Electronic Supplementary Information (ESI)

Tuning the reactivity of chelated dinuclear Pt(II) complexes through a flexible diamine linker. A detailed kinetic and mechanistic study

Allen Mambanda,^a Deogratius Jaganyi,^{a,*} Stephanie Hochreuther^b and Rudi van Eldik^{b,*}

^a School of Chemistry, University of KwaZulu-Natal, Scottsville 3209, South Africa.
^b Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.

^{*} Corresponding authors

Table SI 1Summary of the wavelengths (nm) used for monitoring the reactions
between a series of Pt(II) complexes with bis(2-pyridylmethyl)amine
chelates and thiourea nucleophiles.

Complex	nu	Wavelength (λ), nm
En	tu dmtu tmtu I ⁻	325 327 330 308
Ргор	tu dmtu tmtu I ⁻	318 324 318
But	tu dmtu tmtu I ⁻	315 325 327 310
Hex	tu dmtu tmtu I ⁻	315 324 330 300
Oct	tu dmtu tmtu	312 324 327
Dec	tu dmtu tmtu	330 324 335
bpma	tu dmtu tmtu	276 276 300

Fig. SI 1 UV-visible spectra for the titration of Oct (0.1 mM) with NaOH, pH range 2-9, T = 298 K.

Fig. SI 2a A typical kinetic trace for the two-steps reaction between **bpma** (0.1 mM) and tu (3 mM) recorded at 276 nm, T = 298 K, pH = 2.0, I = 0.02 M {CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Fig. SI 2b ¹H NMR spectral array of **Dec-Cl** (showing only the aromatic region) acquired during its reaction with three equivalents of thiourea (tu) in DMF-*d*7.

Fig. SI 2c Proposed^{14c} mechanism of substitution of the aqua leaving groups in the clelated Pt(II) dinuclear complexes and **bpma**.

Table SI 2a. Average observed rate constants, $k_{obs(1}^{st}$, s⁻¹, for the simultaneous displacement of the aqua ligands in **Prop** by thiourea nucleophiles, pH = 2.0, T = 298 K, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

nucleophiles							
tu ($\lambda = 31$	8 nm)	dmtu (λ =	dmtu ($\lambda = 324$ nm)		318 nm)		
Conc., M	$k_{\rm obs, s}^{-1}$	Conc., M	$k_{\rm obs},{\rm s}^{-1}$	Conc., M	$k_{\rm obs},{\rm s}^{-1}$		
0.001	1.091	9.996E-4	0.7499	0.001	0.3084		
0.002	2.104	0.002	1.47	0.002	0.6344		
0.003	3.051	0.003	2.201	0.003	0.918		
0.004	4.197	0.004	2.874	0.004	1.208		
0.005	5.135	0.005	3.633	0.005	1.522		

Table SI 2b Average observed rate constants, $k_{obs(2)}^{nd}$, s⁻¹, for the dechelation of the pyridyl units in **Prop** by thiourea nucleophiles, pH = 2.0, T = 298 K, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

nucleophiles							
tu		dn	ntu	tmtu			
Conc., M	$k_{\rm obs, s}^{-1}$	Conc., M	$k_{\rm obs},{\rm s}^{-1}$	Conc., M	$k_{\rm obs},{\rm s}^{-1}$		
0.001	0.0042	0.001	0.0064	0.001	0.0026		
0.002	0.0096	0.002	0.0107	0.002	0.0067		
0.003	0.0136	0.003	0.0156	0.003	0.0095		
0.004	0.0180	0.004	0.0208	0.004	0.0126		
		0.005	0.0260	0.005	0.0155		

Table SI 2cAverage observed rate constants, $k_{obs(1}^{st})$, s^{-1} , for the simultaneous displacement
of the aqua ligands in **Oct** by thiourea nucleophiles, pH = 2.0, T = 298 K, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

nucleophiles								
tu ($\lambda = 1$	312 nm)	dmtu ($\lambda =$	324 nm)	tmtu ($\lambda =$	327 nm)			
Conc., M	$k_{\rm obs},{\rm s}^{-1}$	Conc., M	$k_{\rm obs},{\rm s}^{-1}$	Conc., M	$k_{\rm obs},{\rm s}^{-1}$			
0.001	0.559	0.00102	0.522	0.00100	0.191			
0.002	1.142	0.00204	1.064	0.00201	0.422			
0.003	1.741	0.00306	1.673	0.00301	0.629			
0.004	2.318	0.00408	2.195	0.00401	0.838			
0.005	2.829	0.00510	2.755	0.00501	1.020			

Table SI 2d Average observed rate constants, $k_{obs(2)}$, s⁻¹, for the dechelation of the pyridyl units in **Oct** thiourea nucleophiles, pH = 2.0, T = 298 K, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

nucleophiles							
t	u	dm	tu	tmt	u		
Conc., M	$k_{\rm obs},{\rm s}^{-1}$	Conc., M	$k_{\rm obs},{\rm s}^{-1}$	Conc., M	$k_{\rm obs},{\rm s}^{-1}$		
0.001	0.0065	0.00101	0.0051	0.00100	0.0026		
0.002	0.0123	0.00202	0.0112	0.00201	0.0055		
0.003	0.0184	0.00302	0.0162	0.00301	0.0084		
0.004	0.0249	0.00403	0.0221	0.00401	0.0109		
0.005	0.0315	0.00504	0.0267	0.00501	0.0139		

Table SI 2e Average observed rate constants, $k_{obs(1)}$, s⁻¹, for the simultaneous displacement of the aqua ligands in **En**, **Prop**, **But** and **Hex** by iodide, pH = 2.0, T = 298 K, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

Eı	1	Prop		But		Hex	
Conc., M	$k_{\rm obs}, {\rm s}^{-1}$	Conc., M	$k_{\rm obs},{\rm s}^{-1}$	Conc., M	$k_{\rm obs}, {\rm s}^{-1}$	Conc., M	$k_{\rm obs},{\rm s}^{-1}$
0.001	0.673	0.001	28.83	0.001	14.71	0.001	9.576
0.002	1.180	0.002	59.89	0.002	30.39	0.002	21.18
0.003	1.973	0.003	91.57	0.003	43.86	0.003	31.87
0.004	2.708	0.004	115.3	0.004	59.61	0.004	43.71
0.005	3.359	0.005	149.7	0.005	73.00	0.005	56.15

Table SI 2fAverage observed rate constants, $k_{obs(2}^{nd})$, s⁻¹, for the simultaneous displacement
of the aqua igands in **En**, **Prop**, **But** and **Hex** by iodide, pH = 2.0, T = 298 K,
I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

Eı	1	Prop		But		H	ex
Conc., M	$k_{\rm obs}, {\rm s}^{-1}$	Conc., M	$k_{\rm obs}, {\rm s}^{-1}$	Conc.,	$k_{\rm obs}, {\rm s}^{-1}$	Conc., M	$k_{\rm obs}, {\rm s}^{-1}$
				M			
0.001	0.556	0.001	5.039	0.001	7.250	0.001	7.199
0.002	1.180	0.002	8.726	0.002	11.99	0.002	14.09
0.003	1.973	0.003	13.23	0.003	18.87	0.003	19.03
0.004	2.708	0.004	18.18	0.004	23.81	0.004	26.47
0.005	3.359	0.005	22.83	0.005	29.29	0.005	33.50

Fig. SI 3a Concentration dependence of $k_{obs(1)}$, s⁻¹, for the simultaneous displacement of the aqua ligands in **Prop** thiourea nucleophiles, pH = 2.0, T = 298 K, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

Fig. SI 3b Concentration dependence of $k_{obs(2}^{nd})$, s⁻¹, for the dechelation of the pyridyl units in **Prop** by thiourea nucleophiles, pH = 2.0, T = 298 K, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

Fig. SI 3c Concentration dependence of $k_{obs(1)}$, s⁻¹, for the simultaneous displacement of the aqua ligands in **Oct** by thiourea nucleophiles, pH = 2.0, T = 298 K, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

Fig SI 3d Concentration dependence of $k_{obs(2)}$, s⁻¹, for the dechelation of the pyridyl units in **Oct** by thiourea nucleophiles, pH = 2.0, T = 298 K, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

Fig. SI 3e Plots of concentration dependence of $k_{obs(1}^{st}$, s⁻¹, for the simultaneous displacement of the aqua ligands in **En**, **Prop**, **But** and **Hex** by iodide, pH = 2.0, T = 298 K, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

- **Fig. SI 3f** Plots of concentration dependence of $k_{2(2}^{nd})$, s⁻¹, for the simultaneous displacement of the aqua ligands in **En**, **Prop**, **But** and **Hex** by iodide, pH = 2.0, T = 298 K, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.
- **Table SI 3a** Temperature dependence of $k_{2(1}^{st}$, M⁻¹ s⁻¹, for the simultaneous displacement of the aqua ligands in **Prop** by thiourea nucleophiles ([nu] at 60-fold excess over [metal complex]), pH = 2.0, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

nucleophiles								
t	u	dm	tu	tmt	u			
1/T, K ⁻¹	$\ln(k_2/T)$	1/T, K ⁻¹	$\ln(k_2/T)$	1/T, K ⁻¹	$\ln(k_2/T)$			
		0.00325	1.353	0.00325	0.669			
0.0033	1.397	0.00330	1.164	0.00330	0.409			
0.00335	1.243	0.00335	0.904	0.00335	0.145			
0.00341	1.060	0.00341	0.672	0.00341	-0.108			
0.00347	0.899	0.00347	0.436	0.00347	-0.408			

Table SI 3b Temperature dependence of $k_{2(2}{}^{nd}$, M⁻¹ s⁻¹, for the dechelation of the pyridyl units in **Prop** by thiourea nucleophiles ([nu] at 60 fold excess of [metal complex]}, pH = 2.0, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

nucleophiles							
t	tu	dm	tu	tmt	u		
$1/T, K^{-1}$	$\ln(k_2/T)$	1/T, K ⁻¹	$\ln(k_2/T)$	1/T, K ⁻¹	$\ln(k_2/T)$		
				0.00325	-3.942		
0.0033	-3.778	0.0033	3.594	0.0033	-4.143		
0.00335	-3.919	0.00335	3.771	0.00335	-4.420		
0.00341	-4.072	0.00341	3.976	0.00341	-4.750		
0.00347	-4.204	0.00347	4.159	0.00347	-5.020		

Table SI 3c Temperature dependence of $k_{2(1)}$, M⁻¹ s⁻¹, for the simultaneous displacement of the aqua ligands in **Oct** by thiourea nucleophiles ([nu] at 60-fold excess over [metal complex]), pH = 2.0, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

nucleophiles						
t	u	dm	tu	tmt	u	
$1/T, K^{-1}$	$\ln(k_2/T)$	1/T, K ⁻¹	$\ln(k_2/T)$	1/T, K ⁻¹	$\ln(k_2/T)$	
0.00325	1.099	0.00325	1.090	0.00325	0.074	
0.00330	0.883	0.00330	0.890	0.00330	-0.183	
0.00335	0.692	0.00335	0.711	0.00335	-0.505	
0.00341	0.482	0.00341	0.472	0.00341	-0.853	
0.00347	0.261	0.00347	0.237	0.00347	-1.175	

Table SI 3d Temperature dependence of $k_{2(2}$ nd, M⁻¹ s⁻¹, for the dechelation of the pyridyl units in **Oct** by thiourea nucleophiles ([nu] at 60 fold excess of [metal complex]}, pH = 2.0, I = 0.02 M {0.01 M CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

nucleophiles							
t	u	dm	tu	tmt	tmtu		
$(1/T), K^{-1}$	$\ln(k_2/T)$	$(1/T), K^{-1}$	$\ln(k_2/T)$	$(1/T), K^{-1}$	$\ln(k_2/T)$		
0.00325	-3.495	0.00325	-3.514	0.00325	-4.096		
0.00330	-3.660	0.00330	-3.694	0.00330	-4.378		
0.00335	-3.804	0.00335	-3.874	0.00335	-4.671		
0.00341	-3.976	0.00341	-4.051	0.00341	-5.033		
0.00347	-4.166	0.00347	-4.267	0.00347	-5.354		

Fig. SI 4a Dependence of $\ln k_{obs}$ (repeated twice) on pressure for the reaction between **Prop** and tu recorded at 320 nm for the simultaneous displacement of the aqua ligands, ([tu] maintained at a 60-fold excess concentration over the complex) at 298 K, pH = 2.0, I = 0.02 M {CF₃SO₃H, adjusted with Li(SO₃CF₃)}.

Fig. SI 4b Dependence of $\ln k_{obs}$ (repeated twice) on pressure for the reaction between **Oct** and tu recorded at 320 nm for the simultaneous displacement of the aqua ligands, ([tu] maintained at a 60-fold excess concentration over the complex) at 298 K, pH = 2.0, I = 0.02 M {CF₃SO₃H, adjusted with Li(SO₃CF₃)}

Table SI 5Density functional theoretical (DFT)²⁶ minimum energy structures, HOMO and LUMO frontier molecular orbitals for Pen
and Hep. The calculations were performed with the Spartan '04 for Windows quantum chemical package²⁷ using the
B3LYP hybrid functional method²⁸ and the LACVP+**²⁹ pseudo-potentials basis set.

Complex	Structure	НОМО Мар	LUMO Map
Pen			
Нер			