Supplementary Information for

Insertion Reactions of CS₂, COS, PhNCS at Thiolate-Bridged

Diiron Centers

Yanhui Chen, Ying Peng, Pingping Chen, Jinfeng Zhao, Litao Liu, Yang Li, Shuoyi Chen, and Jingping Qu*

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of

Technology, Dalian 116012, P. R. China

Contents

S Table 1 Selected bond distances (Å) and angles (°) for 2a and 2b

S Table 2 Selected bond lengths (Å) and angles (°) for complex 3 and 4

S Fig. 1 Cyclic voltammogram of **2a** and ferrocene. The scan rate is $0.100V \cdot s^{-1}$, and the reference electrode is Ag/AgNO₃.

S Fig. 2 Cyclic voltammogram of **2b** and ferrocene. The scan rate is $0.100V \cdot s^{-1}$, and the reference electrode is Ag/AgNO₃.

S Fig. 3 Cyclic voltammogram of **1b**. The scan rate is $0.100V \cdot s^{-1}$, and the reference electrode is Ag/AgNO₃.

S Table 1

		2a	
Fe(1)…Fe(2)	3.141(1)	Fe(1)–S(1)	2.311(2)
Fe(1)–S(2)	2.269(1)	Fe(1)–S(3)	2.184(1)
Fe(2)–S(1)	2.304(2)	Fe(2)–S(2)	2.260(1)
Fe(2)–S(4)	2.193(1)	S(4)–C(25)	1.694(2)
S(5)-C(25)	1.768(2)	S(5)-C(26)	1.813(2)
S(3)-C(25)	1.687(2)		
S(2)-Fe(1)-S(3)	97.0(1)	S(2)-Fe(1)-S(1)	91.4(1)
S(3)–Fe(1)–S(1)	92.1(1)	S(4)–Fe(2)–S(2)	96.3(1)
S(4)–Fe(2)–S(1)	92.4(1)	S(2)-Fe(2)-S(1)	92.5(1)
Fe(2)-S(2)-Fe(1)	87.8(1)	Fe(2)–S(1)–Fe(1)	85.8(1)
S(3)-C(25)-S(4)	129.3(1)	S(3)-C(25)-S(5)	112.1(1)
S(4)-C(25)-S(5)	118.8(1)		
		2b	
Fe(1)…Fe(2)	3.350(1)	Fe(1) - S(1)	2.273(1)
Fe(1)–S(2)	2.253(1)	Fe(1) - S(3)	2.179(1)
Fe(2)–S(1)	2.264(1)	Fe(2)–S(2)	2.255(1)
Fe(2)–S(4)	2.162(1)	S(3)–C(23)	1.704(3)
S(4)-C(23)	1.677(3)	S(5)–C(23)	1.764(2)
S(3)–Fe(1)–S(2)	98.3(1)	S(3) - Fe(1) - S(1)	99.0(1)
S(2)–Fe(1)–S(1)	79.7(1)	S(4)–Fe(2)–S(2)	97.9(1)
S(4)-Fe(2)-S(1)	98.9(1)	S(2)–Fe(2)–S(1)	79.9(1)
Fe(2)–S(1)–Fe(1)	95.2(1)	Fe(1)–S(2)–Fe(2)	96.0(1)
S(4)-C(23)-S(3)	129.4(1)	S(4)-C(23)-S(5)	119.5(1)
S(3)-C(23)-S(5)	111.3(1)		

S Table 2

		3	
$Fe(1) \cdots Fe(1)^{\#1}$	3.328(1)	Fe(1)–S(2)	2.135(1)
$S(1) - Fe(1)^{\#1}$	2.296(1)	$S(2)-S(2)^{\#1}$	2.033(1)
S(2)-Fe(1)-S(1)	93.6(1)	$Fe(1)-S(1)-Fe(1)^{\#1}$	93.0(1)
$S(2)^{\#1}-S(2)-Fe(1)$	107.7(1)	$S(1)-Fe(1)-S(1)^{\#1}$	76.6(1)
		4	
Fe(1)–N(1)	1.989(5)	Fe(1) - S(2)	2.192(1)
Fe(1) - S(3)	2.327(2)	S(1)-C(19)	1.760(5)
S(1)–C(21)	1.821(7)	C(19)–N(1)	1.309(7)
C(11)–N(1)	1.417(8)	C(19)–S(3)	1.711(6)
N(1)-Fe(1)-S(2)	96.4(1)	N(1)-Fe(1)-S(3)	70.2(1)
S(2)-Fe(1)-S(3)	99.3(1)	C(19)-S(1)-C(21)	103.2(3)
C(19)-S(3)-Fe(1)	77.8(2)	N(1)-C(19)-S(3)	110.7(4)
N(1)-C(19)-S(1)	124.5(4)	S(3)-C(19)-S(1)	124.7(3)
C(19)–N(1)–Fe(1)	101.0(4)		

