Reduction of Oxygen Catalyzed by Nickel Diphosphine Complexes with Positioned **Pendant Amines**

Jenny Y. Yang,^a R. Morris Bullock,^a William G. Dougherty,^a W. Scott Kassel,^b Brendan Twamley,^c Daniel L. DuBois,^a and M. Rakowski DuBois^a

^aChemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352

^bDepartment of Chemistry, Villanova University, Villanova, Pennsylvania 19085

^cDepartment of Chemistry, University of Idaho, Moscow, Idaho 83844

mary.rakowskidubois@pnl.gov

Table of Contents for Supporting Information	Page
Figure S1. VT ${}^{31}P{}^{1}H$ NMR spectra of $[Ni(P^{Ph}_{2}N^{Me}_{2})_{2}](BF_{4})_{2}$.	S2
Figure S2. Dependence of catalytic current for O_2 reduction under different concentrations of (2).	S3
Figure S3. Cyclic voltammograms of 2 under different control conditions for O_2 reduction.	S4
Figure S4. Cyclic voltammograms of 2 under different control conditions for H_2O_2 reduction.	S5
Figure S5. ¹ H NMR concentration dependent H ₂ O resonance in an acid-base buffer solution.	S6
Table S1. Crystal data and structure refinement for $[Ni(P_{2}^{Ph}Me_{2})_{2}]$ (6).	S7
Table S2. Atomic Coordinates and isotropic parameters for $[Ni(P_2^{Ph}M_2)_2]$ (6).	S 8
Table S3. Bond lengths and angles for $[Ni(P_2^{Ph}M_2)_2]$ (6).	S9
Table S4. Anisotropic displacement parameters for $[Ni(P_2^{Ph Me}_2)_2]$ (6).	S12
Table S5. Hydrogen coordinates and isotropic displacement parameters for $[Ni(P_{2}^{Ph}Me_{2})_{2}]$ (6).	S13
Table S6. Crystal data and structure refinement for [Ni(OP ^{Ph} 2N ^{Bz} 2)2](BF4)2•(CH3CN) (8).	S14
Table S7. Atomic Coordinates and isotropic parameters for $[Ni(OP^{Ph}_2N^{Bz}_2)2](BF_4)_2 \bullet (CH_3CN)$ (8).	S15
Table S8. Bond lengths and angles for $[Ni(OP^{Ph}_2N^{Bz}_2)2](BF_4)_2 \bullet (CH_3CN)$ (8).	S18
Table S9. Anisotropic displacement parameters for $[Ni(OP^{Ph}_2N^{Bz}_2)2](BF_4)_2 \cdot (CH_3CN)$ (8).	S25
Table S10. Hydrogen coordinates and isotropic displacement parameters for	S28
$[Ni(OP^{Ph}_{2}N^{Bz}_{2})2](BF_{4})_{2} \cdot (CH_{3}CN)$ (8).	

Figure S1. Variable temperature ³¹P NMR spectra of $[Ni(P^{Ph}_{2}N^{Me}_{2})_2](BF_4)_2$ in acetonitrile.

Figure S2. Catalyst (2) concentration dependent studies. At 10 mM of 4-bromoanilinium tetrafluoroborate, catalytic current observed as a function of catalyst concentration under: oxygen (blue diamonds), corresponding to the current magnitudes on the left axis, and under nitrogen (red squares), corresponding to the current magnitudes on the right axis. The current under nitrogen is associated with proton reduction by catalyst 2.

Figure S3. Cyclic voltammograms of 1.7 mM solutions of Ni($P^{Ph}_2N^{Bz}_2$)₂(BF₄)₂ (**2**) under 1 atmosphere of nitrogen (black), and oxygen (blue). The same catalyst solution with 7.2 mM of 4-bromoanilinium tetrafluoroborate is also shown under oxygen (red), and nitrogen (dotted red). A solution of 7.2 mM of 4-bromoanilinium tetrafluoroborate with no catalyst under oxygen is shown as the dotted blue trace. Conditions: scan rate = 50 mV/s, acetonitrile solvent, 0.2 M Et₄NBF₄ as supporting electrolyte, glassy carbon working electrode. Potentials are referenced to the ferrocene/ferocenium couple (wave shown at 0.0 V).

Figure S4. Cyclic voltammagrams of a 1.7 mM solution of Ni($P^{Ph}_2N^{Bz}_2$)₂(BF₄)₂ (**2**) under nitrogen (black), and in 7.2 mM of 4-bromoanilinium tetrafluoroborate (4.4 equivalents with respect to catalyst) with 1 µL of 30% w/w aqueous H₂O₂ solution (red) and without added H₂O₂ (blue). The green trace was recorded in a solution with the same concentration of H₂O₂ and acid as red, but in the absence of catalyst. Conditions: scan rate = 50 mV/s, acetonitrile solvent, 0.2 M Et₄NBF₄ as supporting electrolyte, glassy carbon working electrode. Potentials are referenced to the ferrocene/ferocenium couple (wave shown at 0.0 V).

Figure S5. The relative concentration of 4-bromoanilinium tetrafluoroborate and the conjugate base were determined by the ¹H NMR spectra of the solution taken after the controlled-potential coulometry experiment. A solution with the same acid-base concentration was prepared and water was titrated into the solution. Because of the fast proton exchange between the acid and the water at room temperature, only one resonance is observed in the ¹H NMR for the N-H protons and from H₂O. The resonance shift due to the changes in H₂O concentration was plotted, and the best fit line was used to determine the concentration of water in the post-electrolysis solution.

Table S1. Crystal data and structure refine	ment for $[Ni(P_{2}^{Ph Me})_{2}](6)$		
Identification code	pn1020		
Empirical formula	C ₁₈ H ₂₄ N ₂ Ni _{0.50} P ₂		
Formula weight	359.69		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 9.7763(2) Å	<i>α</i> = 90°.	
	b = 19.7795(4) Å	β= 101.1210(10)°.	
	c = 19.0291(3) Å	$\gamma = 90^{\circ}$.	
Volume	3610.57(12) Å ³		
Ζ	8		
Density (calculated)	1.323 Mg/m ³		
Absorption coefficient	2.685 mm ⁻¹		
F(000)	1520		
Crystal size	0.12 x 0.11 x 0.06 mm ³		
Theta range for data collection	4.47 to 69.10°.		
Index ranges	-11<=h<=11, -22<=k<=12	2, -22<=1<=22	
Reflections collected	10592		
Independent reflections	3181 [R(int) = 0.0201]		
Completeness to theta = 67.00°	97.0 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.8642 and 0.7370		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	3181 / 0 / 206		
Goodness-of-fit on F ²	1.026		
Final R indices [I>2sigma(I)]	R1 = 0.0297, wR2 = 0.078	87	
R indices (all data)	R1 = 0.0317, $wR2 = 0.086$	04	
Largest diff. peak and hole	0.487 and -0.235 e.Å ⁻³		

	Х	У	Z	U(eq)
 Ni(1)	0	2917(1)	2500	14(1)
N(1)	500(2)	2278(1)	730(1)	20(1)
N(2)	2552(1)	3596(1)	1753(1)	17(1)
P(1)	1622(1)	2349(1)	2179(1)	15(1)
P(2)	-320(1)	3366(1)	1466(1)	14(1)
C(1)	3742(2)	1974(1)	3318(1)	22(1)
C(2)	4649(2)	1533(1)	3747(1)	26(1)
C(3)	4610(2)	848(1)	3598(1)	30(1)
C(4)	3663(2)	604(1)	3019(1)	33(1)
C(5)	2762(2)	1046(1)	2586(1)	27(1)
C(6)	2798(2)	1738(1)	2723(1)	18(1)
C(7)	971(2)	1844(1)	1354(1)	20(1)
C(8)	252(2)	1866(1)	81(1)	31(1)
C(9)	-717(2)	2701(1)	760(1)	19(1)
C(10)	2932(2)	2878(1)	1828(1)	18(1)
C(11)	3702(2)	3987(1)	1573(1)	21(1)
C(12)	1283(2)	3732(1)	1218(1)	16(1)
C(13)	-1623(2)	4287(1)	393(1)	24(1)
C(14)	-2542(2)	4804(1)	138(1)	29(1)
C(15)	-3444(2)	5053(1)	560(1)	30(1)
C(16)	-3432(2)	4779(1)	1229(1)	26(1)
C(17)	-2500(2)	4262(1)	1494(1)	21(1)
C(18)	-1586(2)	4016(1)	1077(1)	18(1)

Table S2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for $[Ni(P_2^{Ph}Me_2)_2]$ (6). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Ni(1)-P(2)	2.1262(4)
Ni(1)-P(2)#1	2.1262(4)
Ni(1)-P(1)	2.1266(4)
Ni(1)-P(1)#1	2.1266(4)
N(1)-C(8)	1.460(2)
N(1)-C(9)	1.464(2)
N(1)-C(7)	1.467(2)
N(2)-C(11)	1.460(2)
N(2)-C(10)	1.468(2)
N(2)-C(12)	1.4693(19)
P(1)-C(6)	1.8428(16)
P(1)-C(7)	1.8654(16)
P(1)-C(10)	1.8723(16)
P(2)-C(18)	1.8375(15)
P(2)-C(9)	1.8671(16)
P(2)-C(12)	1.8679(15)
C(1)-C(2)	1.390(2)
C(1)-C(6)	1.397(2)
C(2)-C(3)	1.384(3)
C(3)-C(4)	1.382(3)
C(4)-C(5)	1.391(3)
C(5)-C(6)	1.392(2)
C(13)-C(14)	1.387(2)
C(13)-C(18)	1.402(2)
C(14)-C(15)	1.392(3)
C(15)-C(16)	1.381(3)
C(16)-C(17)	1.398(2)
C(17)-C(18)	1.392(2)
P(2)-Ni(1)-P(2)#1	130.57(3)
P(2)-Ni(1)-P(1)	86.532(14)
P(2)#1-Ni(1)-P(1)	120.121(14)
P(2)-Ni(1)-P(1)#1	120.123(14)
P(2)#1-Ni(1)-P(1)#1	86.532(14)
Page S9	

Table S3.	Bond lengths	[Å] and	angles [°] for	$[Ni(P^{Ph})]$	${}_{2}^{Me}{}_{2})_{2}](6).$
-----------	--------------	---------	----------------	----------------	-------------------------------

P(1)-Ni(1)-P(1)#1	116.29(3)
C(8)-N(1)-C(9)	110.38(13)
C(8)-N(1)-C(7)	109.49(12)
C(9)-N(1)-C(7)	115.69(13)
C(11)-N(2)-C(10)	110.08(12)
C(11)-N(2)-C(12)	108.98(12)
C(10)-N(2)-C(12)	114.15(12)
C(6)-P(1)-C(7)	101.25(7)
C(6)-P(1)-C(10)	99.85(7)
C(7)-P(1)-C(10)	98.40(7)
C(6)-P(1)-Ni(1)	127.13(5)
C(7)-P(1)-Ni(1)	111.84(5)
C(10)-P(1)-Ni(1)	114.01(5)
C(18)-P(2)-C(9)	99.93(7)
C(18)-P(2)-C(12)	99.24(7)
C(9)-P(2)-C(12)	99.16(7)
C(18)-P(2)-Ni(1)	129.24(5)
C(9)-P(2)-Ni(1)	110.13(5)
C(12)-P(2)-Ni(1)	114.49(5)
C(2)-C(1)-C(6)	120.91(16)
C(3)-C(2)-C(1)	120.33(16)
C(2)-C(3)-C(4)	119.48(16)
C(3)-C(4)-C(5)	120.22(17)
C(6)-C(5)-C(4)	121.13(17)
C(5)-C(6)-C(1)	117.90(15)
C(5)-C(6)-P(1)	123.39(13)
C(1)-C(6)-P(1)	118.67(12)
N(1)-C(7)-P(1)	111.72(11)
N(1)-C(9)-P(2)	111.93(10)
N(2)-C(10)-P(1)	113.38(10)
N(2)-C(12)-P(2)	113.02(10)
C(14)-C(13)-C(18)	120.42(16)
C(13)-C(14)-C(15)	119.87(17)
C(16)-C(15)-C(14)	120.05(15)
C(15)-C(16)-C(17)	120.49(16)
C(18)-C(17)-C(16)	119.76(16)
Page S10	

C(17)-C(18)-C(13)	119.39(15)
C(17)-C(18)-P(2)	118.14(12)
C(13)-C(18)-P(2)	122.42(12)

Symmetry transformations used to generate equivalent atoms:

#1 -x,y,-z+1/2

	U11	U22	U33	U23	U13	U12
Ni(1)	14(1)	15(1)	12(1)	0	3(1)	0
N(1)	27(1)	17(1)	15(1)	-2(1)	3(1)	3(1)
N(2)	15(1)	20(1)	16(1)	1(1)	3(1)	-2(1)
P(1)	15(1)	15(1)	13(1)	0(1)	2(1)	2(1)
P(2)	15(1)	14(1)	13(1)	1(1)	2(1)	1(1)
C(1)	22(1)	22(1)	22(1)	2(1)	4(1)	1(1)
C(2)	20(1)	33(1)	24(1)	7(1)	0(1)	0(1)
C(3)	30(1)	32(1)	28(1)	11(1)	6(1)	12(1)
C(4)	49(1)	21(1)	28(1)	4(1)	6(1)	9(1)
C(5)	35(1)	22(1)	22(1)	1(1)	0(1)	3(1)
C(6)	17(1)	21(1)	18(1)	3(1)	6(1)	4(1)
C(7)	24(1)	17(1)	17(1)	-1(1)	2(1)	2(1)
C(8)	50(1)	22(1)	17(1)	-3(1)	0(1)	9(1)
C(9)	21(1)	18(1)	17(1)	-2(1)	-1(1)	0(1)
C(10)	16(1)	21(1)	18(1)	3(1)	5(1)	1(1)
C(11)	19(1)	25(1)	20(1)	2(1)	4(1)	-4(1)
C(12)	18(1)	16(1)	16(1)	2(1)	4(1)	0(1)
C(13)	26(1)	23(1)	20(1)	2(1)	0(1)	0(1)
C(14)	33(1)	22(1)	27(1)	7(1)	-9(1)	-2(1)
C(15)	20(1)	16(1)	45(1)	1(1)	-11(1)	0(1)
C(16)	17(1)	18(1)	42(1)	-6(1)	2(1)	0(1)
C(17)	17(1)	19(1)	26(1)	-2(1)	2(1)	-2(1)
C(18)	16(1)	16(1)	20(1)	1(1)	-1(1)	-1(1)

Table S4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for $[Ni(P^{Ph}_2 Me_2)_2]$ (6). The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2hk a^* b^* U^{12}]$

X	у	Z	U(eq)
764 2	2442	3432	26
300	1703	4144	31
230	547	3891	36
526	134	2916	40
112	872	2191	33
725	1544	1259	23
187	1555	1434	23
101	1615	47	46
-4	2160	-339	46
508	1548	98	46
485 2	2412	859	23
)34	2920	289	23
845 2	2836	2157	22
)37 2	2700	1355	22
559	3887	1918	32
492	4470	1589	32
328	3866	1090	32
398	3542	752	20
164	4227	1160	20
)15	4115	102	28
557	4989	-324	35
)68	5410	388	35
)62	4944	1512	31
491 4	4079	1956	25
	x 764 230 526 112 725 187 101 -4 508 485 034 230 559 492 328 398 398 398 398 398 398 398 398 398 39	x y 764 2442 300 1703 230 547 526 134 112 872 725 1544 187 1555 101 1615 -4 2160 508 1548 485 2412 034 2920 345 2836 037 2700 559 3887 492 4470 328 3866 398 3542 164 4227 015 4115 557 4989 068 5410 062 4944 491 4079	xyz 764 2442 3432 300 1703 4144 230 547 3891 526 134 2916 112 872 2191 725 1544 1259 187 1555 1434 101 1615 47 -4 2160 -339 508 1548 98 485 2412 859 034 2920 289 845 2836 2157 037 2700 1355 559 3887 1918 492 4470 1589 828 3866 1090 398 3542 752 164 4227 1160 015 4115 102 557 4989 -324 068 5410 388 062 4944 1512 491 4079 1956

Table S5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10 ³)for $[Ni(P_{2}^{Ph})_{2}^{Me}]$ (6).

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	$C_{62}H_{67}B_{2}F_{8}N_{5}NiO_{4}P_{4}$ 1302.42 90(2) K 0.71073 Å Monoclinic P2 ₁ /n a = 24.8972(8) Å b = 11.2331(3) Å c = 25.3567(8) Å	$\alpha = 90^{\circ}.$ $\beta = 113.371(1)^{\circ}.$ $\gamma = 90^{\circ}.$
Volume Z	6509.8(3) Å ³ 4	
Density (calculated)	1.329 Mg/m ³	
Absorption coefficient	0.468 mm ⁻¹	
F(000)	2704	
Crystal size	0.30 x 0.28 x 0.17 mm ³	
Crystal color and habit	pale green fragment	
Diffractometer	Bruker/Siemens SMART	APEX
Theta range for data collection	1.94 to 25.25°.	
Index ranges	-29<=h<=29, -13<=k<=13	3, -30<=l<=30
Reflections collected	95676	
Independent reflections	11797 [R(int) = 0.0409]	
Completeness to theta = 25.25°	100.0 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.9247 and 0.8723	
Solution method	XS, SHELXTL v. 6.14 (B	Bruker, 2003)
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	11797 / 15 / 764	
Goodness-of-fit on F ²	1.075	
Final R indices [I>2sigma(I)]	R1 = 0.0503, WR2 = 0.131	19
R indices (all data)	R1 = 0.0598, $wR2 = 0.138$	33
Largest diff. peak and hole	1.509 and -0.758 e.Å ⁻³	

Table S6. Crystal data and structure refinement for [Ni(OP^{Ph}₂N^{Bz}₂)2](BF₄)₂•(CH₃CN) 8.

	Х	У	Z	U(eq)	
Ni(1)	7694(1)	324(1)	5057(1)	22(1)	
B(1)	8483(2)	7250(3)	2899(1)	38(1)	
B(2)	6312(2)	2974(3)	6924(2)	48(1)	
F(1)	8714(2)	6145(2)	2960(1)	123(1)	
F(2)	8054(1)	7344(2)	3113(1)	74(1)	
F(3)	8243(1)	7511(2)	2324(1)	60(1)	
F(4)	8914(1)	8076(2)	3184(1)	57(1)	
F(5)	6754(1)	3145(3)	6730(1)	121(1)	
F(6)	5833(2)	3746(3)	6656(1)	123(1)	
F(7)	6517(1)	3161(3)	7497(1)	88(1)	
F(8)	6093(1)	1876(2)	6770(1)	51(1)	
N(1)	7572(1)	1856(2)	4498(1)	24(1)	
N(2)	7849(1)	367(2)	3371(1)	22(1)	
N(3)	7793(1)	-1243(2)	5594(1)	23(1)	
N(4)	7353(1)	53(2)	6639(1)	22(1)	
N(5)	9229(2)	4041(4)	5369(2)	93(1)	
O(1)	8490(1)	28(2)	5024(1)	24(1)	
O(2)	7337(1)	-704(2)	4332(1)	24(1)	
O(3)	8022(1)	1309(2)	5799(1)	26(1)	
O(4)	6878(1)	635(2)	5045(1)	26(1)	
P(1)	8556(1)	686(1)	4533(1)	22(1)	
P(2)	7007(1)	-9(1)	3791(1)	23(1)	
P(3)	8267(1)	605(1)	6349(1)	23(1)	
P(4)	6744(1)	-162(1)	5458(1)	22(1)	
C(1)	9502(1)	1711(2)	4360(1)	32(1)	
C(2)	10068(1)	2121(3)	4553(1)	39(1)	
C(3)	10437(1)	2039(3)	5128(1)	39(1)	
C(4)	10234(1)	1543(3)	5516(1)	37(1)	
C(5)	9668(1)	1113(2)	5326(1)	31(1)	

Table S7. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{Å}^2x \ 10^3)$ for $[\text{Ni}(OP^{Ph}_2N^{Bz}_2)2](BF_4)_2 \cdot (CH_3CN)$ (8). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(6)	9298(1)	1190(2)	4746(1)	26(1)
C(7)	8117(1)	2039(2)	4399(1)	24(1)
C(8)	7446(1)	2971(2)	4766(1)	27(1)
C(9)	6780(1)	4357(3)	3999(1)	40(1)
C(10)	6684(2)	5328(3)	3631(1)	49(1)
C(11)	7147(2)	6022(3)	3654(1)	45(1)
C(12)	7702(2)	5763(3)	4044(1)	44(1)
C(13)	7798(1)	4801(2)	4415(1)	35(1)
C(14)	7340(1)	4068(2)	4390(1)	29(1)
C(15)	7051(1)	1579(2)	3960(1)	24(1)
C(16)	6071(1)	-1500(2)	3591(1)	32(1)
C(17)	5484(1)	-1817(3)	3343(1)	40(1)
C(18)	5076(1)	-1032(3)	2980(1)	39(1)
C(19)	5249(1)	61(3)	2859(1)	38(1)
C(20)	5832(1)	388(3)	3095(1)	34(1)
C(21)	6247(1)	-400(2)	3465(1)	28(1)
C(22)	7291(1)	-239(2)	3245(1)	24(1)
C(23)	7961(1)	434(2)	2838(1)	26(1)
C(24)	8350(2)	2510(3)	2960(1)	45(1)
C(25)	8785(2)	3334(3)	3009(1)	62(1)
C(26)	9304(2)	2953(4)	2994(1)	72(1)
C(27)	9393(2)	1774(4)	2929(2)	68(1)
C(28)	8965(1)	941(3)	2881(1)	47(1)
C(29)	8437(1)	1315(3)	2896(1)	32(1)
C(30)	8341(1)	-158(2)	3857(1)	23(1)
C(31)	9284(1)	1879(2)	6586(1)	33(1)
C(32)	9865(1)	2150(3)	6904(1)	40(1)
C(33)	10179(1)	1540(3)	7404(1)	38(1)
C(34)	9918(1)	651(3)	7594(1)	37(1)
C(35)	9333(1)	362(3)	7279(1)	32(1)
C(36)	9015(1)	978(2)	6774(1)	26(1)
C(37)	8248(1)	-971(2)	6173(1)	23(1)
C(38)	7987(1)	-2321(2)	5355(1)	27(1)
C(39)	8661(2)	-3687(3)	6113(2)	61(1)
C(40)	8767(3)	-4676(4)	6477(2)	91(2)
C(41)	8318(3)	-5396(4)	6455(2)	83(2)

C(42)	7759(2)	-5161(3)	6065(2)	70(1)
C(43)	7652(2)	-4188(3)	5702(2)	47(1)
C(44)	8102(1)	-3417(2)	5731(1)	32(1)
C(45)	7205(1)	-1492(2)	5595(1)	23(1)
C(46)	5824(1)	-1600(3)	5418(1)	35(1)
C(47)	5264(1)	-2045(3)	5162(1)	43(1)
C(48)	4885(1)	-1610(3)	4634(1)	42(1)
C(49)	5063(1)	-722(3)	4365(1)	39(1)
C(50)	5625(1)	-269(3)	4614(1)	32(1)
C(51)	6010(1)	-710(2)	5145(1)	26(1)
C(52)	6855(1)	538(2)	6147(1)	24(1)
C(53)	7194(1)	-257(2)	7130(1)	27(1)
C(54)	6975(1)	-2425(2)	6887(1)	32(1)
C(55)	6595(1)	-3388(3)	6735(1)	37(1)
C(56)	6025(1)	-3259(3)	6692(1)	42(1)
C(57)	5834(1)	-2165(3)	6802(1)	42(1)
C(58)	6212(1)	-1189(3)	6944(1)	35(1)
C(59)	6782(1)	-1307(2)	6983(1)	29(1)
C(60)	7878(1)	781(2)	6817(1)	26(1)
C(61)	10320(2)	4685(4)	5841(2)	83(2)
C(62)	9707(2)	4337(3)	5582(2)	67(1)

Ni(1)-O(1)	2.0423(17)
Ni(1)-O(4)	2.0504(17)
Ni(1)-O(2)	2.0512(17)
Ni(1)-O(3)	2.0523(17)
Ni(1)-N(1)	2.172(2)
Ni(1)-N(3)	2.180(2)
B(1)-F(1)	1.351(4)
B(1)-F(3)	1.370(4)
B(1)-F(2)	1.380(4)
B(1)-F(4)	1.385(4)
B(2)-F(8)	1.341(4)
B(2)-F(7)	1.352(4)
B(2)-F(5)	1.385(4)
B(2)-F(6)	1.411(5)
N(1)-C(7)	1.491(3)
N(1)-C(15)	1.493(3)
N(1)-C(8)	1.517(3)
N(2)-C(22)	1.464(3)
N(2)-C(30)	1.472(3)
N(2)-C(23)	1.488(3)
N(3)-C(37)	1.488(3)
N(3)-C(45)	1.490(3)
N(3)-C(38)	1.516(3)
N(4)-C(60)	1.454(3)
N(4)-C(52)	1.471(3)
N(4)-C(53)	1.491(3)
N(5)-C(62)	1.144(5)
O(1)-P(1)	1.5136(18)
O(2)-P(2)	1.5062(18)
O(3)-P(3)	1.5056(18)
O(4)-P(4)	1.5111(18)
P(1)-C(6)	1.798(3)
P(1)-C(7)	1.823(2)
P(1)-C(30)	1.841(2)
Page S18	

Table S8. Bond lengths [Å] and angles [°] for $[Ni(OP^{Pn}_2N^{B2}_2)2](BF_4)_2 \cdot (CH_3C)$	CN) ((8	i).
---	-------	----	-----

P(2)-C(21)	1.795(3)
P(2)-C(22)	1.804(2)
P(2)-C(15)	1.827(3)
P(3)-C(36)	1.792(3)
P(3)-C(60)	1.817(2)
P(3)-C(37)	1.821(3)
P(4)-C(51)	1.788(3)
P(4)-C(45)	1.831(2)
P(4)-C(52)	1.833(2)
C(1)-C(2)	1.376(4)
C(1)-C(6)	1.397(4)
C(2)-C(3)	1.384(4)
C(3)-C(4)	1.386(4)
C(4)-C(5)	1.384(4)
C(5)-C(6)	1.394(4)
C(8)-C(14)	1.516(4)
C(9)-C(14)	1.393(4)
C(9)-C(10)	1.393(4)
C(10)-C(11)	1.372(5)
C(11)-C(12)	1.375(5)
C(12)-C(13)	1.390(4)
C(13)-C(14)	1.387(4)
C(16)-C(21)	1.390(4)
C(16)-C(17)	1.390(4)
C(17)-C(18)	1.384(4)
C(18)-C(19)	1.375(5)
C(19)-C(20)	1.384(4)
C(20)-C(21)	1.400(4)
C(23)-C(29)	1.504(4)
C(24)-C(29)	1.380(4)
C(24)-C(25)	1.392(5)
C(25)-C(26)	1.374(6)
C(26)-C(27)	1.364(6)
C(27)-C(28)	1.387(5)
C(28)-C(29)	1.395(4)
C(31)-C(32)	1.383(4)
Page S19	

C(31)-C(36)	1.396(4)
C(32)-C(33)	1.380(4)
C(33)-C(34)	1.378(4)
C(34)-C(35)	1.395(4)
C(35)-C(36)	1.393(4)
C(38)-C(44)	1.514(4)
C(39)-C(44)	1.378(4)
C(39)-C(40)	1.400(6)
C(40)-C(41)	1.364(7)
C(41)-C(42)	1.376(7)
C(42)-C(43)	1.386(5)
C(43)-C(44)	1.394(4)
C(46)-C(47)	1.378(4)
C(46)-C(51)	1.397(4)
C(47)-C(48)	1.386(4)
C(48)-C(49)	1.377(5)
C(49)-C(50)	1.383(4)
C(50)-C(51)	1.396(4)
C(53)-C(59)	1.509(4)
C(54)-C(55)	1.387(4)
C(54)-C(59)	1.400(4)
C(55)-C(56)	1.387(4)
C(56)-C(57)	1.386(5)
C(57)-C(58)	1.397(4)
C(58)-C(59)	1.389(4)
C(61)-C(62)	1.455(6)
O(1)-Ni(1)-O(4)	177.12(7)
O(1)-Ni(1)-O(2)	87.42(7)
O(4)-Ni(1)-O(2)	90.48(7)
O(1)-Ni(1)-O(3)	94.88(7)
O(4)-Ni(1)-O(3)	87.30(7)
O(2)-Ni(1)-O(3)	176.93(7)
O(1)-Ni(1)-N(1)	89.45(7)
O(4)-Ni(1)-N(1)	88.51(7)
O(2)-Ni(1)-N(1)	87.85(7)
Page S20	

O(3)-Ni(1)-N(1)	94.20(7)
O(1)-Ni(1)-N(3)	91.32(7)
O(4)-Ni(1)-N(3)	90.66(7)
O(2)-Ni(1)-N(3)	90.39(7)
O(3)-Ni(1)-N(3)	87.52(7)
N(1)-Ni(1)-N(3)	178.05(8)
F(1)-B(1)-F(3)	107.6(3)
F(1)-B(1)-F(2)	112.7(3)
F(3)-B(1)-F(2)	108.9(3)
F(1)-B(1)-F(4)	110.5(3)
F(3)-B(1)-F(4)	109.4(3)
F(2)-B(1)-F(4)	107.7(2)
F(8)-B(2)-F(7)	113.0(3)
F(8)-B(2)-F(5)	108.3(3)
F(7)-B(2)-F(5)	110.1(3)
F(8)-B(2)-F(6)	104.9(3)
F(7)-B(2)-F(6)	108.0(3)
F(5)-B(2)-F(6)	112.5(4)
C(7)-N(1)-C(15)	113.17(18)
C(7)-N(1)-C(8)	108.99(19)
C(15)-N(1)-C(8)	108.86(19)
C(7)-N(1)-Ni(1)	108.51(14)
C(15)-N(1)-Ni(1)	106.07(15)
C(8)-N(1)-Ni(1)	111.23(14)
C(22)-N(2)-C(30)	113.53(19)
C(22)-N(2)-C(23)	109.25(19)
C(30)-N(2)-C(23)	112.80(19)
C(37)-N(3)-C(45)	113.69(18)
C(37)-N(3)-C(38)	108.61(18)
C(45)-N(3)-C(38)	108.65(19)
C(37)-N(3)-Ni(1)	107.65(15)
C(45)-N(3)-Ni(1)	106.58(14)
C(38)-N(3)-Ni(1)	111.70(14)
C(60)-N(4)-C(52)	114.0(2)
C(60)-N(4)-C(53)	112.10(19)
C(52)-N(4)-C(53)	112.45(19)
Page S21	

P(1)-O(1)-Ni(1)	112.19(10)
P(2)-O(2)-Ni(1)	114.17(10)
P(3)-O(3)-Ni(1)	115.73(10)
P(4)-O(4)-Ni(1)	112.22(9)
O(1)-P(1)-C(6)	109.88(11)
O(1)-P(1)-C(7)	107.92(10)
C(6)-P(1)-C(7)	105.17(12)
O(1)-P(1)-C(30)	115.34(11)
C(6)-P(1)-C(30)	109.11(12)
C(7)-P(1)-C(30)	108.92(11)
O(2)-P(2)-C(21)	112.73(12)
O(2)-P(2)-C(22)	112.73(11)
C(21)-P(2)-C(22)	105.84(12)
O(2)-P(2)-C(15)	109.39(11)
C(21)-P(2)-C(15)	107.54(12)
C(22)-P(2)-C(15)	108.36(12)
O(3)-P(3)-C(36)	112.19(11)
O(3)-P(3)-C(60)	115.02(11)
C(36)-P(3)-C(60)	106.07(12)
O(3)-P(3)-C(37)	108.79(10)
C(36)-P(3)-C(37)	107.11(12)
C(60)-P(3)-C(37)	107.26(12)
O(4)-P(4)-C(51)	111.29(11)
O(4)-P(4)-C(45)	108.78(11)
C(51)-P(4)-C(45)	104.86(12)
O(4)-P(4)-C(52)	114.45(11)
C(51)-P(4)-C(52)	108.19(12)
C(45)-P(4)-C(52)	108.81(11)
C(2)-C(1)-C(6)	119.8(3)
C(1)-C(2)-C(3)	120.6(3)
C(2)-C(3)-C(4)	119.9(3)
C(5)-C(4)-C(3)	120.0(3)
C(4)-C(5)-C(6)	120.1(3)
C(5)-C(6)-C(1)	119.5(2)
C(5)-C(6)-P(1)	118.0(2)
C(1)-C(6)-P(1)	122.4(2)
Page S22	

N(1)-C(7)-P(1)	111.87(16)
C(14)-C(8)-N(1)	113.84(19)
C(14)-C(9)-C(10)	121.0(3)
C(11)-C(10)-C(9)	119.9(3)
C(10)-C(11)-C(12)	119.9(3)
C(11)-C(12)-C(13)	120.3(3)
C(14)-C(13)-C(12)	120.9(3)
C(13)-C(14)-C(9)	117.9(3)
C(13)-C(14)-C(8)	121.3(2)
C(9)-C(14)-C(8)	120.8(3)
N(1)-C(15)-P(2)	111.53(16)
C(21)-C(16)-C(17)	119.6(3)
C(18)-C(17)-C(16)	120.0(3)
C(19)-C(18)-C(17)	120.3(3)
C(18)-C(19)-C(20)	120.6(3)
C(19)-C(20)-C(21)	119.3(3)
C(16)-C(21)-C(20)	120.1(3)
C(16)-C(21)-P(2)	118.9(2)
C(20)-C(21)-P(2)	121.1(2)
N(2)-C(22)-P(2)	113.08(17)
N(2)-C(23)-C(29)	111.6(2)
C(29)-C(24)-C(25)	120.3(4)
C(26)-C(25)-C(24)	119.8(4)
C(27)-C(26)-C(25)	120.4(3)
C(26)-C(27)-C(28)	120.6(4)
C(27)-C(28)-C(29)	119.6(4)
C(24)-C(29)-C(28)	119.3(3)
C(24)-C(29)-C(23)	119.9(3)
C(28)-C(29)-C(23)	120.9(3)
N(2)-C(30)-P(1)	114.27(17)
C(32)-C(31)-C(36)	119.6(3)
C(33)-C(32)-C(31)	120.4(3)
C(34)-C(33)-C(32)	120.6(3)
C(33)-C(34)-C(35)	119.9(3)
C(36)-C(35)-C(34)	119.6(3)
C(35)-C(36)-C(31)	120.0(2)
Page S23	

C(35)-C(36)-P(3)	120.8(2)
C(31)-C(36)-P(3)	119.2(2)
N(3)-C(37)-P(3)	112.13(16)
C(44)-C(38)-N(3)	114.11(19)
C(44)-C(39)-C(40)	120.8(4)
C(41)-C(40)-C(39)	120.4(4)
C(40)-C(41)-C(42)	119.7(4)
C(41)-C(42)-C(43)	120.1(4)
C(42)-C(43)-C(44)	121.0(4)
C(39)-C(44)-C(43)	117.9(3)
C(39)-C(44)-C(38)	120.5(3)
C(43)-C(44)-C(38)	121.6(3)
N(3)-C(45)-P(4)	112.85(17)
C(47)-C(46)-C(51)	119.9(3)
C(46)-C(47)-C(48)	120.1(3)
C(49)-C(48)-C(47)	120.3(3)
C(48)-C(49)-C(50)	120.3(3)
C(49)-C(50)-C(51)	119.6(3)
C(50)-C(51)-C(46)	119.7(2)
C(50)-C(51)-P(4)	119.8(2)
C(46)-C(51)-P(4)	120.5(2)
N(4)-C(52)-P(4)	114.04(16)
N(4)-C(53)-C(59)	110.8(2)
C(55)-C(54)-C(59)	120.3(3)
C(56)-C(55)-C(54)	120.3(3)
C(57)-C(56)-C(55)	120.0(3)
C(56)-C(57)-C(58)	119.9(3)
C(59)-C(58)-C(57)	120.6(3)
C(58)-C(59)-C(54)	119.0(3)
C(58)-C(59)-C(53)	121.2(3)
C(54)-C(59)-C(53)	119.8(2)
N(4)-C(60)-P(3)	112.50(17)
N(5)-C(62)-C(61)	178.1(5)

Symmetry transformations used to generate equivalent atoms:

Table S9. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for Ni $(OP^{Ph}_2N^{Bz}_2)2](BF_4)_2 \cdot (CH_3CN)$ (8). The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2hk a^{*}b^{*}U^{12}]$

	U11	U22	U33	U23	U13	U12	
Ni(1)	28(1)	24(1)	16(1)	2(1)	10(1)	4(1)	<u> </u>
B(1)	44(2)	36(2)	29(2)	-7(1)	9(2)	0(2)	
B(2)	57(2)	39(2)	54(2)	-20(2)	29(2)	-10(2)	
F(1)	192(3)	59(2)	60(2)	-13(1)	-14(2)	65(2)	
F(2)	85(2)	86(2)	74(2)	-27(1)	54(1)	-46(1)	
F(3)	75(1)	67(1)	26(1)	-12(1)	9(1)	-2(1)	
F(4)	34(1)	84(2)	50(1)	-31(1)	13(1)	-12(1)	
F(5)	142(2)	133(3)	144(3)	-100(2)	115(2)	-99(2)	
F(6)	199(4)	70(2)	110(2)	17(2)	71(2)	69(2)	
F(7)	51(1)	149(3)	62(1)	-62(2)	20(1)	-12(1)	
F(8)	58(1)	45(1)	61(1)	-22(1)	34(1)	-20(1)	
N(1)	30(1)	25(1)	17(1)	-2(1)	10(1)	3(1)	
N(2)	25(1)	27(1)	15(1)	0(1)	8(1)	1(1)	
N(3)	26(1)	25(1)	18(1)	-2(1)	9(1)	5(1)	
N(4)	23(1)	31(1)	15(1)	1(1)	8(1)	2(1)	
N(5)	74(3)	83(3)	94(3)	-27(2)	4(2)	23(2)	
O(1)	27(1)	28(1)	18(1)	2(1)	9(1)	4(1)	
O(2)	29(1)	26(1)	19(1)	1(1)	10(1)	3(1)	
O(3)	34(1)	25(1)	20(1)	0(1)	12(1)	2(1)	
O(4)	30(1)	28(1)	20(1)	6(1)	11(1)	6(1)	
P(1)	25(1)	24(1)	17(1)	0(1)	8(1)	2(1)	
P(2)	25(1)	26(1)	18(1)	0(1)	9(1)	2(1)	
P(3)	26(1)	26(1)	18(1)	0(1)	10(1)	2(1)	
P(4)	24(1)	25(1)	17(1)	2(1)	8(1)	4(1)	
C(1)	31(1)	34(2)	29(1)	4(1)	8(1)	0(1)	
C(2)	37(2)	36(2)	45(2)	7(1)	17(1)	-4(1)	
C(3)	28(1)	34(2)	49(2)	-5(1)	8(1)	-1(1)	
C(4)	32(2)	38(2)	31(2)	-5(1)	2(1)	6(1)	
C(5)	33(1)	32(2)	24(1)	-3(1)	9(1)	4(1)	
C(6)	29(1)	21(1)	26(1)	-2(1)	9(1)	2(1)	

C(7)	29(1)	24(1)	20(1)	-1(1)	10(1)	1(1)
C(8)	36(1)	26(1)	21(1)	-1(1)	13(1)	6(1)
C(9)	45(2)	30(2)	38(2)	1(1)	10(1)	4(1)
C(10)	60(2)	34(2)	38(2)	5(1)	6(2)	10(2)
C(11)	73(2)	29(2)	30(2)	4(1)	17(2)	5(2)
C(12)	66(2)	30(2)	46(2)	-2(1)	31(2)	-1(2)
C(13)	42(2)	29(2)	34(2)	0(1)	16(1)	4(1)
C(14)	42(2)	23(1)	24(1)	-1(1)	15(1)	6(1)
C(15)	25(1)	28(1)	20(1)	1(1)	9(1)	3(1)
C(16)	34(2)	32(2)	29(1)	-4(1)	13(1)	0(1)
C(17)	43(2)	42(2)	43(2)	-12(1)	24(2)	-10(1)
C(18)	28(1)	55(2)	37(2)	-16(1)	14(1)	-8(1)
C(19)	27(2)	49(2)	32(2)	-7(1)	6(1)	7(1)
C(20)	31(2)	36(2)	32(2)	-2(1)	8(1)	4(1)
C(21)	27(1)	33(1)	23(1)	-4(1)	11(1)	2(1)
C(22)	27(1)	29(1)	17(1)	-1(1)	8(1)	0(1)
C(23)	32(1)	30(1)	17(1)	1(1)	11(1)	0(1)
C(24)	55(2)	39(2)	22(1)	8(1)	-4(1)	-9(2)
C(25)	81(3)	44(2)	32(2)	16(2)	-9(2)	-26(2)
C(26)	81(3)	100(4)	27(2)	2(2)	13(2)	-61(3)
C(27)	66(2)	107(4)	48(2)	-23(2)	38(2)	-44(2)
C(28)	48(2)	66(2)	35(2)	-13(2)	26(2)	-15(2)
C(29)	41(2)	40(2)	14(1)	4(1)	9(1)	-8(1)
C(30)	28(1)	24(1)	18(1)	1(1)	8(1)	1(1)
C(31)	34(2)	34(2)	32(2)	0(1)	14(1)	0(1)
C(32)	39(2)	39(2)	48(2)	-4(1)	24(2)	-8(1)
C(33)	25(1)	47(2)	43(2)	-13(1)	12(1)	-4(1)
C(34)	30(2)	47(2)	31(2)	-1(1)	10(1)	3(1)
C(35)	28(1)	41(2)	29(1)	2(1)	11(1)	0(1)
C(36)	27(1)	29(1)	24(1)	-4(1)	11(1)	1(1)
C(37)	24(1)	26(1)	21(1)	3(1)	9(1)	4(1)
C(38)	34(1)	27(1)	21(1)	-1(1)	13(1)	7(1)
C(39)	59(2)	37(2)	60(2)	-1(2)	-5(2)	18(2)
C(40)	124(4)	45(2)	48(2)	2(2)	-26(2)	33(3)
C(41)	171(5)	34(2)	37(2)	11(2)	34(3)	26(3)
C(42)	124(4)	29(2)	84(3)	10(2)	71(3)	12(2)

C(43)	63(2)	27(2)	58(2)	4(1)	31(2)	7(2)
C(44)	46(2)	26(1)	22(1)	-2(1)	13(1)	10(1)
C(45)	27(1)	22(1)	20(1)	0(1)	9(1)	3(1)
C(46)	28(1)	40(2)	32(2)	5(1)	8(1)	1(1)
C(47)	37(2)	43(2)	47(2)	5(1)	14(1)	-2(1)
C(48)	27(2)	54(2)	39(2)	-11(2)	8(1)	0(1)
C(49)	31(2)	61(2)	24(1)	-1(1)	10(1)	10(1)
C(50)	29(1)	45(2)	20(1)	-1(1)	8(1)	7(1)
C(51)	27(1)	30(1)	21(1)	-2(1)	9(1)	6(1)
C(52)	27(1)	27(1)	19(1)	0(1)	9(1)	3(1)
C(53)	30(1)	34(2)	19(1)	3(1)	12(1)	4(1)
C(54)	35(2)	38(2)	22(1)	11(1)	11(1)	4(1)
C(55)	46(2)	37(2)	27(1)	10(1)	12(1)	2(1)
C(56)	50(2)	45(2)	33(2)	8(1)	16(1)	-11(2)
C(57)	38(2)	55(2)	39(2)	7(2)	21(1)	-5(1)
C(58)	40(2)	41(2)	31(2)	3(1)	20(1)	2(1)
C(59)	34(1)	36(2)	18(1)	6(1)	12(1)	2(1)
C(60)	30(1)	32(1)	18(1)	-2(1)	12(1)	0(1)
C(61)	87(3)	46(2)	76(3)	-8(2)	-11(2)	-4(2)
C(62)	74(3)	48(2)	53(2)	-10(2)	-2(2)	14(2)

	Х	у	Z	U(eq)	
H(1A)	9250	1781	3966	39	
H(2A)	10208	2464	4289	47	
H(3A)	10827	2323	5257	47	
H(4A)	10485	1499	5912	44	
H(5A)	9532	764	5591	37	
H(7A)	8352	2679	4655	29	
H(7B)	8013	2298	3997	29	
H(8A)	7097	2830	4853	33	
H(8B)	7781	3126	5135	33	
H(9A)	6457	3885	3983	48	
H(10A)	6300	5509	3364	58	
H(11A)	7083	6680	3402	54	
H(12A)	8022	6244	4060	53	
H(13A)	8182	4644	4690	42	
H(15A)	7076	2037	3637	29	
H(15B)	6691	1828	4007	29	
H(16A)	6351	-2032	3846	38	
H(17A)	5362	-2572	3424	48	
H(18A)	4674	-1250	2812	47	
H(19A)	4965	596	2612	46	
H(20A)	5951	1140	3007	41	
H(22A)	7344	-1103	3206	29	
H(22B)	7000	53	2873	29	
H(23A)	7597	671	2512	31	
H(23B)	8076	-362	2751	31	
H(24A)	7992	2773	2971	54	
H(25A)	8724	4156	3052	75	
H(26A)	9601	3514	3030	86	
H(27A)	9751	1522	2915	82	
H(28A)	9031	120	2839	56	
H(30A)	8683	-216	3753	28	

Table S10. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for [Ni(OP^{Ph}₂N^{Bz}₂)2](BF₄)₂•(CH₃CN) (**8**).

H(30B)	8233	-976	3923	28
H(31A)	9068	2302	6243	40
H(32A)	10050	2760	6776	48
H(33A)	10578	1735	7619	46
H(34A)	10137	236	7940	44
H(35A)	9152	-252	7408	39
H(37A)	8636	-1213	6186	28
H(37B)	8170	-1440	6465	28
H(38A)	7681	-2512	4973	32
H(38B)	8348	-2116	5301	32
H(39A)	8978	-3197	6129	73
H(40A)	9155	-4846	6740	109
H(41A)	8391	-6058	6707	100
H(42A)	7445	-5666	6046	84
H(43A)	7266	-4044	5428	57
H(45A)	7255	-1829	5973	28
H(45B)	7005	-2096	5298	28
H(46A)	6084	-1897	5781	42
H(47A)	5138	-2651	5348	52
H(48A)	4501	-1925	4456	50
H(49A)	4799	-419	4006	46
H(50A)	5748	338	4426	38
H(52A)	6917	1402	6119	29
H(52B)	6495	438	6218	29
H(53A)	7005	436	7227	32
H(53B)	7553	-451	7471	32
H(54A)	7368	-2524	6926	38
H(55A)	6726	-4138	6660	45
H(56A)	5766	-3921	6587	51
H(57A)	5446	-2080	6780	51
H(58A)	6079	-438	7015	42
H(60A)	8142	560	7214	31
H(60B)	7769	1628	6820	31
H(61A)	10531	4161	6167	125
H(61B)	10351	5510	5975	125

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

H(61C) 10492	4618	5555	125	
--------------	------	------	-----	--