Supplementary Information for

Synthesis and complexation of heptafluoroisopropyldiphenylphosphine

Lesley C. Lewis-Alleyne,^{*a*} Makeba B. Murphy-Jolly,^{*a*} Xavier F. Le Goff^{*b*} and Andrew J. M. Caffyn^{**a,c*}

Experimental

General Procedures

Manipulations were carried out under Argon using standard Schlenk techniques. Solvents were distilled from the appropriate drying agents and stored over 4 Å molecular sieves before use. Infrared spectra were acquired using a Perkin-Elmer Spectrum RXI FTIR spectrometer. ³¹P, ¹⁹F, ¹³C and ¹H NMR were recorded at room temperature on a Bruker Avance 400 MHz spectrometer with 85% H₃PO₄, CCl₃F and SiMe₄ as external references respectively. Elemental Analyses were performed by Medac Ltd.

Synthesis of Ph₂P^{*i*}C₃F₇ in hexane: P(NEt₂)₃ (13.5 g, 55 mmol) dissolved in hexane (30ml) was added over 30 minutes to a solution of Ph₂PCl (12.0 g, 55 mmol) and ^{*i*}C₃F₇I (19.5 g, 66 mmol) in hexane (30ml) with vigorous stirring, at room temperature using a water bath. The mixture, which yielded a yellow precipitate, was left stirring over 2 nights, after which time ³¹P NMR showed that the reaction gave quantitative yield. The solution was filtered via cannula, the precipitate washed with 2 x 10ml hexane and the filtrates were combined. Volatiles were removed *in vacuo*, yielding a solid residue. Vacuum distillation (96°C/ 0.5mmHg) of the residue yielded Ph₂P^{*i*}C₃F₇ (10.4g, 53%), which crystallised on cooling. m.p. = 47.4 – 48.0°C. Anal. Calc. for C₁₅H₁₀F₇P: C, 50.86; H, 2.85. Found: C, 50.56; H, 2.64 %. ³¹P NMR (C₆D₆): δ 0.65 (dm ²J_{PF} = 83.3 Hz, ³J_{PF} = 9.1 Hz). ¹⁹F NMR (C₆D₆): δ -69.8 (dd, ³J_{FP} = 16.8 Hz, ³J_{FF} = 12.0 Hz, CF₃); -185.0 (dsep ²J_{FP} = 74.0 Hz, ³J_{FF} = 11.4 Hz, CF). ¹H NMR (C₆D₆): δ 7.85 (m 2H); 7.0-7.15 ppm (m 3H).

Synthesis of $[Mo(CO)_5PPh_2{}^iC_3F_7]$: N-octane (18 ml) was added, with stirring, to a flask containing $[Mo(CO)_6]$ (0.286 g, 1.08 mmol) and $Ph_2P{}^iC_3F_7$ (0.498 g, 1.41 mmol) under argon. The mixture was heated to reflux during which time it became a yellow solution, with significant dark-coloured residue deposited. After refluxing for three hours, then cooling the reaction mixture to room temperature, the volatile materials were removed *in vacuo*, and the residue was extracted with *n*-hexane (4 x 1ml). Re-crystallisation from *n*-hexane at -78°C yielded a yellow-green powder with some grey discolouration. A second re-crystallisation from *n*-hexane at -10°C yielded beige coloured crystals of $[Mo(CO)_5PPh_2{}^iC_3F_7]$. (0.179g, 28 %).

Synthesis of $[PtCl_2(PPh_2{}^iC_3F_7)_2]$: Ph₂PⁱC₃F₇ (0.219 g, 0.618 mmol) dissolved in acetone (2.5 ml) was added to an aqueous solution (2.5 ml) of K₂PtCl₄ (0.105 g, 0.253 mmol), and the mixture swirled to give a uniform red solution. The mixture was left to stand overnight, and

yellow crystals were yielded from solution. The supernatant was removed via syringe and the solid, $[PtCl_2(PPh_2^iC_3F_7)_2]$ (0.085 g, 50%), was re-crystallised from acetone under argon.

Cone angle estimate.

The maximum cone angle of **1** was estimated from the X-ray structural data for **3** as follows: Phosphorus to fluorine non-bonding distances and phosphorus-platinum-fluorine angles were measured using the PLATON and MERCURY software packages.^{1,2} The van der Waals radius of fluorine was taken as 1.35 Å. The individual half angles ($\theta_1/2$) for the Ph and CF(CF₃)₂ substituents on P were $\theta_i/2 =$ 84.4°, 73.2° and 76.2°. Using the formula: Cone angle, $\Theta = 2/3 \Sigma_i \theta_i/2$, this gives a value for the maximum cone angle of **1** of 156°. Likewise the maximum cone angle of PPh₂C₂F₅ was estimated from the X-ray structural data of PtCl₂(PPh₂C₂F₅)₂.³ The individual half angles ($\theta_1/2$) for the Ph and C₂F₅ substituents on P were $\theta_i/2 = 81.35^\circ$, 76.7° and 71.4°. This gives a value for the maximum cone angle of PPh₂C₂F₅ of 153°.

References

- 1 A. L. Spek, J. Appl. Cryst. 2003, 36, 7-13.
- I. J. Bruno, J. C. Cole, P. R. Edgington, M. K. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, *Acta Cryst.* 2002, **B58**, 389-397.
- 3 J. D. Palcic, P.N. Kapoor, D. M. Roddick and R. G. Peters, Dalton Trans., 2004, 1644-1647.