^{-1}$
Eyring	k1	k2	
intercept	22.01	22.41	
gradEy	-3713	-4435	
ΔH	31	37	' kJ mol ^{–1}
ΔS	-15	-11	J K ⁻¹ mol ⁻¹
Arrhenius	5		
Eact	33	39	kJ mol ^{–1}

-3943

gradAhr

-4676

Electronic Supplementary Information for Dalton Transactions Supplementary Figure 21. This jurgers are the start of the st

NMR spectra of **10** in MeOH $Pd:PPh_2py:CH_3SO_3H = 1:3.1:10$.

(sample 2).

Supplementary Fig 21 continued Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Information for Dalton Transactions Supplementary Figure 22. Eyring and Arrhenius plots for 19 journal of the Barkit of 19 journal of 19 journal

h	6.63E-34		J s ⁻¹
kB	1.38E-23		J K ⁻¹
R	8.314		$J \text{ mol}^{-1} \text{ K}^{-1}$
Eyring	k1	k2	
intercept	22.277	22.301	
gradEy	-3850	-4470	
ΔH	32	37	kJ mol ⁻¹
ΔS	-12	-12	$J K^{-1} mol^{-1}$
Arrhenius			
Eact	34	39	kJ mol ⁻¹
gradAhr	-4095	-4712	

MeOH:CD₂Cl₂ (2:9) Pd:PPh₂py:CH₃SO₃H = 1:3.1:25. (sample 7).

h	6.63E-3	4	J s ⁻¹
kB	1.38E-2	3	J K ⁻¹
R	8.31	4	J mol ⁻¹ K ⁻¹
Eyring	k1	k2	
intercept	18.7	8	19.93
gradEy	-262	6	-3861
ΔH	2	2	32 kJ mol ⁻¹
ΔS	-4	1	-32 J K ⁻¹ mol ⁻¹
Arrhenius	5		
Eact	2	5	34 kJ mol ⁻¹
gradAhr	-299	7	-4103

Supplementary Figure 25. This 5 and 10 in CD_2Cl_2 Pd:PPh₂py:CH₃SO₃H = 1:2.9:2. (sample 9). Impurities included to

aid simulation, but not optimized.

Supplementary Figure 26. Eyring and Arrhenius plots for **10** in CD₂Cl₂ Pd:PPh₂py:CH₃SO₃H = 1:2.9:2. (sample 9).

-4412

-4183

gradAhr

Supplementary Figure 27. This is a marked with a rest of the chelating PPh₂py ligand at ca δ (P) -48 was irradiated throughout the recovery delay (3 s). Top set sample 5 - **10** in MeOH Pd:PPh₂py:CH₃SO₃H = 1:3.2:15; bottom set sample 6.- Pd:PPh₂py:CH₃SO₃H = 1:2.9:10.

Significant saturation transfer is seen to the other PPh₂py ligands in **10** but not to those of other complexes.

Supplementary Figure 29. Experimental and simulated variable temperature ³¹P{¹H} NMR Electronic Supplementary information for Dalton transactions spectra of 3[OTf] in CD₂ ርካያ. iዎዞሮ የተገም የአንድ የተገኘ የ በማርቲ የ በማርቲ

Supplementary Figure 30. Experimental and simulated variable temperature ³¹P{¹H} NMR Electronic Supplementary Information for Dation Transactions spectra of 3(CI) in CD₂CI¹/ተሥርወዝ if ደ.1)e የየውረቂ ዩናትሬትሃgፋ ፍትስም ታንተቶና ይale at 243, and 273 K

Supplementary Figure 31. Experimental and simulated variable temperature ³¹P{¹H} NMR spectra of **3**[OTf]in CD₂Cl₂:MeOH (1:1).

Supplementary Figure 32. Variable temperature ${}^{31}P{}^{1}H$ NMR spectra of **4**(Cl) in CD₂Cl₂:MeOH (1:1).

Supplementary Figure 33.

 $^{31}P{^{1}H}$ NMR spectra of **4** in CD₂Cl₂:MeOH (1:1); T = 213 K.

T = 213 K

Supplementary Figure 35. ³¹P{¹H} NMR spectra of **4** in CD₂Cl₂:MeOH (1:1); T = 233 K.

T = 233 K

Supplementary Figure 36. ${}^{31}P{}^{1}H$ NMR spectra of **4** in CD₂Cl₂:MeOH (1:1); T = 243 K.

T = 243 K

Supplementary Figure 37. ³¹P{¹H} NMR spectra of **4** in CD₂Cl₂:MeOH (1:1); T = 263 K.

T = 263 K

Supplementary Figure 38. ${}^{31}P{}^{1}H$ NMR spectra of **4** in CD₂Cl₂:MeOH (1:1); T = 273 K.

T = 273 K

Supplementary Figure 39. ³¹P{¹H} NMR spectra of **4** in CD₂Cl₂:MeOH (1:1); T = 283 K.

T = 283 K

T = 293 K

Supplementary Figure 41. Simulations of the variable temperature ³¹P{¹H} NMR spectra of 4(Cl)in

CD₂Cl₂:MeOH (1:1), Pd:P = 1: 4.6, together with the Eyring and Arrhenius plots.

Supplementary Figure 42. Simulations of the variable temperature ³¹P{¹H} NMR spectra of 4(Cl)in

 CD_2Cl_2 :MeOH (1:1), Pd:P = 1: 3.4, together with the Eyring and Arrhenius plots.

Supplementary Figure 43. Simulations of the variable temperature ³¹P{¹H} NMR spectra of 4(Cl)in

 CD_2Cl_2 :MeOH (1:1), Pd:P = 1: 3.03, together with the Eyring and Arrhenius plots.

Supplementary Table 1

Kinetic and thermodynamic parameters for the dynamic processes in 4(Cl)

in
$$CD_2Cl_2$$
:MeOH (1:1).

P:Pd	k _{intra} ^{253 a} / s ⁻¹	253 a k _{inter} / s ⁻¹	$\Delta S_{intra}^{* b}$ /J mol ⁻¹ K ⁻¹	∆S _{inter} ^{‡ b} /J mol ⁻¹ K ⁻¹	∆H _{intra} ^{‡ c} /kJ mol ⁻¹	∆H _{inter} ^{‡ c} /kJ mol ⁻¹	E _{act} ^{intra c} /kJ mol ⁻¹	E _{act} ^{inter c} /kJ mol ⁻¹
3.03	950	670	-14	-24	43	42	45	44 ^c
3.4	950	385	-21	-26	41	42	43	44 ^c
4.6	565	370	-32	6 ^d	41	50	41	52

Estimated errors: ^a ~ +/- 10%; ^b ~ +/- 10 J mol⁻¹ K⁻¹; ^c Δ H[‡] and E_{act} ~ +/- 10%; ^d ~ +/- 20 J mol⁻¹ K⁻¹.

X-Ray Crystallography.

Crystallographic data were recorded on a Bruker Smart Apex diffractometer using $Mo_{k\alpha}$ -radiation ($\lambda = 0.71073$ Å) at T = 100 K. Structures were solved by Direct Methods and refined by full-matrix least squares against F^2 using all data (SHELXTL). All non-H atoms were refined anisotropically with the exception of disordered atoms. H-atoms were fixed in calculated positions at parent C and N atoms, respectively. The pyridyl-N atom in **1** is disordered over two pyridyl rings (N1 and C8). The C/N site occupancies for these two positions refined to 0.5/0.5 (equivalent xyz and adp constraints were applied). The CH₂Cl₂ molecule of **7**.CH₂Cl₂ is disordered over two positions. The disordered atoms were split on two positions and refined using similar distance and similar *U* restraints. Semi-empirical absorption corrections based upon equivalent and redundant reflections was applied to the data of **2b**.2CH₂Cl₂, **3**[BF₄] and **7**.CH₂Cl₂.

Supplementary Table 2 Crystal data for 2b.2CH₂Cl₂, 2b'(MeSO₃)₂.2CH₂Cl₂, 3[BF₄], 4(Cl).2H₂O and 7.CH₂Cl₂

	2b .2CH ₂ Cl ₂	2b'[MeSO ₃] ₂ .2CH ₂ Cl	3 [BF ₄]	4 (Cl).2H ₂ O	7 .CH ₂ Cl ₂
		2			
chem formula	$C_{36}H_{32}CI_6N_2P_2Pd$	$C_{38}H_{40}CI_6N_2O_6$	$C_{34}H_{28}BCIF_4N_2$	$C_{51}H_{46}CI_2N_3O_2P_3Pd\\$	$C_{41}H_{34}Cl_2N_2O_2$
		P_2PdS_2	P_2Pd		P_2Pd
fw	873.68	1065.88	755.18	1003.12	825.94
Crystal system	orthorhombic	Monoclinic	orthorhombic	Monoclinic	Triclinic
space group	<i>P</i> bca	P2 ₁ /c	<i>P</i> bca	<i>P</i> 2 ₁ /n	<i>P</i> -1
<i>a,</i> Å	20.0004(10)	23.972(3)	17.704(2)	11.8634(16)	8.5706(9)
<i>b,</i> Å	7.9187(4)	10.0239(14)	18.156(2)	11.1293(15)	9.5072(10)
<i>c,</i> Å	22.9503(12)	18.270(3)	20.149(3)	35.892(5)	22.614(2)
α , deg	90	90	90	90	85.134(2)
eta, deg	90	95.549(3)	90	94.840(2)	80.784(2)
γ, deg	90	90	90	90	78.237(2)
<i>V,</i> Å ³	3634.8(3)	4369.6(10)	6476.4(14)	4722.0(11)	1778.1(3)
Ζ	4	4	8	4	2
$ ho_{calc}$, g cm $^{ ext{-1}}$	1.597	1.620	1.549	1.411	1.543
μ , mm ⁻¹	1.070	1.008	0.805	0.651	0.802
Reflections				23535	
(total)	21122	21748	38516		9230
Reflections				8280	
(unique)	4310	7680	7687		6163
2θ(max), deg	56.5	50.0	56.5	50.0	50.0
R(<i>F</i>) [<i>l</i> > 2 <i>σ</i> (<i>l</i>)]	0.023	0.063	0.024	0.065	0.065
wR2(F ²) (all data)	0.058	0.168	0.064	0.171	0.164

Crystal Structure of *trans*-[Pd(κ^1 -Ph₂Ppy)₂Cl₂] (2b)

Yellow crystals, suitable for an X-ray crystal structure determination were obtained by layering a dichloromethane solution of a mixture of *cis* and *trans* isomers **2a/b** with diethyl ether. Visually, there appeared to be only one type of crystal present. The X-ray determination showed that these crystals contained the *trans* isomer **2b** (Figure 1). Selected bond lengths and angles are given in Table 3.

Supplementary Figure 44. Molecular structure of *trans*-[Pd(κ^1 -Ph₂Ppy)₂Cl₂] **2b** with key atoms labelled and H atoms removed for clarity

The coordination about the palladium centre is square planar, with a centre of inversion at the palladium centre. Both Ph_2Ppy ligands are coordinated to palladium through phosphorus and are mutually *trans*, two terminal chloride ligands complete the

coordination sphere (Figure 1). The position of nitrogen in one of the Ph₂Ppy ligands was split exactly between two phenyl rings so that each of the two rings were refined with C8 50% occupancy and N1 50% occupancy, no further refinement was attempted. The M-P bond lengths [2.3125(4) Å] are typical for Pd(II) complexes and are comparable to those reported for *trans*-[Pd(κ^1 -Ph₂Ppy)₂(CO₂CH₃)CI] [2.3315 Å] ¹ and *trans*-[Pd(κ^1 -Ph₂Ppy)₂(PhC=CH₂)(CF₃CO₂)] [2.340(2) Å].² Bond angles between P1-Pd-P2 and Cl1-Pd-Cl2 are 180°, but P-Pd-Cl bond angles deviate slightly from the ideal 90°, Supplementary Table 2.

Supplementary Table 3	Selected bond	lengths (Å) ar	nd angles (°) for t	<i>trans</i> -[Pd(<i>к</i> ¹ -Ph ₂ P	py) ₂ Cl ₂] (2b)

(4)
(4)
(13)
(13)

Crystal structure of [Pd(κ¹-Ph₂Ppy)₃Cl](Cl) (4(Cl))

Crystals of **4** suitable for an X-ray crystal structure determination were obtained by slow removal of solvent from a saturated dichloromethane/MeOH solution *in vacuo*. Supplementary Figure 49 shows the molecular structure of **4** and selected bond lengths and angles are given in Supplementary Table 4. The complex is approximately square planar at the palladium centre with three purely monodentate pyridylphosphine ligands bonded through phosphorus and one chloride ligand completing the coordination sphere. The distortion from ideal geometry can be attributed to the steric bulk of the phosphine ligands. The Pd-P bond *trans* to the chloride is significantly shorter, 2.267(5) Å, as compared to the average Pd-P bond length *cis* to the Cl⁻ ligand, 2.3515(13) Å. The average Cl-Pd-P_{cis} and P_{cis}-Pd-P_{trans} bond angles were found to be 84.44(6)^o and 96.65(6)^o respectively, whereas the P_{cis}-Pd-P_{cis} bond angle was determined to be 161.50(6)^o. Within the monocationic complex the pyridyl and phenyl groups are packed effectively via pi-stacking interactions and CH..N contacts, Supplementary Figure 45.

Supplementary Table 4. Selected bond lengths (Å) and angles (°) for [[Pd(κ^{1} -Ph₂Ppy)₃Cl](Cl).2H₂O (4(Cl).2H₂O).

Pd1-P1	2.3515(13)	Pd1-P3	2.2675(14)
Pd1-P2	2.3515(13)	Pd1-Cl1	2.3361(13)
P1-Pd1-P2	161.51(5)	P1-Pd1-Cl1	84.61(5)
P1-Pd1-P3	96.62(5)	P2-Pd1-Cl1	84.30(5)
P2-Pd1-P3	96.65(5)	P3-Pd1-Cl1	171.00(5)

Supplementary Figure 45. Molecular structure of $[Pd(\kappa^{1}-Ph_{2}Ppy)_{3}CI](CI).2H_{2}O$ (**4**(CI).2H₂O) highlighting the CH...N (blue) and π -stacking interactions (red) between the phosphine ligands.

References

- 1. A. Dervisi, P. G. Edwards, P. D. Newman, R. P. Tooze, S. J. Coles and M. B. Hursthouse, *J. Chem. Soc., Dalton Trans.*, 1999, 1113-1120.
- 2. A. Dervisi, P. G. Edwards, P. D. Newman and R. P. Tooze, *J. Chem. Soc., Dalton Trans.*, 2000, 523-528.
- 3. D. J. Darensbourg, J. B. Robertson, D. L. Larkins and J. H. Reibenspies, *Inorg. Chem.*, 1999, **38**, 2473-2481.