Electronic Supplementary Information ## Superparamagnetic γ -Fe₂O₃@SiO₂ nanoparticles: a novel support for the immobilization of [VO(acac)₂] Clara Pereira, André M. Pereira, Pedro Quaresma, Pedro B. Tavares, Eulália Pereira, João P. Araújo and Cristina Freire **Figure S1.** EDS spectra of (A) γ-Fe₂O₃, (B) γ-Fe₂O₃@SiO₂-1 and (C) γ-Fe₂O₃@SiO₂-2 nanomaterials (inset: atomic percentages of Fe, O and Si), obtained during SEM experiments. **Figure S2.** FTIR spectra of (a) γ -Fe₂O₃, (b) γ -Fe₂O₃@SiO₂-1 and (c) γ -Fe₂O₃@SiO₂-2 nanomaterials. Figure S3. FTIR spectra of (a) γ -Fe₂O₃@SiO₂-2, (b) γ -Fe₂O₃@SiO₂-NH₂, (c) γ -Fe₂O₃@SiO₂-NH₂-V and (d) [VO(acac)₂]. ## Equation S1: Estimation of γ-Fe₂O₃ nanoparticles size by XRD The average particles size of the uncoated γ -Fe₂O₃, d_{XRD}, was estimated from the FWHM of the (311) reflection, using the Debye-Scherrer equation:¹ $$d_{XRD} = \frac{K\lambda}{\beta \cos \theta}$$ where K is the Debye-Scherrer constant (K = 0.9 for spherical shape), λ is the wavelength of the Cu K α radiation, β is the FWHM and θ is the Bragg angle. 1 R. E. Dinnebier, S. J. L. Billinge (Eds.), *Powder Diffraction: Theory and Practice*, RSC Publishing, Cambridge, UK, 2008.