B918336A (Revised Version)

Supporting Information

<u>for</u>

1,4-Alkyl migration associated with simultaneous S-C bond cleavage and N-C bond formation in platinum complexes of 2-aminothioethers. Characterization of intramolecular interligand charge transfer phenomenon

Sutanuva Mandal,[†] Nandadulal Paul,[†] Priyabrata Banerjee,[†] Tapan K. Mondal,[§] and Sreebrata Goswami^{†,*}

[†] Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India and Department of Chemistry, [§]Jadavpur University, Kolkata 700032, India.

E-mail: icsg@iacs.res.in

	Table of Contents					
	LIST OF TABLES	Page Number				
Table S1	The bond distances (in Å) obtained at the B3LYP/sdd level optimized geometry [1][OTf]	4				
Table S2	The bond distances (in Å) obtained at the B3LYP/sdd level optimized geometry 2	5				
Table S3	The bond distances (in Å) obtained at the B3LYP/sdd level optimized geometry 3	6				
Table S4	The bond distances (in Å) obtained at the B3LYP/sdd level optimized geometry [5][OTf]	7				
Table S5	Some Selected Molecular Orbitals along with their energies and compositions of compound [1][OTf] in gas phase b3lyp/sdd level calculation	8				
Table S6	Some Selected Molecular Orbitals along with their energies and compositions of compound 2 in gas phase b3lyp/sdd level calculation	9				
Table S7	Some Selected Molecular Orbitals along with their energies and compositions of compound 3 in gas phase b3lyp/sdd level calculation	10				
Table S8	Some Selected Molecular Orbitals along with their energies and compositions of compound [5][OTf] in gas phase b3lyp/sdd level calculation	11				
Table S9	Selected list of vertical excitations computed at the TD- DFT/B3LYP/6-31+G**//B3LYP/6-31G* level of theory for [1][OTf]	12				
Table S10	Selected list of vertical excitations computed at the TD- DFT/B3LYP/6-31+G**//B3LYP/6-31G* level of theory for 2	13				
Table S11	Selected list of vertical excitations computed at the TD- DFT/B3LYP/6-31+G**//B3LYP/6-31G* level of theory for 3	14				
Table S12	Selected list of vertical excitations computed at the TD- DFT/B3LYP/6-31+G**//B3LYP/6-31G* level of theory for [5][OTf]	15				
	LIST OF FIGURES					
Figures S1- S2	ESI-MS spectra of the compounds, [1]Cl and 2. Inset: simulated isotopic pattern	16-17				

Figures S3- S4	¹ H NMR spectra of the compounds, [1]Cl and 2	18-19
Figure S5	ESI-MS spectrum of the compounds 3 . Inset: simulated	20
	isotopic pattern	
Figure S6	¹ H NMR spectrum of the compounds 3	21
Figure S7	ESI-MS spectrum of the compounds 4. Inset: simulated	22
_	isotopic pattern	
Figure S8	¹ H NMR spectrum of the compounds 4	23
Figure S9	ESI-MS spectrum of the compounds [5]Cl. Inset: simulated	24
	isotopic pattern	
Figure S10	¹ H NMR spectrum of the compounds [5]Cl	25
Figures S11-	DFT calculated frontier orbitals for the compound [1][OTf],	26-29
S14	2 , 3 , [5][OTf]	
Figure S15	Cyclic voltammograms of the compound [1][OTf] (blue) and	30
	2 (pink) in $CH_3CN / 0.1 M Et_4NClO_4$.	
Figure S16	EPR Spectra of electrogenerated 1, 2 ⁻ , 3 ⁻ and 4 ⁻ in	31
	CH ₃ CN/0.1 M Et ₄ NClO ₄ at 120K	
Figures S17-	ORTEP and atom numbering scheme of the compounds	32-36
21	[1][OTf], 2, 3, 4 and [5][OTf]	

Bond	X-ray	Calculated
Pt(1)-S(1)	2.2783(7)	2.323
Pt(1)-N(1)	2.020(2)	2.056
Pt(1)-N(3)	1.9645(19)	2.028
N(2)-N(3)	1.292(3)	1.289
Pt(1)-N(4)	1.941(2)	1.981
S(1)-C(17)	1.771(2)	1.777
N(4)-C(12)	1.376(3)	1.375
S(1)-C(18)	1.817(3)	1.831
S(1)-Pt(1)-N(1)	175.47(6)	178.5
S(1)-Pt(1)-N(3)	99.56(6)	101.8
S(1)-Pt(1)-N(4)	84.34(8)	82.38
N(1)-Pt(1)-N(3)	77.70(8)	77.04
N(1)-Pt(1)-N(4)	98.68(9)	98.69
N(3)-Pt(1)-N(4)	174.15(10)	174.8
Pt(1)-S(1)-C(17)	99.49(9)	99.25
Pt(1)-N(1)-C(1)	129.29(16)	129.1
Pt(1)-N(1)-C(5)	112.33(17)	111.7
Pt(1)-N(3)-N(2)	120.52(16)	118.4
Pt(1)-N(3)-C(6)	125.37(15)	127.1
Pt(1)-N(4)-C(12)	122.24(18)	123.6

 Table S1. The bond distances (in Å) obtained at the B3LYP/sdd level optimized geometry [1][OTf]

	X-ray	Calculated
Pt(1)-S(1)	2.2707(16)	2.329
Pt(1)-N(1)	2.045(5)	2.061
Pt(1)-N(3)	1.968(5)	2.004
Pt(1)-N(4)	1.988(5)	1.980
N(2)-N(3)	1.315(7)	1.313
S(1)-C(17)	1.738(7)	1.744
N(4)-C(12)	1.364(8)	1.366
S(1)-Pt(1)-N(1)	176.27(14)	175.7
S(1)-Pt(1)-N(3)	99.79(15)	100.9
S(1)-Pt(1)-N(4)	83.54(15)	82.63
N(1)-Pt(1)-N(3)	77.61(19)	77.07
N(1)-Pt(1)-N(4)	99.03(19)	99.17
N(3)-Pt(1)-N(4)	176.5(2)	176.3
Pt(1)-S(1)-C(17)	99.9(2)	99.47
Pt(1)-N(1)-C(1)	129.6(4)	129.5
Pt(1)-N(1)-C(5)	111.6(4)	111.6
Pt(1)-N(3)-N(2)	119.9(4)	119.0
Pt(1)-N(3)-C(6)	127.7(4)	127.5
Pt(1)-N(4)-C(12)	121.5(4)	123.6

Table S2. The bond distances (in Å) obtained at the B3LYP/sdd level optimized geometry ${\bf 2}$

	X-ray	Calculated
Pt(1)-S(1)	2.242(3)	2.313
Pt(1)-N(1)	2.055(8)	2.097
Pt(1)-N(2)	1.969(8)	2.009
Pt(1)-N(4)	1.981(8)	2.023
N(2)-N(3)	1.295(11)	1.308
S(1)-C(17)	1.721(11)	1.738
N(4)-C(12)	1.366(13)	1.383
S(1)-Pt(1)-N(1)	172.6(2)	173.3
S(1)-Pt(1)-N(3)	96.3(2)	97.1
S(1)-Pt(1)-N(4)	84.0(2)	83.4
N(1)-Pt(1)-N(3)	77.0(3)	76.2
N(1)-Pt(1)-N(4)	102.4(3)	103.1
N(3)-Pt(1)-N(4)	175.9(3)	174.5
Pt(1)-S(1)-C(17)	101.0(4)	99.7
Pt(1)-N(4)-C(12)	120.8(7)	120.6
Pt(1)-N(1)-C(5)	111.9(6)	110.6
Pt(1)-N(3)-N(2)	120.2(6)	119.4
Pt(1)-N(3)-C(6)	127.4(7)	127.0
Pt(1)-N(1)-C(1)	131.6(7)	131.4

Table S3. The bond distances (in Å) obtained at the B3LYP/sdd level optimized geometry $\mathbf{3}$

	X-ray	Calculated
Pt(1)-S(1)	2.259(9)	2.316
Pt(1)-N(1)	2.036(3)	2.066
Pt(1)-N(2)	2.025(3)	2.050
Pt(1)-N(3)	1.981(3)	2.001
S(3)-C(17)	1.814(4)	1.832
S(3)-C(16)	1.774(4)	1.770
N(3)-C(11)	1.355(5)	1.372
S(1)-Pt(1)-N(1)	177.4(9)	177.7
S(1)-Pt(1)-N(2)	97.38(8)	99.54
S(1)-Pt(1)-N(3)	84.43(10)	82.18
N(1)-Pt(1)-N(2)	80.08(12)	78.99
N(1)-Pt(1)-N(3)	98.12(13)	99.32
N(2)-Pt(1)-N(3)	178.0(13)	177.7
Pt(1)-S(1)-C(16)	99.57(12)	99.46
Pt(1)-N(3)-C(11)	121.0(3)	121.8

Table	S4.	The	bond	distances	(in	Å)	obtained	at	the	B3LYP/sdd	level	optimized
geomet	try [5	5][OT	`f]									

MO	Energy, eV		Composition		
		Pt	pap	(H ₂ N ^{SMe})	
LUMO+5	-3.28	06	86	08	
LUMO+4	-3.46	02	98	0	
LUMO+3	-3.69	13	11	76	
LUMO+2	-4.61	17	71	12	
LUMO+1	-4.70	30	49	21	
LUMO	-6.48	10	79(N=N, 38)	11	
НОМО	-8.23	08	14	78	
HOMO-1	-9.73	02	04	94	
HOMO-2	-9.87	05	96	01	
HOMO-3	-10.06	0	95	05	
HOMO-4	-10.45	61	13	26	
HOMO-5	-10.49	64	11	25	
HOMO-6	-10.78	58	23	19	
HOMO-7	-11.24	06	74(N=N, 36)	20	
HOMO-8	-11.38	04	80(N=N, 39)	16	
HOMO-9	-11.51	24	24	52	
HOMO-10	-11.99	55	21	24	
HOMO - LUMO = 1.75 eV					

Table S5. Some Selected Molecular Orbitals along with their energies and compositionsof compound [1][OTf] in gas phase b3lyp/sdd level calculation

MO	Energy, eV	Composition			
		Pt	pap	(HN^S)	
LUMO+5	-0.05	82	12	06	
LUMO+4	-0.13	06	89	05	
LUMO+3	-0.22	05	94	01	
LUMO+2	-0.79	41	28	31(S,22)	
LUMO+1	-1.35	02	98	0	
LUMO	-3.02	13	62(N=N, 29)	25	
НОМО	-4.72	06	30	64(S,13)	
HOMO-1	-5.44	14	02	84(S,30)	
HOMO-2	-6.60	08	85	07	
HOMO-3	-6.82	73	12	15	
HOMO-4	-6.92	09	88	03	
HOMO-5	-7.04	31	17	52	
HOMO-6	-7.10	41	23	36	
HOMO-7	-7.48	30	16	54(S,42)	
HOMO-8	-7.85	06	74(N=N, 56)	20	
HOMO-9	-8.02	13	57	<u>30(S,13)</u>	
HOMO-10	-8.15	14	52	34(S,13)	

Table S6. Some Selected Molecular Orbitals along with their energies and compositionsof compound 2 in gas phase b3lyp/sdd level calculation

MO	Energy, eV	Composition				
		Pt	pap	(BzN^S)		
LUMO+5	-0.10	06	68	26		
LUMO+4	-0.18	04	73	23		
LUMO+3	-0.26	07	23	70		
LUMO+2	-0.87	39	28	33(S,22)		
LUMO+1	-1.28	04	94	02		
LUMO	-2.98	12	65(N=N, 31)	23		
НОМО	-4.65	06	28	66(S,14)		
HOMO-1	-5.36	13	02	85(S,30)		
HOMO-2	-6.53	10	45	45		
HOMO-3	-6.65	01	43	56		
HOMO-4	-6.74	74	08	18		
HOMO-5	-6.85	03	10	87		
HOMO-6	-6.91	11	81	08		
HOMO-7	-6.99	30	13	57		
HOMO-8	-7.05	30	21	49		
HOMO-9	-7.54	19	36	45(S,34)		
HOMO-10	-7.63	22	38	40(S,13)		

Table S7. Some Selected Molecular Orbitals along with their energies and compositionsof compound **3** in gas phase b3lyp/sdd level calculation

MO	Energy, eV	Composition			
		Pt	bpy	(H ₂ N ^{SMe})	
LUMO+10	-1.75	64	06	30	
LUMO+9	-1.82	26	01	73	
LUMO+8	-2.08	82	08	10	
LUMO+7	-2.53	39	01	60	
LUMO+6	-2.75	87	03	10	
LUMO+5	-3.21	02	93	05	
LUMO+4	-3.38	21	07	72(S,23)	
LUMO+3	-4.39	46	20	34(S,22)	
LUMO+2	-4.58	02	97	01	
LUMO+1	-4.73	02	98	0	
LUMO	-5.77	05	92	03	
НОМО	-7.69	09	05	86	
HOMO-1	-9.38	01	0	99	
HOMO-2	-9.92	84	02	14	
HOMO-3	-9.96	51	09	40	
HOMO-4	-10.36	54	32	04	
HOMO-5	-10.57	15	80	05	
HOMO-6	-11.08	44	09	47(S,24)	
HOMO-7	-11.39	20	21	59	
HOMO-8	-11.61	38	20	42(S,22)	
HOMO-9	-11.83	19	14	67	
HOMO-10	-12.02	01	99	0	

Table S8. Some Selected Molecular Orbitals along with their energies and compositions of compound [**5**][OTf] in gas phase b3lyp/sdd level calculation.

Excited	Wavelength	f	Energy		
State	(nm)		(eV)	Transition	Character
1	790.4	0.216	1.5685	(67%)HOMO \rightarrow LUMO	$H_2N^{\wedge}SMe(\pi) \rightarrow pap(\pi^*_{N=N}),$
					ILCT
5	425.2	0.174	2.9161	(63%)HOMO-2 \rightarrow LUMO	$pap(\pi) \rightarrow pap(\pi^*_{N=N}), \text{ ILCT}$
6	419.5	0.037	2.9555	(53%) HOMO \rightarrow LUMO+1	$H_2N^SMe(\pi) \rightarrow pap(\pi^*)$, ILCT
				(31%) HOMO \rightarrow LUMO+2	
8	382.9	0.063	3.2374	(40%)HOMO- $6 \rightarrow$ LUMO	$Pt(d\pi) \rightarrow pap(\pi^*_{N=N}), MLCT$
				(23%)HOMO-5 → LUMO	
10	351.1	0.038	3.5304	(37%) HOMO-6 \rightarrow LUMO	$Pt(d\pi) \rightarrow pap(\pi^*_{N=N}), MLCT$
				(33%) HOMO-4 \rightarrow LUMO	
14	281.1	0.061	4.4101	(53%)HOMO-8 \rightarrow LUMO	$pap(n, N=N) \rightarrow pap(\pi^*_{N=N}),$ ILCT
18	268.5	0.068	4.6165	(53%)HOMO-1 → LUMO+1	$H_2N^{SMe}(\pi) \rightarrow pap(\pi^*)$, ILCT

Table	S9.	Selected	list	of	vertical	excitations	computed	at	the	TD-DFT/B3LYP/6-
31+G*	*//B	3LYP/6-3	1G*	lev	el of theo	ory for [1][O	Tf]			

Excited	Wavelength	f	Energy		
State	(nm)		(eV)	Transition	Character
1	833.2	0.230	1.4880	(50%)HOMO \rightarrow LUMO (25%)HOMO-1 \rightarrow LUMO	HN^S(π) \rightarrow pap($\pi^*_{N=N}$), ILCT
3	722.3	0.103	1.7165	(34%) HOMO-1 \rightarrow LUMO (33%) HOMO \rightarrow LUMO	HN^S(π) \rightarrow pap($\pi^*_{N=N}$),ILCT
5	413.2	0.111	3.0002	(59%)HOMO-2 \rightarrow LUMO	$pap(\pi) \rightarrow pap(\pi^*_{N=N}), \text{ ILCT}$
7	383.6	0.068	3.2322	(52%)HOMO-5 → LUMO	Pt(d π)/HN^S (π) → pap($\pi^*_{N=N}$), MLCT
10	362.6	0.076	3.4186	(66%) HOMO-1 \rightarrow LUMO+1	$HN^{S}(\pi) \rightarrow pap(\pi^{*}), ILCT$
14	311.2	0.113	3.9834	(87%)HOMO \rightarrow LUMO+3	$HN^{S}(\pi) \rightarrow pap(\pi^{*}), ILCT$
19	283.7	0.063	4.3701	(79%)HOMO \rightarrow LUMO+4	$HN^{S}(\pi) \rightarrow pap(\pi^{*}), ILCT$

Table S10. Selected list of vertical excitations computed at the TD-DFT/B3LYP/6-31+G**//B3LYP/6-31G* level of theory for ${\bf 2}$

Table S11. Selected list of vertical excitations computed at the TD-DFT/B3LYP/6-
 $31+G^{**}//B3LYP/6-31G^*$ level of theory for **3**

Excited	Wavelength	f	Energy		
State	(nm)		(eV)	Transition	Character
1	839.4	0.192	1.4770	(36%)HOMO → LUMO (36%)HOMO-1 → LUMO	BzN^S(π) \rightarrow pap($\pi^*_{N=N}$), ILCT
2	717.3	0.134	1.7284	(48%)HOMO-1 \rightarrow LUMO (25%)HOMO \rightarrow LUMO	BzN^S(π) \rightarrow pap($\pi^*_{N=N}$), ILCT
6	390.3	0.105	3.1767	(65%)HOMO-3 \rightarrow LUMO	$pap(\pi)/BzN^{S}(\pi) \rightarrow pap(\pi_{N=N}^{*}), ILCT$
8	367.3	0.046	3.3757	(69%)HOMO-6 \rightarrow LUMO	$pap(\pi) \rightarrow pap(\pi^*_{N=N}), ILCT$
10	355.3	0.102	3.4894	(38%) HOMO-1 \rightarrow LUMO+1 (27%) HOMO \rightarrow LUMO+3	BzN^S(π) \rightarrow pap(π^*), ILCT BzN^S(π) \rightarrow L(π^*), ILCT
17	301.9	0.065	4.1060	(91%) HOMO \rightarrow LUMO+4	$BzN^{\wedge}S(\pi) \rightarrow pap(\pi^{*}), ILCT$
19	294.0	0.048	4.2162	(84%) HOMO \rightarrow LUMO+5	$BzN^{\wedge}S(\pi) \rightarrow pap(\pi^{*}), ILCT$
23	279.1	0.054	4.4422	(53%)HOMO-11 \rightarrow LUMO	$pap(\pi)/BzN^{S}(\pi) \rightarrow$ $pap(\pi^{*}, x)) \parallel CT$
					pap(n N=N), ILC I

Table S12. Selected list of vertical excitations computed at the TD-DFT/B3LYP/6-31+G**//B3LYP/6-31G* level of theory for [**5**][OTf]

	Wavelength	f	Energy		
Excited	(nm)		(eV)	Transition	Character
State					
1	580.5	0.097	3.1356	(94%)HOMO → LUMO	H ₂ N^SMe(π) \rightarrow bpy(π^*), ILCT
4	391.5	0.043	3.1667	(88%)HOMO → LUMO+3	$\begin{array}{c} H_2N^{\wedge}SMe(\pi) \rightarrow Pt(d), LMCT \\ H_2N^{\wedge}SMe(\pi) \rightarrow H_2N^{\wedge}SMe \\ (\pi^*), ILCT \end{array}$
6	349.7	0.021	3.5446	(65%)HOMO \rightarrow LUMO+4	$\begin{array}{ccc} H_2N^{\wedge}SMe(\pi) \rightarrow & H_2N^{\wedge}SMe\\ (\pi^*),ILCT \end{array}$
10	302.7	0.125	4.0961	$(54\%)HOMO-4 \rightarrow LUMO$ $(32\%)HOMO-5 \rightarrow LUMO$	Pt($d\pi$) \rightarrow bpy(π^*), MLCT bpy(π) \rightarrow bpy(π^*), ILCT
11	293.0	0.298	4.2462	(49%)HOMO-5 \rightarrow LUMO (29%)HOMO-4 \rightarrow LUMO	$bpy(\pi) \rightarrow bpy(\pi^*)$, ILCT Pt($d\pi$) $\rightarrow bpy(\pi^*)$, MLCT
14	282.9	0.084	4.3824	(79%)HOMO \rightarrow LUMO+7	H ₂ N ^A SMe(π) \rightarrow H ₂ N ^A SMe (π^*), ILCT
21	252.6	0.068	4.9077	(54%)HOMO-1 \rightarrow LUMO+1	$H_2N^{A}SMe(π)$ →bpy(π [*]), ILCT
22	247.3	0.056	5.0127	(42%)HOMO-1 \rightarrow LUMO+3	$\begin{array}{l} H_2N^{\wedge}SMe(\pi) \rightarrow Pt(d), LMCT \\ H_2N^{\wedge}SMe(\pi) \rightarrow \\ H_2N^{\wedge}SMe(\pi^*), ILCT \end{array}$

Figure S1. ESI-MS spectrum of the compound [1]Cl. Inset: simulated isotopic pattern.

Figure S2. ESI-MS spectrum of the compound 2. Inset: simulated isotopic pattern.

Figure S3. ¹H NMR spectrum of the compound [1]Cl.

Figure S4. ¹H NMR spectrum of the compound 2

Figure S5. ESI-MS spectrum of the compound 3. Inset: simulated isotopic pattern.

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

[T

ppm

Figure S6. ¹H NMR spectrum of the compound 3

T

Figure S7. ESI-MS spectrum of the compound 4. Inset: simulated isotopic pattern

Figure S8. ¹H NMR spectrum of the compound 4

Figure S9. ESI-MS spectrum of the compound [5]Cl. Inset: simulated isotopic pattern.

Figure S10. ¹H NMR spectrum of the compound [5]Cl

HOMO	HOMO-1	HOMO-2	HOMO-3
HOMO-4	LUMO	LUMO+1	LUMO+2

Figure S11. DFT calculated frontier orbitals for the compound [1][OTf]

Figure S12. DFT calculated frontier orbitals for the compound 2

НОМО	HOMO-1	HOMO-2	HOMO-3
HOMO-4	LUMO	LUMO+1	LUMO+2

Figure S13. DFT calculated frontier orbitals for the compound 3

Figure S14. DFT calculated frontier orbitals for the compound [5][OTf]

Figure S15. Cyclic voltammograms of the compound [1][OTf] (blue) and 2 (pink) in CH_3CN / 0.1 M Et_4NClO_4.

Figure S16. X-band EPR spectrum of compound **1**, **2**⁻, **3**⁻, **4**⁻ in CH₃CN/0.1 M Et₄NClO₄ at 120K.

Figure S17. ORTEP and atom numbering scheme of the compound [1][OTf]

Figure S18. ORTEP atom numbering scheme of the compound 2

Figure S19. ORTEP atom numbering scheme of the compound 3

Figure S20. ORTEP atom numbering scheme of the compound 4

Figure S21. ORTEP atom numbering scheme of the compound [5][OTf]