Supplementary information for

Bimetallic Ru—Cu Tellurido Complexes: Controlled Synthesis and Electrochemical Studies of Copper Halide-TeRu₅ and Te₂Ru₄ Clusters

Minghuey Shieh,* Yen-Yi Chu, Chia-Yeh Miu, Pei-Fan Wu, and Tsau-Ming Zeng Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan, Republic of China

Table S1. Cyclic Voltammetry of $[PPh_4]_2[1]$, $[PPh_4]_2[2a]$, $[PPh_4]_2[2b]$, $[PPh_4]_2[2c]$, $[PPh_4]_2[3a]$, $[PPh_4]_2[3b]$, $[PPh_4]_2[5a]$, $[PPh_4]_2[5b]$, and $[PPh_4]_2[5c]$.

Oxidation Process	Reduction Process				
$E_{\rm p}^{\rm ox}/{\rm V}^a$,	$E_{\rm p}^{\rm ox}/{ m V}^a$		$E_{\rm p}^{\rm rec}$	$^{\rm d}/{ m V}^b$	
0.075			-1.257	-1.402	-1.910
0.117	-0.291	-0.680	-1.138	-1.458	-1.837
$\sim 0.169^{c}$	-0.230	-0.597	-1.193	-1.402	-1.817
0.152	-0.246	-0.646			-1.811
0.238	-0.129	-0.467	-1.055		-1.720
0.188	-0.179	-0.604	-1.174	-1.262	-1.828
0.203	-0.255	-0.617	-1.223	-1.455	-1.861
0.191	-0.303	-0.760		-1.485	-1.864
0.198	-0.279	-0.683	-1.151	-1.396	-1.783
	Oxidation Process E_p^{ox}/V^a , 0.075 0.117 ~ 0.169^c 0.152 0.238 0.188 0.203 0.191 0.198	Oxidation Process E_p^{ox}/V^a E_p^{ox}/V^a E_p^{ox}/V^a 0.075-0.291 0.117 -0.291 $\sim 0.169^c$ -0.230 0.152 -0.246 0.238 -0.129 0.188 -0.179 0.203 -0.255 0.191 -0.303 0.198 -0.279	Oxidation ProcessRe E_p^{ox}/V^a , E_p^{ox}/V^a 0.075-0.2910.117-0.291-0.169c-0.230-0.152-0.246-0.238-0.129-0.129-0.4670.188-0.179-0.203-0.255-0.191-0.303-0.191-0.303-0.198-0.279-0.683	Oxidation ProcessReduction Proc E_p^{ox}/V^a , E_p^{ox}/V^a E_p^{re} 0.075-1.2570.117-0.291-0.680-1.138~0.169c-0.230-0.597-1.1930.152-0.246-0.646-c0.238-0.129-0.467-1.0550.188-0.179-0.604-1.1740.203-0.255-0.617-1.2230.191-0.303-0.279-0.683-1.151	Oxidation ProcessReduction Process $E_p^{\text{ox}}/\text{V}^a$, $E_p^{\text{ox}}/\text{V}^a$ $E_p^{\text{red}}/\text{V}^b$ 0.075-1.257-1.4020.117-0.291-0.680-1.138~0.169^c-0.230-0.597-1.1930.152-0.246-0.646-c0.238-0.129-0.467-1.0550.188-0.179-0.604-1.1740.203-0.255-0.617-1.2230.191-0.303-0.760-c0.198-0.279-0.683-1.151

^{*a*} E_p^{ox} = oxidative peak potential. ^{*b*} E_p^{red} = reductive peak potential. ^{*c*} Difficult to determine.

Compound	Oxidation Process	cess F		Reduction Process	
Compound	$E_{\rm p}^{\rm red}/{ m V}^a$	$E_{\rm p}^{\rm red}/{ m V}^b$		$E_{\rm p}^{\rm red}/{ m V}^a$	
[PPh ₄] ₂ [1]	0.090		-1.178	-1.474	-1.798
[PPh ₄] ₂ [2 a]	0.134	-0.866	-1.086	-1.326	-1.770
$[PPh_4]_2[2b]$	0.139	-0.577	-1.141	-1.405	-1.781
[PPh ₄] ₂ [2 c]	0.132	-0.632	-1.184	-1.428	-1.824
$[PPh_4]_2[3a]$	0.180	-0.540	-1.124	-1.396	-1.776
$[PPh_4]_2[\mathbf{3b}]$	0.202	-0.618	-1.134	-1.394	-1.778
[PPh4]2[5a]	0.200	-0.870	-1.146	-1.426	-1.770
[PPh ₄] ₂ [5b]	0.166	-0.718	-1.222	-1.458	-1.826
$[PPh_4]_2[5c]$	0.162	-0.636	-1.116	-1.356	-1.748

Table S2. Differential Pulse Voltammetry of $[PPh_4]_2[1]$, $[PPh_4]_2[2a]$, $[PPh_4]_2[2b]$, $[PPh_4]_2[2c]$, $[PPh_4]_2[3a]$, $[PPh_4]_2[3b]$, $[PPh_4]_2[5a]$, $[PPh_4]_2[5b]$, and $[PPh_4]_2[5c]$.

 ${}^{a}E_{p}^{red}$ = The reductive peak potential of Ru atoms. b The reductive peak potential of Cu atom (desorption).

	[PPh ₄] ₂ [2	\mathbf{I}]·CH ₂ Cl ₂	
Te(1)-Ru(1)	2.6650(7)	Ru(1)—Ru(5)	2.8427(7)
Te(1)-Ru(2)	2.7229(7)	Ru(2)—Ru(3)	2.8155(7)
Te(1)-Ru(3)	2.7481(7)	Ru(2)—Ru(5)	2.8693(7)
Te(1)-Ru(4)	2.6858(7)	Ru(3)—Ru(4)	2.8456(7)
Ru(1)— $Ru(2)$	2.8772(7)	Ru(3)—Ru(5)	2.8815(7)
Ru(1)— $Ru(4)$	2.8990(7)	Ru(4)—Ru(5)	2.8412(8)
Ru(1)—Ru(2)—Ru(3)	90.72(2)	Ru(2)—Ru(1)—Ru(4)	88.65(2)
Ru(1)- $Ru(4)$ - $Ru(3)$	89.68(2)	Ru(2)—Ru(3)—Ru(4)	90.95(2)
	[PPh.	₄] ₂ [2a]	
Te(1)-Ru(1)	2.6764(4)	Ru(2)— $Ru(5)$	2.9102(5)
Te(1)-Ru(2)	2.7021(5)	Ru(3)— $Ru(4)$	2.8348(5)
Te(1)-Ru(3)	2.7463(4)	Ru(3)— $Ru(5)$	2.8554(5)
Te(1)-Ru(4)	2.6799(4)	Ru(4)—Ru(5)	2.8686(5)
Ru(1)— $Ru(2)$	2.8360(5)	Ru(1)— $Cu(1)$	2.6284(6)
Ru(1)— $Ru(4)$	3.0364(5)	Ru(4)– $Cu(1)$	2.6229(6)
Ru(1)— $Ru(5)$	2.8818(5)	Ru(5)—Cu(1)	2.7893(7)
Ru(2)—Ru(3)	2.8209(5)	Cu(1)– $Cl(1)$	2.189(1)
Ru(1)- $Ru(2)$ - $Ru(3)$	92.18(1)	Cl(1)- $Cu(1)$ - $Ru(4)$	139.84(4)
Ru(1)- $Ru(4)$ - $Ru(3)$	87.85(1)	Cl(1)- $Cu(1)$ - $Ru(5)$	146.43(5)
Ru(2)- $Ru(1)$ - $Ru(4)$	87.79(1)	Ru(1)- $Cu(1)$ - $Ru(4)$	70.65(2)
Ru(2)- $Ru(3)$ - $Ru(4)$	92.16(1)	Ru(1)-Cu(1)-Ru(5)	64.19(2)
Cl(1)- $Cu(1)$ - $Ru(1)$	136.48(5)	Ru(4)-Cu(1)-Ru(5)	63.93(2)
	[PPh/	4]2[2b]	
Te(1)-Ru(1)	2.6761(7)	Ru(2)—Ru(5)	2.9085(7)
Te(1)-Ru(2)	2.6982(8)	Ru(3)–Ru(4)	2.8332(8)
Te(1)-Ru(3)	2.7475(7)	Ru(3)—Ru(5)	2.8545(8)
Te(1)-Ru(4)	2.6786(6)	Ru(4)—Ru(5)	2.8740(8)
Ru(1)—Ru(2)	2.8347(8)	Ru(1)–Cu(1)	2.6277(9)
Ru(1)—Ru(4)	3.0349(7)	Ru(4)—Cu(1)	2.621(1)

Table S3. Selected Bond Distances (Å) and Bond Angles (deg) for $[PPh_4]_2[1] \cdot CH_2Cl_2$, $[PPh_4]_2[2a]$, $[PPh_4]_2[2b]$, $[PPh_4]_2[2c]$, $[PPh_4]_2[3b]$, $[PPh_4]_2[4b]$, and $[PPh_4]_2[5c]$.

Ru(1)- $Ru(5)$	2.8799(8)	Ru(5)– $Cu(1)$	2.761(1)
Ru(2)—Ru(3)	2.8200(8)	Br(1)–Cu(1)	2.313(1)
Ru(1)- $Ru(2)$ - $Ru(3)$	92.17(2)	Ru(1)-Cu(1)-Ru(5)	64.56(2)
Ru(1)- $Ru(4)$ - $Ru(3)$	87.86(2)	Ru(4)-Cu(1)-Ru(5)	64.50(3)
Ru(2)- $Ru(1)$ - $Ru(4)$	87.78(2)	Br(1)- $Cu(1)$ - $Ru(1)$	136.74(4)
Ru(2)- $Ru(3)$ - $Ru(4)$	92.15(2)	Br(1)- $Cu(1)$ - $Ru(4)$	139.47(4)
Ru(1)— $Cu(1)$ — $Ru(4)$	70.65(3)	Br(1)- $Cu(1)$ - $Ru(5)$	145.93(5)

$[PPh_4]_2[2c]$				
Te(1)-Ru(1)	2.695(1)	Ru(2)—Ru(5)	2.848(1)	
Te(1)-Ru(2)	2.746(2)	Ru(3)—Ru(4)	2.850(2)	
Te(1)-Ru(3)	2.700(1)	Ru(3)—Ru(5)	2.860(2)	
Te(1)-Ru(4)	2.690(1)	Ru(4)—Ru(5)	2.889(2)	
Ru(1)—Ru(2)	2.810(2)	Ru(1)—Cu(1)	2.667(2)	
Ru(1)—Ru(4)	2.997(2)	Ru(4)—Cu(1)	2.658(2)	
Ru(1)— $Ru(5)$	2.905(2)	Ru(5)—Cu(1)	2.693(2)	
Ru(2)—Ru(3)	2.839(2)	I(1)-Cu(1)	2.486(2)	
Ru(1)- $Ru(2)$ - $Ru(3)$	91.82(5)	Ru(1)-Cu(1)-Ru(5)	65.65(5)	
Ru(1)- $Ru(4)$ - $Ru(3)$	87.84(4)	Ru(4)-Cu(1)-Ru(5)	65.35(5)	
Ru(2)- $Ru(1)$ - $Ru(4)$	88.95(4)	I(1)-Cu(1)-Ru(1)	140.53(8)	
Ru(2)- $Ru(3)$ - $Ru(4)$	91.37(4)	I(1)-Cu(1)-Ru(4)	144.17(8)	
Ru(1)- $Cu(1)$ - $Ru(4)$	68.51(5)	I(1)-Cu(1)-Ru(5)	136.75(8)	

		[PPh ₄] ₂ [3b]		
Te(1)-Ru(1)	2.677(3)	Ru(4)— $Ru(5)$	2.827(2)	
Te(1)-Ru(2)	2.675(2)	Cu(1)-Ru(1)	2.636(2)	
Te(1)-Ru(3)	2.735(1)	Cu(1)-Ru(2)	2.617(2)	
Te(1)-Ru(4)	2.715(2)	Cu(2a)— $Ru(1)$	2.651(2)	
Ru(1)—Ru(2)	3.071(2)	Cu(2a)— $Ru(2)$	2.633(3)	
Ru(1)— $Ru(4)$	2.809(2)	Cu(2a)— $Ru(5)$	2.682(2)	
Ru(1)— $Ru(5)$	2.908(1)	Cu(1)– $Cu(2)$	2.773(2)	
Ru(2)—Ru(3)	2.806(2)	Cu(1)—Cu(2a)	2.598(3)	
Ru(2)—Ru(5)	2.929(2)	Br(1)– $Cu(1)$	2.324(2)	
Ru(3)- $Ru(4)$	2.818(2)	Br(1)– $Cu(2)$	2.331(3)	
Ru(3)— $Ru(5)$	2.800(4)			

Ru(1)- $Ru(2)$ - $Ru(3)$	87.24(5)	Ru(2a)—Cu(2)—Ru(5a)	66.88(6)
Ru(1)- $Ru(4)$ - $Ru(3)$	92.31(5)	Cu(1)– $Cu(2)$ – $Cu(1a)$	72.05(8)
Ru(2)- $Ru(1)$ - $Ru(4)$	87.59(5)	Cu(2)–Cu(1)–Cu(2a)	107.95(8)
Ru(2)- $Ru(3)$ - $Ru(4)$	92.84(5)	Cu(1)- $Ru(1)$ - $Cu(2a)$	58.87(5)
Ru(1)- $Cu(1)$ - $Ru(2)$	71.54(5)	Cu(1)- $Ru(2)$ - $Cu(2a)$	59.33(6)
Ru(1a)—Cu(2)—Ru(2a)	71.06(7)	Cu(1)-Br(1)- $Cu(2)$	73.12(7)
Ru(1a)—Cu(2)—Ru(5a)	66.08(4)		

	[PPł	n ₄] ₂ [4b]		
Te(1)-Ru(1)	2.674(1)	Ru(3)—Ru(5)	2.883(2)	
Te(1)— $Ru(2)$	2.703(1)	Ru(4)— $Ru(5)$	2.904(1)	
Te(1)-Ru(3)	2.744(1)	Ru(1)— $Cu(1)$	2.671(2)	
Te(1)— $Ru(4)$	2.691(1)	Ru(1)—Cu(2)	2.671(2)	
Ru(1)—Ru(2)	2.984(1)	Ru(2)—Cu(2)	2.655(2)	
Ru(1)—Ru(4)	3.016(1)	Ru(4)— $Cu(1)$	2.627(2)	
Ru(1)—Ru(5)	2.909(1)	Ru(5)—Cu(1)	2.736(2)	
Ru(2)—Ru(3)	2.807(1)	Ru(5)—Cu(2)	2.665(2)	
Ru(2)—Ru(5)	2.899(1)	Br(1)– $Cu(1)$	2.299(2)	
Ru(3)—Ru(4)	2.803(1)	Br(2)—Cu(2)	2.273(3)	
Ru(1)-Ru(2)-Ru(3)	90.46(3)	Ru(2)—Cu(2)—Ru(5)	66.04(5)	
Ru(1)- $Ru(4)$ - $Ru(3)$	89.89(3)	Cu(1)- $Ru(1)$ - $Cu(2)$	95.58(6)	
Ru(2)- $Ru(3)$ - $Ru(4)$	93.66(4)	Cu(1)- $Ru(5)$ - $Cu(2)$	94.20(6)	
Ru(2)- $Ru(1)$ - $Ru(4)$	85.99(3)	Br(1)- $Cu(1)$ - $Ru(1)$	143.47(8)	
Ru(1)– $Cu(1)$ – $Ru(4)$	69.39(4)	Br(1)- $Cu(1)$ - $Ru(4)$	138.33(8)	
Ru(1)-Cu(1)-Ru(5)	65.07(4)	Br(1)-Cu(1)-Ru(5)	139.75(8)	
Ru(4)-Cu(1)-Ru(5)	65.52(4)	Br(2)-Cu(2)-Ru(1)	132.7(1)	
Ru(1)–Cu(2)–Ru(2)	68.15(5)	Br(2)- $Cu(2)$ - $Ru(2)$	138.0(1)	
Ru(1)—Cu(2)—Ru(5)	66.06(5)	Br(2)—Cu(2)—Ru(5)	150.0(1)	
$[PPh_4]_2[\mathbf{5c}]$				
Te(1)-Ru(1)	2.7372(8)	Ru(1)—Ru(2a)	2.8023(9)	
Te(1)— $Ru(2)$	2.7421(8)	Ru(1)– $Cu(1)$	2.614(1)	
Te(1)— $Ru(1a)$	2.7474(8)	Ru(2)-Cu(1)	2.601(1)	

I(1)-Cu(1)

2.441(1)

Te(1)-Ru(2a)

Ru(1)-Ru(2)

2.7395(9)

3.0121(9)

Ru(1a)- $Ru(2)$ - $Ru(1)$	90.06(2)	I(1)-Cu(1)-Ru(1)	140.95(5)
Ru(2)- $Ru(1)$ - $Ru(2a)$	89.94(2)	I(1)-Cu(1)-Ru(2)	148.49(5)
Ru(1)- $Cu(1)$ - $Ru(2)$	70.56(3)		

Figure S1. ORTEP diagram (30% thermal ellipsoids) showing the structure and atom labeling for the anion **1**.

Figure S2. ORTEP diagram (30% thermal ellipsoids) showing the structure and atom labeling for the anion 2b.

Figure S3. ORTEP diagram (30% thermal ellipsoids) showing the structure and atom labeling for the anion **2c**.

Figure S4. Differential pulse voltammetry in MeCN for [PPh₄]₂[1]. Conditions: electrolyte,
0.1 M Bu₄NClO₄; working electrode, glassy carbon; scan rate, 100 mV s⁻¹. Potentials are vs

SCE.

Figure S5. Cyclic voltammetry in MeCN for $[PPh_4]_2[1]$, $[PPh_4]_2[2a]$, $[PPh_4]_2[2b]$, $[PPh_4]_2[2c]$, $[PPh_4]_2[3a]$, and $[PPh_4]_2[3b]$. Conditions: electrolyte, 0.1 M Bu₄NClO₄; working electrode, glassy carbon; scan rate, 100 mV s⁻¹. Potentials are vs SCE.

Figure S6. Differential pulse voltammetry in MeCN for [PPh₄]₂[**2b**]. Conditions: electrolyte, 0.1 M Bu₄NClO₄; working electrode, glassy carbon; scan rate, 100 mV s⁻¹. Potentials are vs SCE.

Figure S7. Differential pulse voltammetry in MeCN for $[PPh_4]_2[5a]$, $[PPh_4]_2[5b]$, and $[PPh_4]_2[5c]$. Conditions: electrolyte, 0.1 M Bu₄NClO₄; working electrode, glassy carbon; scan rate, 100 mV s⁻¹. Potentials are vs SCE.

Computational Details:

All calculations were performed using the LanL2DZ basis sets and applying the Becke-3-parameter density functional theory (DFT) and the Lee-Yang-Parr correlation functional (B3LYP).

[TeRu ₅ (CO) ₁₄	$\left[\right]^{2-}(1)$		
E = -2064.39	28976 a.u.		
	Х	у	Z
Te	8.70284	13.41216	6.95279
Ru	6.13072	14.02973	6.62844
Ru	7.33911	11.85469	5.18357
Ru	9.40986	13.54548	4.30037
Ru	8.27266	15.74777	5.69813
Ru	6.667	14.30516	3.85059
0	4.62255	16.60698	7.02587
0	5.19757	13.09417	9.34455
0	3.98255	12.48923	5.20014
0	7.69721	9.50197	7.02368
0	5.68663	10.06629	3.42895
0	9.57319	10.58412	3.66017
0	10.03402	13.5645	1.36547
0	12.35226	13.16438	4.8555
0	10.56406	16.52341	3.92628
0	6.78	18.15983	4.70718
0	9.5839	17.30762	7.92673
0	5.68043	12.53823	1.60541
0	7.93525	16.12498	1.83881
0	4.15069	15.99751	3.88266
С	5.22826	15.64667	6.85791
С	5.59129	13.43466	8.33681
С	4.96495	12.98327	5.53388
С	7.53987	10.41329	6.35622
С	6.30317	10.7755	4.0637
С	9.03113	11.51463	4.15095
С	9.77544	13.61373	2.47356

С	11.2446	13.31598	4.69191
С	9.76089	15.88748	4.4716
С	7.33508	17.22151	5.08672
С	9.08117	16.70163	7.10439
С	6.05764	13.1477	2.48447
С	7.52633	15.40817	2.62407
С	5.09487	15.34922	3.90229

[TeRu ₅ (CO) ₁₄	$\operatorname{CuCl}^{2^{-}}(\mathbf{2a})$		
E = -2275.62	22856 a.u.		
	Х	У	Z
Te	-0.12504	3.85161	4.70477
Ru	1.59587	4.84297	6.49732
Ru	0.52636	6.45934	4.42845
Ru	-2.11325	5.71704	5.07285
Ru	-1.241	3.98925	7.13498
Ru	-0.45229	6.74823	7.15194
Cu	0.51607	4.82518	8.88761
Cl	1.16729	4.37786	10.93657
0	2.50179	2.00727	7.09153
0	3.44597	6.18604	8.50731
0	3.80097	5.30579	4.47163
0	2.28901	8.90096	4.72535
0	1.55539	6.04478	1.61764
0	-1.63611	7.92977	2.94931
0	-4.24116	7.79248	5.59584
0	-3.78996	4.39993	2.91707
0	-4.22438	4.13374	6.73127
0	-2.24106	3.98718	9.99318
0	-1.29479	0.95927	7.13078
0	0.98306	7.95846	9.55162
0	-0.84849	9.53444	6.02478
0	-3.07919	6.98904	8.67272
С	2.16154	3.07735	6.88266
С	2.66937	5.70133	7.80783
С	2.89973	5.18836	5.1627

С	1.60067	7.99598	4.63003
С	1.17311	6.18692	2.69139
С	-1.20599	7.15855	3.71608
С	-3.42063	6.9961	5.42483
С	-3.1453	4.9076	3.71327
С	-3.09376	4.37874	6.52942
С	-1.76857	4.03309	8.94606
С	-1.28219	2.10351	7.13498
С	0.52856	7.40621	8.63767
С	-0.66322	8.45642	6.38364
С	-2.0982	6.84203	8.08958

 $\left[\text{TeRu}_5(\text{CO})_{14}\text{CuBr}\right]^{2-}(\mathbf{2b})$

E = -2273.8245727 a.u.

	Х	У	Ζ
Te	-0.24521	3.91718	4.70512
Ru	1.50128	4.88389	6.48767
Ru	0.43755	6.51254	4.42559
Ru	-2.21078	5.79956	5.0814
Ru	-1.34514	4.05972	7.1432
Ru	-0.52891	6.8154	7.1521
Br	1.12109	4.43211	11.04377
Cu	0.42727	4.89162	8.88578
0	2.41262	2.07963	7.13586
0	3.39634	6.24068	8.4311
0	3.7039	5.26941	4.43943
0	1.49374	6.06562	1.63283
0	2.20516	8.9379	4.71345
0	-1.71439	7.9903	2.95209
0	-4.30896	7.89116	5.6132
0	-3.90668	4.54687	2.9309
0	-4.32897	4.22044	6.76296
0	-1.42444	1.0521	7.1401
0	-2.33281	4.01725	10.0032
0	0.93262	8.02781	9.51589
0	-0.93333	9.59211	6.06379

0	-3.1148	7.05252	8.72773
С	2.05314	3.12592	6.90139
С	2.61645	5.76509	7.75876
С	2.78909	5.21136	5.13155
С	1.09159	6.23978	2.7049
С	1.51882	8.04255	4.63577
С	-1.27301	7.23695	3.71483
С	-3.49798	7.1003	5.44512
С	-3.26336	5.00817	3.72754
С	-3.20919	4.45622	6.56098
С	-1.85814	4.07843	8.9509
С	-1.40511	2.18234	7.1401
С	0.46758	7.4772	8.59495
С	-0.74786	8.51635	6.40137
С	-2.15782	6.92793	8.102

$\left[\mathrm{TeRu}_{5}(\mathrm{CO})_{14}\mathrm{CuI}\right]^{2-}(\mathbf{2c})$	
E = -2272.0389925 a.u.	

	Х	У	Z
Ι	2.11271	9.28288	16.47594
Te	3.21259	2.66338	17.91083
Ru	4.28603	5.12821	17.71618
Ru	5.26703	3.02976	16.1257
Ru	2.64871	2.31572	15.29322
Ru	1.51127	4.4374	16.81868
Ru	3.59803	4.9839	14.89705
Cu	2.60306	6.8476	16.56651
0	4.29895	5.20603	20.75508
0	5.29733	7.97667	17.80632
0	7.26558	4.7198	17.77413
0	7.5538	3.60799	14.21587
0	6.9145	0.7306	17.20755
0	4.91867	0.8348	13.96692
0	1.44379	-0.49174	15.43701
Ο	1.19869	2.84186	12.68569
Ο	-0.60833	2.27661	16.48217

0	-0.45774	6.34717	15.52071
0	0.54042	5.15166	19.58116
0	4.72231	3.75862	12.36806
0	1.55599	6.45511	13.16427
0	5.72246	7.13445	14.74811
С	4.27253	5.17371	19.63266
С	4.84918	6.93878	17.69258
С	6.17892	4.48186	17.42431
С	6.67463	3.41076	14.89189
С	6.26521	1.59126	16.82984
С	4.41014	1.60426	14.68801
С	1.89758	0.5524	15.40052
С	1.75345	2.6444	13.69651
С	0.27343	2.99155	16.5165
С	0.32096	5.6879	15.95637
С	0.92461	4.91019	18.53814
С	4.29852	4.1699	13.33811
С	2.29121	5.88929	13.90468
С	4.89432	6.32189	14.8597

$[{TeRu_5(CO)_{14}}_2Cu_4Cl_2]^{2-}(3a)$

E = -4943.5672795 a.u.

	Х	У	Z
Te	3.64991	7.73101	5.46703
Ru	6.10096	8.39975	6.35579
Ru	4.95187	9.73196	4.16011
Ru	4.35192	7.29652	2.85227
Ru	5.38616	5.75757	4.9674
Ru	6.98854	7.83444	3.64657
Cu	5.8949	6.04565	7.52378
Cu	7.8029	6.44442	5.79059
Cl	9.8865	5.6442	5.9526
0	8.80437	8.91411	7.61747
0	4.96006	8.9185	9.11376
0	6.22478	11.40759	6.41769
0	6.564	11.95922	2.94214

0	2.51688	11.50577	4.54389
0	4.14058	9.85397	1.21812
0	1.41062	6.81425	2.19935
0	5.44179	6.60805	0.11004
0	4.71386	4.24173	2.45917
0	7.31333	3.42478	4.91529
0	3.50423	3.7784	6.30153
0	9.59391	9.14421	4.51638
0	7.38658	9.27457	0.99804
0	8.15389	5.33355	2.37358
С	7.81565	8.64908	7.10088
С	5.36869	8.65409	8.08057
С	5.95859	10.36025	5.97751
С	5.98189	11.09793	3.38843
С	3.42297	10.83541	4.41703
С	4.30766	9.25807	2.21157
С	2.4807	6.98748	2.44083
С	5.02647	6.88274	1.13406
С	4.77673	5.18638	3.15
С	6.67038	4.37929	4.96725
С	4.19599	4.54812	5.84454
С	8.60399	8.64056	4.27184
С	7.17145	8.7607	1.98232
С	7.73113	6.24457	2.90546
Cu	6.9943	4.42313	9.49326
Cl	4.9107	5.22336	9.33125
Ru	8.69625	2.46781	8.92806
Ru	9.41104	5.10998	10.31644
Ru	7.80867	3.03311	11.63727
Cu	8.9023	4.8219	7.76007
С	6.98156	2.21847	8.18297
С	8.12682	6.48827	10.3166
С	6.19321	2.22699	11.01201
Te	11.14729	3.13655	9.81682
Ru	9.84533	1.13559	11.12374
С	9.42851	2.21347	7.20328
С	8.83862	0.5073	9.30634

Ru	10.44528	3.57103	12.43158
С	10.02047	5.68117	12.13385
С	10.60121	6.31943	9.4393
С	7.62576	2.10686	13.30153
С	7.06607	4.62299	12.37839
0	5.99283	1.95344	7.66638
0	7.48388	7.44278	10.36856
0	5.20329	1.72334	10.76747
С	8.81531	-0.23037	11.89542
С	11.37423	0.03214	10.86682
С	10.48955	1.60949	13.07228
0	9.83715	1.94905	6.17009
0	8.57243	-0.54004	8.86616
С	12.3165	3.88007	12.84302
С	9.77073	3.98482	14.14979
0	10.08335	6.62582	12.82468
0	11.29298	7.08916	8.98232
0	7.41063	1.59298	14.28581
0	6.64332	5.53401	12.91027
0	8.2332	-1.09167	12.34171
0	12.28032	-0.63822	10.73996
0	10.65663	1.01358	14.06573
0	13.38659	4.05331	13.0845
0	9.35541	4.25951	15.1738

 $[\{\text{TeRu}_5(\text{CO})_{14}\}_2\text{Cu}_4\text{Br}_2]^{2-} (\mathbf{3b})$ E = -4940.0052068 a.u.

	Х	у	Z
Te	1.37784	12.98229	2.18324
Ru	-1.05295	12.30231	1.28834
Ru	-0.36779	14.94197	2.70059
Ru	0.67818	13.39412	4.79338
Ru	0.09733	10.96983	3.47891
Ru	-1.95139	12.8489	3.99871
Cu	-0.85431	14.67045	0.14408
Cu	-1.85705	16.3069	-1.8584

Br	0.3173	15.48777	-1.68728
0	-3.73539	11.77319	0.00611
0	0.12013	11.79663	-1.45305
0	-1.15515	9.30191	1.20858
0	-2.30853	17.2558	2.77317
0	1.50785	16.95671	1.42554
0	0.33107	16.44317	5.20714
0	-0.38227	14.05273	7.51887
0	3.61865	13.89644	5.43479
0	0.94459	10.83397	6.39433
0	-1.52008	8.72417	4.69987
0	2.55179	9.21842	3.09708
0	-4.51749	11.50456	3.11542
0	-3.18024	15.31547	5.2927
0	-2.31319	11.40533	6.62657
С	-2.77424	12.08002	0.54547
С	-0.32837	12.05672	-0.42476
С	-0.9061	10.35248	1.68529
С	-1.66476	16.28535	2.70594
С	0.8102	16.1743	1.85947
С	0.24407	15.52177	4.49513
С	0.03647	13.78371	6.48447
С	2.5406	13.71832	5.20561
С	0.74733	11.4448	5.43938
С	-0.90198	9.59105	4.26441
С	1.63232	9.88777	3.20709
С	-3.51288	12.0366	3.35683
С	-2.72809	14.43883	4.75334
С	-2.14454	11.95018	5.63037
Cu	-2.76359	14.24567	1.8584
Ru	-3.56769	18.25026	-1.28834
Ru	-4.25285	15.6106	-2.70059
Ru	-2.66925	17.70367	-3.99871
Cu	-3.76633	15.88212	-0.14408
Br	-4.93794	15.0648	1.68728
Te	-5.99848	17.57028	-2.18324
Ru	-4.71797	19.58274	-3.47891

С	-1.8464	18.47255	-0.54547
С	-4.29227	18.49585	0.42476
С	-3.71454	20.20009	-1.68529
Ru	-5.29882	17.15845	-4.79338
С	-2.95588	14.26722	-2.70594
С	-5.43085	14.37827	-1.85947
С	-4.86471	15.0308	-4.49513
С	-1.10777	18.51597	-3.35683
С	-1.89255	16.11374	-4.75334
С	-2.4761	18.60239	-5.63037
С	-5.36797	19.10777	-5.43938
С	-3.71866	20.96152	-4.26441
С	-6.25296	20.6648	-3.20709
0	-0.88525	18.77938	-0.00611
0	-4.74077	18.75594	1.45305
0	-3.46549	21.25067	-1.20858
С	-4.65711	16.76886	-6.48447
С	-7.16124	16.83425	-5.20561
0	-2.31211	13.29677	-2.77317
0	-6.12849	13.59586	-1.42554
0	-4.95171	14.1094	-5.20714
0	-0.10315	19.04801	-3.11542
0	-1.4404	15.2371	-5.2927
0	-2.30745	19.14724	-6.62657
0	-5.56523	19.7186	-6.39433
0	-3.10056	21.8284	-4.69987
0	-7.17244	21.33415	-3.09708
0	-4.23837	16.49984	-7.51887
0	-8.23929	16.65613	-5.43479

 $[\text{TeRu}_5(\text{CO})_{14}(\text{CuCl})_2]^{2-}$ (4a) (the Optimized Geometry) E = -2486.772994 a.u.

	Х	У	Z
Te	-0.0137	1.120715	-2.06804
Ru	0.017271	-1.50706	-1.24121
Ru	2.138675	0.669918	-0.38402

Ru	-0.02554	2.440911	0.466591
Ru	-2.15313	0.625175	-0.38205
Ru	0.003958	-0.34738	1.510035
Cu	-2.01129	-1.97096	0.506654
Cu	2.052858	-1.92769	0.510246
0	-2.19216	-2.20495	-3.28544
0	0.039562	-4.42009	-0.17582
0	2.25405	-2.16199	-3.26974
0	4.019536	1.331522	-2.71966
0	4.677771	-0.08654	1.18149
0	2.949337	3.330063	0.808885
0	-0.05353	5.237101	-0.84315
0	-0.03796	3.641507	3.288549
0	-3.0181	3.270518	0.805753
0	-4.67207	-0.18087	1.19147
0	-4.05124	1.239241	-2.71674
0	0.029684	-3.05167	3.030196
0	2.151735	0.717996	3.444936
0	-2.16225	0.675944	3.447161
С	-1.38434	-1.9083	-2.47629
С	0.029106	-3.2715	-0.44524
С	1.435821	-1.88025	-2.46566
С	3.28872	1.06419	-1.82154
С	3.657073	0.087363	0.609164
С	2.147258	2.496248	0.454918
С	-0.04279	4.160514	-0.34959
С	-0.03302	3.150855	2.212022
С	-2.1993	2.452321	0.453625
С	-3.65699	0.013387	0.615821
С	-3.31344	0.990273	-1.81904
С	0.020581	-2.09809	2.329424
С	1.379171	0.342176	2.628602
С	-1.38309	0.315931	2.629959
Cl	3.586629	-3.55867	0.902494
Cl	-3.51669	-3.62945	0.894958

[TeRu ₅ (CO) ₁₄	$(\mathrm{CuBr})_2]^{2-}(\mathbf{4b})$		
E = -2483.194	42675 a.u.		
	Х	У	Z
Te	3.40151	5.44743	16.32491
Ru	1.80538	3.3021	16.27869
Ru	2.04879	5.20962	13.99653
Ru	4.84323	4.94596	14.04451
Ru	4.81738	3.16254	16.2072
Ru	3.22846	2.56542	13.85141
Br	3.29957	-1.14757	16.78044
Br	-1.50976	2.36625	13.33438
Cu	3.24636	1.05778	16.13474
Cu	0.59796	2.98756	13.91682
0	1.94988	3.3624	19.31994
0	0.18244	0.77078	16.29416
0	-0.82304	4.84036	16.37054
0	0.69706	7.86883	14.42581
0	0.26175	4.9352	11.59588
0	3.57639	6.7184	11.86027
0	6.59396	7.39865	14.44344
0	6.31324	4.08597	11.60959
0	7.5404	3.92114	15.23661
0	6.38468	0.59453	16.39404
0	5.84053	3.71917	18.97134
0	1.70499	-0.03044	13.38001
0	3.00999	3.31448	10.92414
0	5.77935	1.07351	13.22138
С	1.90734	3.29365	18.16642
С	0.84516	1.63917	16.2119
С	0.1783	4.29468	16.27262
С	1.20972	6.86754	14.29068
С	0.87284	4.9198	12.53005
С	3.48248	5.96717	12.78465
С	5.91757	6.45148	14.27306
С	5.74926	4.46005	12.52026
С	6.39538	3.90189	15.2699
С	5.69306	1.50325	16.30591

С	5.42651	3.49865	17.96078
С	2.11854	0.95263	13.62873
С	3.02814	3.08471	12.00911
С	4.82907	1.62809	13.52298

$[\text{TeRu}_5(\text{CO})_{14}(\text{CuBr})_2]^{2-}$ (**4b**) (the Optimized Geometry) E = -2483.209825 a.u.

	Х	У	Z
Te	0.00061	-1.49904	2.00842
Ru	-0.00055	1.180766	1.380596
Ru	2.147418	-0.90725	0.358698
Ru	0.001033	-2.63743	-0.60794
Ru	-2.14669	-0.90888	0.3587
Ru	-0.00012	0.232134	-1.44318
Br	-3.67673	3.527351	-0.55903
Br	3.674288	3.529911	-0.55897
Cu	-2.05592	1.751467	-0.31349
Cu	2.054522	1.753082	-0.31331
0	-2.22003	1.695421	3.468071
0	-0.00116	4.164808	0.535825
0	2.217838	1.696869	3.468882
0	4.036996	-1.68797	2.650507
0	4.674434	-0.05318	-1.17421
0	2.982896	-3.48185	-0.99605
0	0.002027	-5.51909	0.50036
0	0.001432	-3.62649	-3.51155
0	-2.9802	-3.48399	-0.9963
0	-4.6745	-0.05662	-1.17391
0	-4.03557	-1.69137	2.650485
0	-0.00116	3.038193	-2.7633
0	2.14888	-0.67338	-3.45612
0	-2.14847	-0.675	-3.45607
С	-1.40918	1.472492	2.638906
С	-0.00083	2.999852	0.720161
С	1.4074	1.473437	2.639455
С	3.303188	-1.37425	1.770382

С	3.659443	-0.26187	-0.6037
С	2.173099	-2.67858	-0.59269
С	0.001649	-4.41082	0.08327
С	0.001275	-3.21705	-2.40174
С	-2.17102	-2.68017	-0.59282
С	-3.65927	-0.26459	-0.60354
С	-3.30204	-1.37697	1.770369
С	-0.00078	2.035424	-2.1351
С	1.378526	-0.36362	-2.61037
С	-1.37836	-0.36461	-2.61033

 $[TeRu_5(CO)_{14}(CuI)_2]^{2-}$ (4c) (the Optimized Geometry)

E = -2479.646844 a.u.			
	Х	у	Z
Te	0.001019	-1.79812	1.97229
Ru	-0.00035	0.904656	1.44503
Ru	2.146338	-1.14222	0.343743
Ru	0.000937	-2.83824	-0.68132
Ru	-2.14534	-1.14376	0.344365
Ru	-0.00017	0.068111	-1.40669
Cu	-2.07713	1.54383	-0.21533
Cu	2.075894	1.545264	-0.21542
0	-2.21634	1.33198	3.556197
0	-0.00128	3.919481	0.723312
0	2.214913	1.333577	3.556658
0	4.036853	-1.98839	2.61179
0	4.672341	-0.27088	-1.17883
0	2.981315	-3.67529	-1.08873
0	0.002098	-5.762	0.310503
0	0.000805	-3.70435	-3.6244
0	-2.97892	-3.6774	-1.08793
0	-4.67243	-0.27416	-1.17739
0	-4.03468	-1.99151	2.612795
0	-0.00089	2.921383	-2.61906
0	2.144557	-0.76032	-3.45678
0	-2.1451	-0.76151	-3.4561

С	-1.40781	1.14501	2.716161
С	-0.0009	2.747984	0.859896
С	1.406635	1.146081	2.716502
С	3.302965	-1.64927	1.741522
С	3.659413	-0.48297	-0.60601
С	2.170938	-2.88462	-0.66256
С	0.001662	-4.63807	-0.06177
С	0.000853	-3.34242	-2.49832
С	-2.16897	-2.88618	-0.66197
С	-3.65916	-0.48551	-0.60492
С	-3.30124	-1.65177	1.742384
С	-0.00063	1.895403	-2.0298
С	1.377118	-0.48229	-2.59747
С	-1.37756	-0.48299	-2.59703
Ι	-3.80924	3.449364	-0.39884
Ι	3.806881	3.451904	-0.39832

$[Te_2Ru_4(CO)_{10}(CuCl)_2]^{2-}$	(5 a)
E = -1947.7571854 a.u.	

	Х	У	Z
Te	1.28574	1.55262	12.69561
Ru	2.03095	2.45881	15.18397
Ru	2.08479	4.165	12.97415
Cu	0.79154	4.87643	10.82354
Cl	1.0431	5.96816	8.99501
0	3.85494	0.07531	15.52185
0	2.63928	3.46412	17.95842
0	4.57885	4.07076	14.71561
0	2.42759	7.16532	13.02072
0	4.1996	3.98551	10.8245
С	3.16156	0.98118	15.3996
С	2.36127	3.05969	16.92693
С	3.48926	3.74361	14.42855
С	2.28039	6.02637	13.00149
С	3.37913	4.03109	11.60876
Ru	-0.74217	3.35542	12.2859

Ru	-0.796	1.64923	14.49571
Te	0.00304	4.26161	14.77425
С	-1.87278	4.83305	12.07026
С	-1.07248	2.75454	10.54293
С	-2.20048	2.07062	13.04132
Cu	0.49724	0.9378	16.64632
С	-0.99161	-0.21214	14.46838
С	-2.09035	1.78314	15.8611
0	-2.56616	5.73892	11.94802
0	-1.35049	2.35011	9.51144
0	-3.29007	1.74347	12.75426
Cl	0.24568	-0.15393	18.47486
0	-1.1388	-1.35109	14.44915
0	-2.91081	1.82872	16.64536

[Te ₂ Ru ₄ (CO) ₁	$_{0}(CuBr)_{2}]^{2-}(5b)$			
E = -1944.1996339 a.u.				
	Х	у	Z	
Te	3.8464	1.33255	1.05239	
Ru	5.88487	-0.45722	1.45304	
Ru	5.93846	1.27806	-0.73512	
Br	4.92474	3.23619	-4.75823	
Cu	4.6455	2.01487	-2.86903	
0	6.46692	0.46533	4.26172	
0	7.71271	-2.85213	1.77017	
0	8.41698	1.18078	1.01688	
0	8.06514	1.13909	-2.86612	
0	6.26237	4.27346	-0.65896	
С	6.20196	0.06073	3.19768	
С	7.03666	-1.93137	1.66196	
С	7.33604	0.84343	0.75052	
С	7.21735	1.18237	-2.09618	
С	6.11128	3.1374	-0.71722	
Ru	3.11613	0.45722	-1.45304	
Ru	3.06254	-1.27806	0.73512	
Те	5.1546	-1.33255	-1.05239	

С	2.79904	-0.06073	-3.19768
С	1.96434	1.93137	-1.66196
С	1.66496	-0.84343	-0.75052
Cu	4.3555	-2.01487	2.86903
С	1.78365	-1.18237	2.09618
С	2.88972	-3.1374	0.71722
0	2.53408	-0.46533	-4.26172
0	1.28829	2.85213	-1.77017
0	0.58402	-1.18078	-1.01688
Br	4.07627	-3.23619	4.7582
0	0.93586	-1.13909	2.86612
0	2.73863	-4.27346	0.65896

```
[Te_2Ru_4(CO)_{10}(CuI)_2]^{2-} (5c)
```

E = -1940.6309079 a.u.

	Х	У	Z
Ι	-2.50966	8.07702	4.45089
Te	-1.08221	13.13468	1.22532
Ru	-3.30347	11.53591	1.27181
Ru	-0.52821	10.49369	0.73829
Cu	-2.12353	9.61531	2.59564
0	2.07787	10.47471	-0.80556
0	-3.9434	11.98415	4.18401
0	-5.58348	9.58398	1.23479
0	-0.44658	7.48207	0.39602
0	1.31465	10.34817	3.12879
С	1.00703	10.87825	-0.58911
С	-3.66539	11.79587	3.09066
С	-4.6977	10.29572	1.24217
С	-0.49499	8.62069	0.53991
С	0.60222	10.38754	2.23836
Ru	-0.18953	12.41653	-1.27181
Ru	-2.96479	13.45876	-0.73829
Te	-2.41079	10.81777	-1.22532
Cu	-1.36947	14.33714	-2.59564
С	0.17239	12.15657	-3.09066

С	1.2047	13.65673	-1.24217
С	-4.50003	13.07419	0.58911
С	-2.99801	15.33176	-0.53991
С	-4.09522	13.56491	-2.23836
Ι	-0.98334	15.87543	-4.45089
0	0.4504	11.9683	-4.18401
0	2.09048	14.36847	-1.23479
0	-5.57087	13.47774	0.80556
0	-3.04643	16.47038	-0.39602
0	-4.80765	13.60428	-3.12879