Supplementary Information

for

Synthesis and *in situ* transformation of PST-1: a potassium gallosilicate natrolite with a high Ga content

Jiho Shin,^{*a*} Seok Han Kim,^{*a*} Miguel A. Camblor,^{*b*} Stewart J. Warrender,^{*c*} Stuart R. Miller,^{*c*} Wuzong Zhou,^{*c*} Paul A. Wright^{*c*} and Suk Bong Hong^{**a*}

^a School of Environmental Science and Engineering and Department of Chemical Engineering, POSTECH, Pohang 790-784, Korea. E-mail: sbhong@postech.ac.kr ^b Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain ^c School of Chemistry, University of St. Andrews, Purdie Building, North Haugh, St. Andrews KY16 9ST, UK

Fig. S1 Powder XRD pattern and SEM image of PST-1 obtained by heating a synthesis mixture with $SiO_2/Ga_2O_3 = 5$ and $K_2O/SiO_2 = 0.8$ under rotation (60 rpm) at 150 °C for 2 days.

Fig. S2 TGA/DTA curves for TNU-6.

Fig. S3 Synchrotron powder diffraction data for TNU-6. The supercell reflections are marked by asterisks.

Fig. S4 ⁷¹Ga MAS NMR spectrum of TNU-6. Spinning side bands are marked by asterisks.