Supporting information

belonging to the manuscript

Can P–H σ-Bond complexes be prepared? A computational study using DFT and AIM methods

Richard P. L. Burchell, Peter Sirsch, Natascha N. L. Clark and G. Sean McGrady*

Department of Chemistry, University of New Brunswick, PO Box 4400, Fredericton, NB, Canada E3B 5A3; email: smcgrady@unb.ca

Contents:

- S 2 Computational details
- S 3 Table 1. Bond lengths (Å) for the P–H bond in the free phosphines **1a-21a** and the P–H, Mn–H and Mn–P bonds in the coordinated Mn–P–H moiety for complexes **1-21**.
- S 4 Table 2. AIM charges of the Mn, P and H atoms and delocalisation indices (δ) between atom pairs Mn–P, Mn–H and P–H for complexes 1-7.
- S 5 Table 3. AIM charges of the Mn, P and H atoms and delocalisation indices (δ) between atom pairs Mn–P, Mn–H and P–H for complexes 8-14.
- S 6 Table 4. AIM charges of the Mn, P and H atoms and delocalisation indices (δ) between atom pairs Mn–P, Mn–H and P–H for complexes **15-21**.
- S 7 S20 Cartesian coordinates of the calculated complexes 1-21.

S7	_	$[CpMn(CO)_2(\eta^2 - HPFCl \cdot BCl_3)]$ 1
S7-S8	_	$[CpMn(CO)_2(\eta^2 - HPClCl \cdot BCl_3)]$ 2
S 8	_	$[CpMn(CO)_2(\eta^2 - HPBrCl \cdot BCl_3)]$ 3
S8-S 9	_	$[CpMn(CO)_2(\eta^2 - HPPhCl \cdot BCl_3)]$ 4
S9	_	$[CpMn(CO)_2(\eta^2 - HPMeCl \cdot BCl_3)]$ 5
S9-S 10	_	$[CpMn(CO)_2(\eta^2 - HP(OMe)Cl \cdot BCl_3)]$ 6
S10-S 11	_	$[CpMn(CO)_2(\eta^2 - HP(NH_2)Cl \cdot BCl_3)]$ 7
S11	_	$[CpMn(CO)_2(\eta^2 - HPFPh \cdot BCl_3)]$ 8
S11-S12	_	$[CpMn(CO)_2(\eta^2 - HPClPh \cdot BCl_3)]$ 9
S12-S13	_	$[CpMn(CO)_2(\eta^2 - HPBrPh \cdot BCl_3)]$ 10
S13-S14	_	$[CpMn(CO)_2(\eta^2 - HPPhPh \cdot BCl_3)]$ 11
S14	_	$[CpMn(CO)_2(\eta^2 - HPMePh \cdot BCl_3)]$ 12
S15	_	$[CpMn(CO)_2(\eta^2-HP(OMe)Ph \cdot BCl_3)] 13$
S15-S16	_	$[CpMn(CO)_2(\eta^2-HP(NH_2)Ph\cdot BCl_3)] 14$
S16-S17	-	$[CpMn(CO)_2(\eta^2-HPFH\cdot BCl_3)]$ 15

_	$[CpMn(CO)_2(\eta^2-HPClH\cdot BCl_3)]$ 16
_	$[CpMn(CO)_2(\eta^2-HPBrH\cdot BCl_3)]$ 17
_	$[CpMn(CO)_2(\eta^2 - HPPhH \cdot BCl_3)]$ 18
-	$[CpMn(CO)_2(\eta^2 - HPMeH \cdot BCl_3)]$ 19
_	$[CpMn(CO)_2(\eta^2-HP(OMe)H\cdot BCl_3)] 20$
_	$[CpMn(CO)_2(\eta^2-HP(NH_2)H\cdot BCl_3)] 21$

• S21 – S28 Cartesian Coordinates for complexes 1a-21a as determined by DFT calculations at the [B3LYP/6-311G(d,p)] level of approximation.

S21	_	HPFCl·BCl ₃ 1a
S21	_	HPClCl·BCl ₃ 2a
S21	_	HPBrCl·BCl ₃ 3a
S21-S22	_	HPPhCl·BCl ₃ 4a
S22	_	HPMeCl·BCl ₃ 5a
S22	_	HPF(OMe)Cl·BCl3 6a
S22	_	HP(NH ₂)Cl·BCl ₃ 7a
S23	_	HPFPh·BCl ₃ 8a
S23	_	HPClPh·BCl3 9a
S23-S24	_	HPBrPh·BCl ₃ 10a
S24	_	HPPhPh·BCl ₃ 11a
S24-S25	_	HPMePh·BCl ₃ 12a
S25	_	HP(OMe)Ph·BCl ₃ 13a
S25-S26	_	HP(NH ₂)Ph·BCl ₃ 14a
S26	_	HPFH·BCl ₃ 15a
S26	_	HPClH·BCl3 16a
S26	_	HPBrH·BCl ₃ 17a
S27	_	HPPhH·BCl ₃ 18a
S27	_	HPMeH·BCl ₃ 19a
S27	—	HP(OMe)H·BCl ₃ 20a
S28	_	HP(NH ₂)H·BCl ₃ 21a

• S28 – References

Computational Details

DFT calculations were performed with the GAUSSIAN 03 program suite¹ using the B3LYP density functional,² along with the implemented 6-311G(d,p) basis set.³ The geometry optimisations of complexes **1-21** and ligands **1a-21a** were performed with no imposed symmetry constraints. The reported structures were found to be true minima on the respective potential energy surface by calculating analytical frequencies.

Compley	Interatomic Distances (Å)			
Complex	r _{PH (free)}	<i>r</i> _{PH}	<i>r</i> _{MnH}	<i>r</i> _{MnP}
$[CpMn(CO)_2(\eta^2 - HPFCl \cdot BCl_3)] 1$	1.407 (1a)	1.996	1.535	2.262
$[CpMn(CO)_2(\eta^2-HPClCl·BCl_3)]$ 2	1.408 (2a)	2.031	1.533	2.291
$[CpMn(CO)_2(\eta^2-HPBrCl\cdot BCl_3)]$ 3	1.409 (3a)	2.027	1.533	2.297
$[CpMn(CO)_2(\eta^2-HPPhCl·BCl_3)]$ 4	1.406 (4a)	2.121	1.531	2.341
$[CpMn(CO)_2(\eta^2-HPMeCl\cdot BCl_3)]$ 5	1.407 (5a)	2.089	1.527	2.331
$[CpMn(CO)_2(\eta^2-HP(OMe)Cl\cdot BCl_3)] 6$	1.403 (6a)	2.071	1.529	2.286
$[CpMn(CO)_2(\eta^2-HP(NH_2)Cl\cdot BCl_3)] 7$	1.404 (7a)	2.083	1.529	2.310
$[CpMn(CO)_2(\eta^2-HPFPh \cdot BCl_3)] 8$	1.405 (8a)	1.948	1.538	2.282
$[CpMn(CO)_2(\eta^2-HPClPh\cdot BCl_3)]$ 9	1.406 (9a)	1.994	1.533	2.314
$[CpMn(CO)_2(\eta^2-HPBrPh\cdot BCl_3)]$ 10	1.407 (10a)	1.983	1.533	2.323
$[CpMn(CO)_2(\eta^2\text{-}HPPh_2\text{-}BCl_3)] \text{ 11}$	1.408 (11a)	2.090	1.529	2.376
$[CpMn(CO)_2(\eta^2-HPMePh\cdot BCl_3)]$ 12	1.407 (12a)	2.080	1.526	2.366
$[CpMn(CO)_2(\eta^2-HP(OMe)Ph \cdot BCl_3)] 13$	1.414 (13a)	1.997	1.533	2.329
$[CpMn(CO)_2(\eta^2-HP(NH_2)Ph\cdot BCl_3)] 14$	1.415 (14a)	2.057	1.528	2.341
$[CpMn(CO)_2(\eta^2-HPFH\cdot BCl_3)]$ 15	1.405 (15a)	1.953	1.540	2.265
$[CpMn(CO)_2(\eta^2-HPClH\cdot BCl_3)]$ 16	1.407 (16a)	1.997	1.536	2.294
$[CpMn(CO)_2(\eta^2-HPBrH\cdot BCl_3)]$ 17	1.408 (17a)	1.992	1.536	2.301
$[CpMn(CO)_2(\eta^2-HPPhH\cdot BCl_3)]$ 18	1.407 (18a)	2.085	1.530	2.351
$[CpMn(CO)_2(\eta^2-HPMeH \cdot BCl_3)] 19$	1.407 (19a)	2.067	1.528	2.341
$[CpMn(CO)_2(\eta^2\text{-}HP(MeO)H \cdot BCl_3)] \text{ 20}$	1.413 (20a)	2.039	1.531	2.291
$[CpMn(CO)_2(\eta^2\text{-}HP(NH_2)H\text{-}BCl_3)] \textbf{21}$	1.407 (21a)	2.040	1.530	2.314

Table 1. Bond lengths (Å) for the P–H bond in the free phosphines 1a-21a and the P–H, Mn–H and Mn–P bonds in the coordinated Mn–P–H moiety of complexes 1-21.

Complex	Atom	Net Charge	Bond	δ
1	Mn	0.879	Mn–P	0.73
	Р	1.026	Mn–H	0.63
	Η	-0.123	P–H	0.23
2	Mn	0.887	Mn–P	0.71
	Р	0.678	Mn–H	0.63
	Н	-0.113	P–H	0.22
3	Mn	0.892	Mn–P	0.71
	Р	0.551	Mn–H	0.63
	Η	-0.112	P–H	0.22
		0.000		0.00
4	Mn	0.880	Mn–P	0.68
	Р	0.824	Mn–H	0.62
	Н	-0.089	P–H	0.18
=	Ma	0.990	Mar D	0.69
5	IVIII D	0.880	Mr. H	0.08
	Р Ц	0.820		0.04
	П	-0.090	r–п	0.19
6	Mn	0 886	Mn_P	0.70
v	P	1.059	Mn_H	0.64
	Ĥ	-0.108	P_H	0.20
		0.100	1 11	0.20
7	Mn	0.881	Mn–P	0.68
	Р	1.032	Mn–H	0.64
	Н	-0.105	P–H	0.19

Table 2. AIM charges of the Mn, P and H atoms and delocalisation indices (δ) between atom pairs Mn–P, Mn–H and P–H for complexes 1-7.

Complex	Atom	Net Charge	Bond	δ
8	Mn	0.889	Mn–P	0.71
	Р	1.180	Mn–H	0.62
	Η	-0.155	P–H	0.26
9	Mn	0.896	Mn–P	0.69
	Р	0.823	Mn–H	0.63
	Н	-0.146	P–H	0.24
10	Ma	0.800	Mrs. D	0.60
10		0.699	IVIII-P Mr. II	0.09
	P II	0.090		0.03
	п	-0.143	Р-П	0.23
11	Mn	0.89	Mn–P	0.65
	Р	0.98	Mn–H	0.64
	H	-0.12	P–H	0.21
12	Mn	0.874	Mn–P	0.66
	Р	0.990	Mn–H	0.65
	Η	-0.123	P–H	0.21
10		0.005		0.67
13	Mn	0.885	Mn–P	0.67
	Р	1.231	Mn–H	0.63
	Н	-0.145	P–H	0.24
14	Mn	0 881	Mn–P	0.67
± •	Р	1 192	Mn–H	0.65
	Ĥ	-0.132	P–H	0.00
	**	0.152		v.= 1

Table 3. AIM charges of the Mn, P and H atoms and delocalisation indices (δ) between atom pairs Mn–P, Mn–H and P–H for complexes **8-14**.

Complex	Atom	Net Charge	Bond	δ
15	Mn	0.877	Mn–P	0.71
	Р	1.230	Mn–H	0.62
	Н	-0.136	P–H	0.26
16	Mn	0.885	Mn–P	0.70
	Р	0.890	Mn–H	0.62
	Н	-0.120	P–H	0.23
		0.007		0.00
17	Mn	0.88/	Mn–P	0.69
	Р	0.763	Mn–H	0.62
	Н	-0.119	P–H	0.24
18	Mn	0.879	Mn_P	0.66
10	P	1 048	Mn_H	0.63
	H	-0.101	P–H	0.19
19	Mn	0.885	Mn–P	0.66
	Р	1.025	Mn–H	0.64
	Н	-0.103	P–H	0.20
20	Mn	0.876	Mn_P	0.69
20	P	1 268	Mn_H	0.64
	H	-0.118	P–H	0.22
21	Mn	0.871	Mn–P	0.67
	Р	1.246	Mn–H	0.64
	Н	-0.116	P–H	0.21

Table 4. AIM charges of the Mn, P and H atoms and delocalisation indices (δ) between atom pairs Mn–P, Mn–H and P–H for complexes **15-21**.

Cartesian Coordinates for complexes 1-21 as determined by DFT calculations at the [B3LYP/6-311G(d,p)] level of approximation.

$[CpMn(CO)_2(\eta^2-HPFCl\cdot BCl_3)]$ 1

6	2.520534000	-1.390735000	-1.315923000
6	1.231844000	-1.917513000	-1.042403000
6	1.158496000	-2.191068000	0.350970000
6	2.405046000	-1.837468000	0.934293000
6	3.251513000	-1.335746000	-0.096261000
1	2.883151000	-1.086976000	-2.286734000
1	0.447402000	-2.091726000	-1.761465000
1	0.299237000	-2.589200000	0.867539000
1	2.663733000	-1.935060000	1.977761000
1	4.268787000	-0.995429000	0.021399000
25	1.527731000	-0.072690000	0.095663000
6	2.012127000	1.305697000	-0.999415000
8	2.366390000	2.137099000	-1.692654000
6	2.127357000	0.916608000	1.485355000
8	2.504812000	1.493311000	2.393883000
15	-0.577859000	0.577198000	-0.413759000
9	-0.713982000	0.743340000	-2.022898000
1	0.466712000	0.038220000	1.199593000
17	-0.854871000	2.544675000	0.175378000
5	-2.255552000	-0.429361000	0.164970000
17	-2.193400000	-2.072333000	-0.707041000
17	-2.060478000	-0.612246000	2.004401000
17	-3.718422000	0.547802000	-0.315772000

$[CpMn(CO)_2(\eta^2-HPClCl·BCl_3)]$ 2

6	2.497403000	-1.025749000	-1.600026000
6	1.274892000	-1.698677000	-1.352896000
6	1.339879000	-2.266422000	-0.051487000
6	2.613290000	-1.955749000	0.498549000
6	3.332650000	-1.180389000	-0.453852000
1	2.751952000	-0.495582000	-2.505544000
1	0.437960000	-1.769710000	-2.028943000
1	0.554339000	-2.830706000	0.426451000
1	2.969758000	-2.254469000	1.472857000
1	4.336377000	-0.800835000	-0.340164000
25	1.573305000	-0.116257000	0.132905000
6	2.058843000	1.514371000	-0.544408000
8	2.415114000	2.507619000	-0.971775000
6	2.103253000	0.485723000	1.751269000
8	2.441128000	0.808049000	2.791892000
15	-0.576690000	0.591278000	-0.218660000
17	-0.854036000	1.197130000	-2.209976000
1	0.516074000	-0.335886000	1.220780000
17	-0.861697000	2.379575000	0.812336000

5	-2.217170000	-0.570631000	0.258494000
17	-2.133692000	-2.053612000	-0.854529000
17	-1.916125000	-1.019341000	2.034872000
17	-3.724691000	0.414695000	0.004093000

$[CpMn(CO)_2(\eta^2-HPBrCl\cdot BCl_3)]$ 3

6	2.486773000	0.425732000	-1.853801000
6	1.343553000	-0.370434000	-2.112383000
6	1.578597000	-1.666379000	-1.578237000
6	2.878310000	-1.673512000	-1.003052000
6	3.443467000	-0.377469000	-1.163430000
1	2.610944000	1.459639000	-2.138739000
1	0.447815000	-0.052843000	-2.621185000
1	0.885221000	-2.492374000	-1.607995000
1	3.351126000	-2.516940000	-0.522728000
1	4.426371000	-0.066724000	-0.844359000
25	1.686744000	-0.227645000	0.045307000
6	2.027486000	1.446470000	0.704833000
8	2.296477000	2.481487000	1.095681000
6	2.308472000	-0.884575000	1.608775000
8	2.709683000	-1.352798000	2.568429000
15	-0.527446000	0.310561000	0.337002000
35	-1.070469000	2.233041000	-0.750124000
1	0.729545000	-1.241227000	0.683080000
17	-0.814193000	0.836001000	2.336283000
5	-2.046034000	-1.039704000	-0.073868000
17	-1.979096000	-1.348663000	-1.901729000
17	-1.545305000	-2.540565000	0.899117000
17	-3.629677000	-0.325788000	0.463906000

$[CpMn(CO)_2(\eta^2-HPPhCl·BCl_3)]$ 4

6	-1.694757000	-1.867634000	-1.724309000
6	-1.115842000	-0.654020000	-2.171823000
6	-2.095853000	0.369912000	-2.071817000
6	-3.291316000	-0.219049000	-1.578042000
6	-3.048017000	-1.600996000	-1.351730000
1	-1.199797000	-2.826095000	-1.684050000
1	-0.108287000	-0.522881000	-2.530279000
1	-1.947749000	1.407012000	-2.328003000
1	-4.222159000	0.297628000	-1.398074000
1	-3.763536000	-2.322207000	-0.987815000
25	-1.753708000	-0.458774000	-0.090444000
6	-1.481848000	-1.820256000	1.084940000
8	-1.384960000	-2.707595000	1.797637000
6	-2.874376000	0.261271000	1.117499000
8	-3.611964000	0.750506000	1.840266000
15	0.424211000	0.208776000	0.449588000
1	-1.527796000	1.015878000	0.254252000

17	0.524238000	0.361677000	2.538397000
5	1.048081000	2.063380000	-0.170776000
17	0.996692000	2.089810000	-2.049098000
17	-0.198662000	3.252924000	0.516059000
17	2.742470000	2.353626000	0.462348000
6	1.688088000	-1.087328000	0.102368000
6	2.469661000	-0.992518000	-1.057300000
1	2.380799000	-0.136894000	-1.713049000
6	1.860705000	-2.185778000	0.955382000
1	1.290592000	-2.264469000	1.871142000
6	2.792403000	-3.172154000	0.648636000
6	3.397480000	-1.987103000	-1.358693000
6	3.559731000	-3.078587000	-0.510706000
1	4.003901000	-1.894645000	-2.252283000
1	2.923629000	-4.010362000	1.323271000
1	4.288034000	-3.846636000	-0.744613000

$[CpMn(CO)_2(\eta^2-HPMeCl\cdot BCl_3)]$ 5

6	2 528031000	-1 316711000	-1 386387000
6	1 281696000	-1 912498000	-1.068078000
6	1.201090000	-2 205288000	0.322251000
6	2 528083000	1 802205000	0.322231000
6	2.328983000	-1.802203000	0.030013000
0	3.303/0/000	-1.242218000	-0.193920000
l	2.838920000	-0.986/42000	-2.3664/9000
1	0.476024000	-2.123327000	-1.752002000
1	0.457625000	-2.651439000	0.866165000
1	2.834356000	-1.900244000	1.889624000
1	4.309367000	-0.854784000	-0.110708000
25	1.538601000	-0.067203000	0.084950000
6	2.028300000	1.380727000	-0.901788000
8	2.380252000	2.265317000	-1.532841000
6	2.018219000	0.850736000	1.559756000
8	2.328496000	1.379525000	2.522945000
15	-0.619976000	0.610370000	-0.478304000
6	-0.892073000	0.929978000	-2.270624000
1	0.467896000	-0.060371000	1.173883000
17	-0.883655000	2.539054000	0.299468000
5	-2.210353000	-0.462961000	0.188804000
17	-2.154536000	-2.069181000	-0.782547000
17	-1.963712000	-0.756276000	2.002478000
17	-3.747565000	0.475114000	-0.176193000
1	-0.819265000	-0.016047000	-2.809994000
1	-0.157507000	1.635576000	-2.657841000
1	-1.896488000	1.334754000	-2.401339000

$[CpMn(CO)_2(\eta^2\text{-}HP(OMe)Cl \cdot BCl_3)] \text{ 6}$

6	2.536478000	-0.874440000	-1.716325000
6	1.318081000	-1.565288000	-1.497814000

6	1.400086000	-2.210283000	-0.234369000
6	2.677166000	-1.924612000	0.321770000
6	3.383586000	-1.091202000	-0.591370000
1	2.777957000	-0.286252000	-2.588981000
1	0.472039000	-1.592556000	-2.164907000
1	0.622159000	-2.803578000	0.220141000
1	3.044280000	-2.278376000	1.273272000
1	4.385800000	-0.711561000	-0.465897000
25	1.620583000	-0.077915000	0.080937000
6	1.977789000	1.587232000	-0.578410000
8	2.256825000	2.606186000	-1.005754000
6	2.219265000	0.497536000	1.680477000
8	2.603264000	0.804676000	2.710995000
15	-0.553472000	0.585089000	-0.168041000
8	-0.685712000	1.138306000	-1.691331000
1	0.646130000	-0.374469000	1.221590000
17	-0.880881000	2.294034000	1.020690000
5	-2.101209000	-0.661436000	0.296586000
17	-2.120182000	-1.944301000	-1.065267000
17	-1.676206000	-1.413250000	1.939615000
17	-3.679425000	0.277972000	0.354413000
6	-1.911931000	1.622637000	-2.295429000
1	-1.616186000	2.038165000	-3.256869000
1	-2.613131000	0.800839000	-2.434277000
1	-2.359810000	2.397947000	-1.672954000

$[CpMn(CO)_2(\eta^2-HP(NH_2)Cl\cdot BCl_3)] 7$

6	2.506134000	-1.382477000	-1.341325000
6	1.265037000	-1.959798000	-0.973975000
6	1.285976000	-2.190259000	0.427374000
6	2.550175000	-1.765725000	0.922895000
6	3.307904000	-1.257121000	-0.168135000
1	2.797885000	-1.097799000	-2.341253000
1	0.439148000	-2.172515000	-1.633163000
1	0.477387000	-2.610035000	1.004813000
1	2.874587000	-1.817848000	1.951252000
1	4.314004000	-0.869985000	-0.121295000
25	1.548552000	-0.065195000	0.086481000
6	2.015542000	1.327218000	-0.981733000
8	2.341889000	2.172625000	-1.678555000
6	2.050839000	0.927050000	1.506204000
8	2.376861000	1.503269000	2.435719000
15	-0.597295000	0.560798000	-0.498084000
7	-0.798402000	0.615664000	-2.160125000
1	0.487615000	-0.010468000	1.186174000
17	-0.868525000	2.542643000	0.227711000
5	-2.226567000	-0.444127000	0.187093000
17	-2.134538000	-2.181028000	-0.490838000
17	-2.113858000	-0.430257000	2.032214000

17	-3.715892000	0.436438000	-0.460510000
1	-0.148410000	1.150012000	-2.720526000
1	-1.756770000	0.704522000	-2.482302000

$[CpMn(CO)_2(\eta^2-HPFPh\cdot BCl_3)] \ \textbf{8}$

6	3.343099000	-1.846837000	-0.165904000
6	2.420197000	-2.062220000	-1.232126000
6	1.194029000	-2.504029000	-0.676316000
6	1.349848000	-2.564019000	0.735020000
6	2.675377000	-2.165573000	1.049557000
1	4.367641000	-1.523209000	-0.264927000
1	2.618981000	-1.915782000	-2.283151000
1	0.299830000	-2.752696000	-1.225547000
1	0.589769000	-2.862411000	1.439403000
1	3.101618000	-2.111819000	2.039952000
25	1.683302000	-0.515478000	0.088289000
6	2.223549000	0.689365000	-1.182422000
8	2.666549000	1.353892000	-1.993597000
6	2.374508000	0.610198000	1.330957000
8	2.826853000	1.263201000	2.147802000
15	-0.410694000	0.208320000	-0.460290000
1	0.605734000	-0.219883000	1.145967000
5	-1.031403000	2.034422000	0.132820000
17	-1.118368000	1.917499000	1.998065000
17	-2.677105000	2.341896000	-0.630116000
17	0.243651000	3.267526000	-0.403760000
6	-1.718588000	-1.027570000	-0.126849000
6	-2.487695000	-1.523418000	-1.186944000
1	-2.292500000	-1.189040000	-2.197036000
6	-2.003455000	-1.440643000	1.181543000
1	-1.443716000	-1.041245000	2.018072000
6	-3.034921000	-2.343751000	1.420384000
6	-3.513317000	-2.432995000	-0.939743000
6	-3.788307000	-2.845930000	0.360919000
1	-4.104244000	-2.808679000	-1.767151000
1	-3.255135000	-2.647042000	2.437426000
1	-4.591685000	-3.548429000	0.550690000
9	-0.492624000	0.228933000	-2.099329000

$[CpMn(CO)_2(\eta^2-HPClPh\cdot BCl_3)]$ 9

6	3.444504000	-1.701715000	-0.226328000
6	2.529760000	-1.842562000	-1.313369000
6	1.327348000	-2.395719000	-0.808970000
6	1.486287000	-2.596943000	0.588751000
6	2.794385000	-2.177707000	0.945986000
1	4.454181000	-1.325800000	-0.286736000
1	2.716726000	-1.575666000	-2.342422000
1	0.441420000	-2.615668000	-1.383268000

1	0.740665000	-2.999845000	1.255524000
1	3.220115000	-2.209555000	1.937669000
25	1.731721000	-0.476687000	0.158461000
6	2.311014000	0.898728000	-0.911105000
8	2.791196000	1.670659000	-1.595454000
6	2.312581000	0.500664000	1.568320000
8	2.693406000	1.056932000	2.487509000
15	-0.407988000	0.195062000	-0.411262000
1	0.629544000	-0.319340000	1.212085000
5	-1.118185000	1.979635000	0.296222000
17	-1.089858000	1.783799000	2.154099000
17	-2.819114000	2.208717000	-0.354828000
17	0.051794000	3.298133000	-0.256911000
6	-1.667627000	-1.111787000	-0.075294000
6	-2.504974000	-1.628399000	-1.070178000
1	-2.408611000	-1.294309000	-2.093639000
6	-1.842657000	-1.542676000	1.249043000
1	-1.232553000	-1.136882000	2.045612000
6	-2.825681000	-2.475727000	1.563037000
6	-3.481767000	-2.568762000	-0.749483000
6	-3.645108000	-2.996439000	0.564067000
1	-4.122026000	-2.957270000	-1.533055000
1	-2.954592000	-2.787415000	2.593147000
1	-4.410254000	-3.723452000	0.810706000
17	-0.493535000	0.359457000	-2.517220000

$[CpMn(CO)_2(\eta^2-HPBrPh\cdot BCl_3)] 10$

6	3.526774000	1.619260000	0.313489000
6	2.577662000	1.685861000	1.377347000
6	1.407934000	2.315249000	0.885576000
6	1.622358000	2.640619000	-0.480999000
6	2.931077000	2.219097000	-0.831386000
1	4.523856000	1.210895000	0.372383000
1	2.720357000	1.320090000	2.382788000
1	0.507792000	2.504946000	1.448241000
1	0.911322000	3.122903000	-1.132587000
1	3.393223000	2.329681000	-1.800874000
25	1.800150000	0.482745000	-0.241261000
6	2.304905000	-1.006105000	0.706529000
8	2.746146000	-1.856989000	1.320149000
6	2.413584000	-0.369192000	-1.716542000
8	2.817774000	-0.843709000	-2.671142000
15	-0.389009000	-0.171310000	0.180211000
1	0.731236000	0.435240000	-1.339822000
5	-1.111898000	-1.869209000	-0.724061000
17	-0.981252000	-1.504246000	-2.552217000
17	-2.850321000	-2.105587000	-0.187311000
17	-0.005967000	-3.267349000	-0.241788000
6	-1.589105000	1.204105000	-0.119115000

6	-2.478299000	1.666025000	0.857047000
1	-2.459119000	1.246565000	1.853088000
6	-1.662340000	1.749793000	-1.411084000
1	-1.012554000	1.391370000	-2.198669000
6	-2.593752000	2.739611000	-1.708165000
6	-3.403534000	2.663028000	0.554840000
6	-3.463996000	3.204515000	-0.724897000
1	-4.083559000	3.006997000	1.325637000
1	-2.642291000	3.139577000	-2.714473000
1	-4.188090000	3.976552000	-0.958329000
35	-0.595545000	-0.551751000	2.428164000

$[CpMn(CO)_2(\eta^2-HPPh_2 \cdot BCl_3)]$ 11

6	3.556320000	0.202066000	-1.623519000
6	2.319126000	0.506627000	-2.273217000
6	1.581223000	-0.697268000	-2.387680000
6	2.346289000	-1.743940000	-1.807223000
6	3.569227000	-1.188773000	-1.347724000
1	4.347733000	0.900708000	-1.399532000
1	2.005132000	1.478626000	-2.621565000
1	0.605506000	-0.812413000	-2.830700000
1	2.059682000	-2.781474000	-1.746174000
1	4.366168000	-1.730019000	-0.860150000
25	1.935703000	-0.233858000	-0.283660000
6	2.012210000	1.461839000	0.388215000
8	2.167302000	2.537357000	0.734882000
6	2.697545000	-0.797371000	1.252369000
8	3.220097000	-1.209818000	2.179121000
15	-0.398153000	-0.002024000	0.098772000
1	1.158586000	-1.366629000	0.388536000
5	-0.936563000	-0.190905000	2.060943000
17	-0.576357000	-1.961257000	2.516890000
17	-2.738240000	0.199406000	2.224226000
17	0.114135000	0.963518000	3.089060000
6	-1.429334000	-1.241188000	-0.802633000
6	-2.714350000	-0.895484000	-1.244387000
1	-3.078593000	0.114983000	-1.118881000
6	-1.011980000	-2.571660000	-0.935383000
1	-0.046476000	-2.878145000	-0.556054000
6	-1.842554000	-3.524099000	-1.518627000
6	-3.542080000	-1.849607000	-1.830004000
6	-3.107935000	-3.164259000	-1.974950000
1	-4.533471000	-1.562925000	-2.161714000
1	-1.503075000	-4.550008000	-1.605133000
1	-3.755456000	-3.906140000	-2.428244000
6	-0.954410000	1.620302000	-0.597211000
6	-1.070674000	1.797641000	-1.984514000
6	-1.203793000	2.711664000	0.243586000
1	-0.907862000	0.964138000	-2.656822000

-1.124375000	2.605090000	1.316410000
-1.430498000	3.031771000	-2.516298000
-1.562317000	3.947013000	-0.293764000
-1.525826000	3.146873000	-3.590313000
-1.757181000	4.778623000	0.373492000
-1.675669000	4.112550000	-1.670304000
-1.957360000	5.074448000	-2.083353000
	-1.124375000 -1.430498000 -1.562317000 -1.525826000 -1.757181000 -1.675669000 -1.957360000	-1.1243750002.605090000-1.4304980003.031771000-1.5623170003.947013000-1.5258260003.146873000-1.7571810004.778623000-1.6756690004.112550000-1.9573600005.074448000

$[CpMn(CO)_2(\eta^2-HPMePh\cdot BCl_3)] 12$

6	3.384223000	-1.784527000	-0.153405000
6	2.471423000	-2.017034000	-1.226292000
6	1.251926000	-2.481247000	-0.675457000
6	1.397095000	-2.534875000	0.736694000
6	2.715752000	-2.115243000	1.056980000
1	4.403653000	-1.443324000	-0.245562000
1	2.679596000	-1.874497000	-2.275993000
1	0.362123000	-2.746445000	-1.223748000
1	0.637290000	-2.845130000	1.436184000
1	3.135720000	-2.052972000	2.049601000
25	1.703998000	-0.480011000	0.092647000
6	2.300280000	0.771145000	-1.090776000
8	2.778171000	1.480893000	-1.846758000
6	2.288527000	0.608011000	1.408046000
8	2.678793000	1.237004000	2.276603000
15	-0.451174000	0.222901000	-0.583920000
1	0.632388000	-0.197092000	1.141584000
5	-1.097556000	1.993486000	0.154338000
17	-1.060570000	1.924629000	2.017321000
17	-2.815399000	2.268451000	-0.487776000
17	0.088455000	3.288394000	-0.478152000
6	-1.701866000	-1.074708000	-0.191172000
6	-2.398291000	-1.754341000	-1.198568000
1	-2.214438000	-1.534435000	-2.242027000
6	-1.996182000	-1.375590000	1.146913000
1	-1.495035000	-0.844408000	1.945955000
6	-2.955805000	-2.331866000	1.463742000
6	-3.354701000	-2.716438000	-0.877459000
6	-3.635409000	-3.009450000	0.453178000
1	-3.885441000	-3.228256000	-1.672292000
1	-3.179285000	-2.539341000	2.504059000
1	-4.383587000	-3.753172000	0.702241000
6	-0.540101000	0.394976000	-2.420247000
1	-0.211415000	-0.513881000	-2.926119000
1	-1.561729000	0.640581000	-2.713178000
1	0.106418000	1.220594000	-2.715269000

$[CpMn(CO)_2(\eta^2\text{-}HP(OMe)Ph \cdot BCl_3)] \textbf{ 13}$

6	3.455019000	-1.686473000	-0.323931000
6	2.557434000	-1.731798000	-1.431550000
6	1.342143000	-2.313760000	-0.993548000
6	1.479229000	-2.632211000	0.385027000
6	2.782903000	-2.253024000	0.795479000
1	4.467178000	-1.312810000	-0.337908000
1	2.764089000	-1.384253000	-2.432345000
1	0.464924000	-2.474492000	-1.599380000
1	0.719922000	-3.080090000	1.005799000
1	3.192678000	-2.368175000	1.787697000
25	1.739668000	-0.483025000	0.133131000
6	2.290126000	0.963119000	-0.823308000
8	2.773400000	1.793499000	-1.441873000
6	2.323018000	0.380897000	1.608651000
8	2.703758000	0.869694000	2.567114000
15	-0.421146000	0.184457000	-0.422736000
1	0.631572000	-0.360253000	1.184837000
5	-1.138308000	1.884555000	0.418515000
17	-1.146511000	1.593536000	2.258565000
17	-2.846740000	2.159239000	-0.244438000
17	0.009883000	3.284920000	-0.014903000
6	-1.637699000	-1.158679000	-0.103297000
6	-2.446762000	-1.632194000	-1.142718000
1	-2.329622000	-1.222780000	-2.136410000
6	-1.809101000	-1.682501000	1.185418000
1	-1.213812000	-1.314699000	2.011496000
6	-2.768111000	-2.662138000	1.424738000
6	-3.398831000	-2.619760000	-0.898609000
6	-3.562366000	-3.137359000	0.382802000
1	-4.018772000	-2.976522000	-1.713331000
1	-2.898692000	-3.047855000	2.429385000
1	-4.307991000	-3.901206000	0.571971000
8	-0.538917000	0.227117000	-2.070682000
6	-0.489872000	1.412960000	-2.888535000
1	0.497994000	1.874354000	-2.856247000
1	-0.700691000	1.074118000	-3.902737000
1	-1.243187000	2.134904000	-2.575624000

$[CpMn(CO)_2(\eta^2\text{-}HP(NH_2)Ph \cdot BCl_3)] \text{ } \textbf{14}$

6	3.365376000	-1.815237000	-0.068563000
6	2.503977000	-2.012659000	-1.188508000
6	1.248862000	-2.461883000	-0.709610000
6	1.322298000	-2.543463000	0.706614000
6	2.629777000	-2.152168000	1.101652000
1	4.393759000	-1.490518000	-0.103665000
1	2.761884000	-1.852847000	-2.224580000
1	0.385190000	-2.688144000	-1.313132000

1	0.521606000	-2.846662000	1.362538000
1	2.999119000	-2.113057000	2.115328000
25	1.695650000	-0.486957000	0.116229000
6	2.293621000	0.743883000	-1.082038000
8	2.763348000	1.431600000	-1.864552000
6	2.297847000	0.605219000	1.423126000
8	2.695590000	1.238792000	2.284396000
15	-0.434487000	0.215364000	-0.553564000
1	0.619198000	-0.203725000	1.162908000
5	-1.073944000	2.004190000	0.121429000
17	-1.054319000	2.028700000	1.982555000
17	-2.786028000	2.243801000	-0.566556000
17	0.112788000	3.267863000	-0.572301000
6	-1.699120000	-1.064323000	-0.163981000
6	-2.264783000	-1.846464000	-1.178106000
1	-1.941810000	-1.710289000	-2.202462000
6	-2.127527000	-1.251728000	1.157557000
1	-1.723101000	-0.641298000	1.954863000
6	-3.099803000	-2.202528000	1.452998000
6	-3.238393000	-2.797046000	-0.876155000
6	-3.657313000	-2.978905000	0.438494000
1	-3.670991000	-3.391401000	-1.673142000
1	-3.429379000	-2.328023000	2.478082000
1	-4.417503000	-3.715688000	0.671773000
7	-0.512634000	0.229620000	-2.277683000
1	0.231570000	0.785997000	-2.683681000
1	-1 397245000	0 625308000	-2 592960000

$[CpMn(CO)_2(\eta^2-HPFH\cdot BCl_3)]$ 15

6	2.283575000	-0.934637000	-1.643697000
6	1.003633000	-1.493261000	-1.389444000
6	1.031694000	-2.084709000	-0.096754000
6	2.331170000	-1.898360000	0.441869000
6	3.111117000	-1.180148000	-0.511462000
1	2.576927000	-0.417834000	-2.545208000
1	0.157483000	-1.484176000	-2.058562000
1	0.200424000	-2.576189000	0.383951000
1	2.669767000	-2.242743000	1.407425000
1	4.147202000	-0.897807000	-0.406226000
25	1.463353000	0.036733000	0.105985000
6	1.983168000	1.635809000	-0.577568000
8	2.353551000	2.621287000	-1.019088000
6	2.111968000	0.593299000	1.695701000
8	2.514397000	0.900858000	2.718957000
15	-0.609795000	0.883508000	-0.234975000
9	-0.712795000	1.440592000	-1.765037000
1	0.368871000	-0.028492000	1.187458000
1	-0.757623000	2.095880000	0.470008000
5	-2.319458000	-0.091513000	0.166108000

17	-2.430177000	-1.663793000	-0.810804000
17	-2.168767000	-0.415727000	2.002238000
17	-3.687470000	1.071728000	-0.227896000

$[CpMn(CO)_2(\eta^2\text{-}HPClH \cdot BCl_3)] \ \textbf{16}$

~	a a a a a a a a a a	0.51000000	1 500100000
6	-2.290869000	0.542286000	1.788132000
6	-1.056799000	-0.113358000	2.030682000
6	-1.171512000	-1.454647000	1.575632000
6	-2.485075000	-1.631828000	1.066450000
6	-3.182375000	-0.395522000	1.188782000
1	-2.514201000	1.571423000	2.025812000
1	-0.178377000	0.324619000	2.478460000
1	-0.389167000	-2.196798000	1.609910000
1	-2.884777000	-2.546530000	0.654982000
1	-4.207209000	-0.211040000	0.905868000
25	-1.511339000	-0.123507000	-0.113382000
6	-2.033688000	1.446899000	-0.870535000
8	-2.406315000	2.421456000	-1.332066000
6	-2.119024000	-0.945669000	-1.598190000
8	-2.497623000	-1.513994000	-2.513496000
15	0.610794000	0.668483000	-0.475685000
17	0.874374000	2.581041000	0.364564000
1	-0.439677000	-1.003529000	-0.774227000
1	0.770157000	1.006665000	-1.835912000
5	2.283588000	-0.421482000	-0.084776000
17	2.387741000	-0.784333000	1.727201000
17	1.980357000	-1.965481000	-1.095350000
17	3.717200000	0.537853000	-0.701852000

$[CpMn(CO)_2(\eta^2-HPBrH \cdot BCl_3)] \ \textbf{17}$

6	-2.300707000	0.770257000	1.700562000
6	-1.154298000	-0.000417000	2.021742000
6	-1.439978000	-1.361698000	1.730942000
6	-2.772669000	-1.433274000	1.245915000
6	-3.309626000	-0.114448000	1.217085000
1	-2.391354000	1.840251000	1.811226000
1	-0.220777000	0.375315000	2.410427000
1	-0.755293000	-2.186026000	1.855685000
1	-3.288267000	-2.333577000	0.946903000
1	-4.307418000	0.160840000	0.912137000
25	-1.635196000	-0.208768000	-0.105480000
6	-1.994392000	1.298896000	-1.059545000
8	-2.267596000	2.239284000	-1.645113000
6	-2.336633000	-1.145568000	-1.476632000
8	-2.779768000	-1.783687000	-2.313749000
15	0.563959000	0.291736000	-0.559216000
35	1.119966000	2.399155000	0.097496000
1	-0.666341000	-1.272207000	-0.644419000

1	0.737315000	0.450304000	-1.950766000
5	2.098209000	-0.955882000	-0.056579000
17	2.180644000	-1.136984000	1.783450000
17	1.587477000	-2.547553000	-0.895758000
17	3.634911000	-0.263112000	-0.773276000

$[CpMn(CO)_2(\eta^2\text{-}HPPhH\text{-}BCl_3)] \textbf{ 18}$

6	1.654427000	-1.757306000	1.713157000
6	1.131294000	-0.484454000	2.053921000
6	2.141247000	0.487804000	1.827187000
6	3.300661000	-0.190543000	1.364662000
6	3.003750000	-1.579729000	1.283064000
1	1.125017000	-2.695730000	1.778745000
1	0.139291000	-0.278349000	2.420419000
1	2.034461000	1.550104000	1.980808000
1	4.243510000	0.271050000	1.112136000
1	3.683914000	-2.359306000	0.976667000
25	1.721327000	-0.519757000	-0.056531000
6	1.276991000	-1.938444000	-1.091553000
8	1.046295000	-2.858336000	-1.731706000
6	2.853077000	-0.015476000	-1.354381000
8	3.597207000	0.341793000	-2.146610000
15	-0.440990000	0.223184000	-0.605610000
1	1.525786000	0.912944000	-0.556813000
1	-0.522650000	0.247769000	-2.012722000
5	-0.990067000	2.113117000	-0.123538000
17	-0.991817000	2.328305000	1.736151000
17	0.305526000	3.200870000	-0.912285000
17	-2.662496000	2.397713000	-0.844401000
6	-1.768410000	-0.991425000	-0.232974000
6	-2.425418000	-0.981413000	1.004115000
1	-2.184661000	-0.229296000	1.744925000
6	-2.144925000	-1.934882000	-1.197790000
1	-1.662181000	-1.946996000	-2.167974000
6	-3.150875000	-2.857652000	-0.925639000
6	-3.430883000	-1.906862000	1.270935000
6	-3.792818000	-2.848614000	0.310580000
1	-3.941455000	-1.880310000	2.226779000
1	-3.437047000	-3.577520000	-1.683860000
1	-4.579327000	-3.564559000	0.519913000

$[CpMn(CO)_2(\eta^2\text{-}HPMeH \cdot BCl_3)] \text{ 19}$

2.310666000	-0.316710000	-1.855592000
1.046310000	-0.956882000	-1.803225000
1.087986000	-1.934909000	-0.773902000
2.388095000	-1.909848000	-0.201658000
3.147987000	-0.902374000	-0.861475000
2.594313000	0.468820000	-2.539893000
	$\begin{array}{c} 2.310666000\\ 1.046310000\\ 1.087986000\\ 2.388095000\\ 3.147987000\\ 2.594313000 \end{array}$	2.310666000-0.3167100001.046310000-0.9568820001.087986000-1.9349090002.388095000-1.9098480003.147987000-0.9023740002.5943130000.468820000

1	0 192379000	-0 750634000	-2 428579000
1	0.172377000	-0.750054000	-2.420570000
1	0.208321000	-2.3/2203000	-0.4803/0000
1	2.737011000	-2.543347000	0.599898000
1	4.177984000	-0.648466000	-0.664695000
25	1.481472000	0.007460000	0.118745000
6	2.013312000	1.734798000	0.057900000
8	2.379407000	2.818353000	0.003553000
6	2.043509000	-0.042276000	1.823875000
8	2.396407000	-0.125707000	2.908586000
15	-0.644478000	0.984839000	0.054486000
1	0.404933000	-0.457353000	1.098574000
1	-0.768299000	1.822599000	1.183093000
5	-2.285222000	-0.179181000	0.160451000
17	-2.455871000	-1.105995000	-1.455299000
17	-2.044810000	-1.344057000	1.593928000
17	-3.722712000	0.958252000	0.437698000
6	-0.888795000	2.189081000	-1.326076000
1	-0.115631000	2.957496000	-1.322614000
1	-0.869979000	1.658265000	-2.278181000
1	-1.867812000	2.655862000	-1.208931000

$[CpMn(CO)_2(\eta^2-HP(OMe)H\cdot BCl_3)]$ **20**

6	-2.318862000	0.426122000	1.848851000
6	-1.083652000	-0.252462000	2.009913000
6	-1.210160000	-1.541776000	1.426327000
6	-2.529750000	-1.663198000	0.915863000
6	-3.220524000	-0.442368000	1.169686000
1	-2.533753000	1.429099000	2.185373000
1	-0.197716000	0.140691000	2.482283000
1	-0.430378000	-2.285382000	1.372213000
1	-2.937199000	-2.530815000	0.419154000
1	-4.246643000	-0.225268000	0.916337000
25	-1.558701000	-0.055959000	-0.120044000
6	-1.951145000	1.634559000	-0.652868000
8	-2.242532000	2.691515000	-0.973477000
6	-2.259462000	-0.632832000	-1.672295000
8	-2.700631000	-1.049053000	-2.641651000
15	0.589167000	0.679478000	-0.429227000
8	0.707149000	2.074692000	0.434265000
1	-0.575622000	-0.923458000	-0.911170000
1	0.762059000	1.098611000	-1.773358000
5	2.170960000	-0.532645000	-0.128549000
17	2.412226000	-0.765949000	1.703146000
17	1.761825000	-2.134939000	-0.991385000
17	3.648378000	0.276426000	-0.910884000
6	1.882312000	2.912711000	0.436221000
1	2.189034000	3.154608000	-0.584692000
1	1.594717000	3.823013000	0.960620000
1	2.705000000	2.423026000	0.957296000

$[CpMn(CO)_2(\eta^2\text{-}HP(NH_2)H\text{-}BCl_3)] \textbf{ 21}$

6	2.290144000	-0.544436000	-1.801889000
6	1.039572000	-1.194117000	-1.642058000
6	1.122040000	-2.031117000	-0.497449000
6	2.429983000	-1.905575000	0.043817000
6	3.157316000	-0.979804000	-0.756521000
1	2.542346000	0.152386000	-2.586911000
1	0.168960000	-1.060265000	-2.264018000
1	0.321569000	-2.641632000	-0.110060000
1	2.804518000	-2.420272000	0.915871000
1	4.184481000	-0.682238000	-0.612988000
25	1.483987000	0.022565000	0.117782000
6	1.976126000	1.730544000	-0.192789000
8	2.306423000	2.804922000	-0.418254000
6	2.056277000	0.219439000	1.812203000
8	2.416534000	0.293846000	2.894447000
15	-0.627344000	0.944065000	-0.098805000
1	0.393584000	-0.319959000	1.135655000
1	-0.767528000	1.933781000	0.907478000
5	-2.288546000	-0.149644000	0.170847000
17	-2.394016000	-1.523652000	-1.076192000
17	-2.170530000	-0.799948000	1.910336000
17	-3.706625000	1.043616000	-0.027503000
7	-0.796534000	1.696554000	-1.617795000
1	-0.166399000	2.457603000	-1.834091000
1	-1.755071000	1.927827000	-1.857425000

Cartesian Coordinates for complexes 1a-21a as determined by DFT calculations at the [B3LYP/6-311G(d,p)] level of approximation.

HPFCl·BCl₃ 1a

17

17

6

6

6

1

1.693654000

3.187650000

-1.552747000

-2.522207000

-1.898006000

-2.258495000

15	0.950652000	0.537673000	-0.432524000
9	1.329490000	1.957042000	0.164775000
1	1.131386000	0.751209000	-1.811508000
17	2.536008000	-0.623605000	0.049599000
5	-0.894359000	-0.152160000	0.063967000
17	-1.953843000	1.228139000	-0.527921000
17	-0.984063000	-1.657224000	-0.991787000
17	-0.944266000	-0.457244000	1.852259000
HPC	$Cl_2 \cdot BCl_3 2a$		
15	0.904454000	0.000107000	-0.485172000
17	2.002287000	1.631813000	0.062991000
1	1.068579000	-0.000028000	-1.883671000
17	2.002316000	-1.631413000	0.063366000
5	-1.103136000	0.000005000	0.071121000
17	-1.679533000	1.536315000	-0.743750000
17	-1.678682000	-1.536085000	-0.745156000
17	-1.182843000	-0.000724000	1.880528000
HPI	BrCl·BCl ₃ 3a		
15	-0.432065000	0.485861000	-0.499494000
35	-2.240169000	-0.677483000	0.028178000
1	-0.548968000	0.579686000	-1.900775000
17	-0.788093000	2.419703000	0.067011000
5	1.421037000	-0.307377000	0.072526000
17	1.373875000	-1.929989000	-0.773904000
17	2.556533000	0.903337000	-0.701425000
17	1.465370000	-0.370628000	1.881515000
HPI	PhCl·BCl ₃ 4a		
15	0.148024000	0.750329000	-0.439171000
1	0.170636000	1.115202000	-1.796625000
17	0.352614000	2.581556000	0.490757000
5	1.673858000	-0.538458000	-0.049945000
17	1.181224000	-1.978215000	-1.104452000

-0.908932000

0.309966000

0.207407000

0.498060000

-0.512132000

1.052836000

1.749311000

-0.644262000

-0.181915000

-1.151501000

0.970151000

-2.044729000

1	-1.148486000	-0.747909000	1.715059000
6	-3.832026000	0.070151000	-0.966238000
6	-3.211477000	-0.932879000	1.144718000
1	-4.581340000	0.291447000	-1.716798000
1	-3.480046000	-1.492653000	2.032497000
6	-4.175593000	-0.643650000	0.180364000
1	-5.196998000	-0.977689000	0.321394000

HPMeCl·BCl₃ 5a

15	0.979063000	0.430875000	-0.503664000
1	1.098088000	0.493622000	-1.904047000
17	2.497179000	-0.852192000	0.007336000
5	-0.877441000	-0.140643000	0.053054000
17	-1.867317000	1.194056000	-0.787861000
17	-1.173228000	-1.806146000	-0.638849000
17	-0.942292000	-0.051988000	1.884635000
6	1.509423000	2.062031000	0.101598000
1	2.498693000	2.308478000	-0.283485000
1	1.524786000	2.041659000	1.191759000
1	0.779333000	2.800743000	-0.233565000

HP(OMe)Cl·BCl₃ 6a

15	0.855490000	-0.126853000	-0.704479000
1	0.876570000	-0.441952000	-2.071689000
17	1.964795000	-1.647731000	0.115760000
5	-1.004689000	-0.006217000	0.077236000
17	-1.694665000	1.474845000	-0.787507000
17	-1.794277000	-1.582433000	-0.436007000
17	-0.848879000	0.202926000	1.893906000
8	1.766534000	1.182141000	-0.715590000
6	1.929850000	2.072030000	0.426529000
1	2.604992000	2.850665000	0.082085000
1	0.967226000	2.495944000	0.708518000
1	2.372382000	1.530599000	1.263042000

HP(NH₂)Cl·BCl₃ 7a

15	-0.975548000	-0.516800000	-0.517316000
1	-1.197772000	-0.612149000	-1.900026000
17	-2.546913000	0.726741000	0.020391000
5	0.864012000	0.162748000	0.038979000
17	1.984955000	-0.837343000	-1.030703000
17	0.917989000	1.952251000	-0.310769000
17	0.990117000	-0.263099000	1.833112000
7	-1.217983000	-2.053388000	0.018088000
1	-1.992904000	-2.618178000	-0.298577000
1	-0.854803000	-2.293044000	0.932295000

HPFPh·BCl₃8a

15	-0.153936000	0.992068000	-0.124485000
1	-0.181438000	2.019491000	0.833540000
5	-1.699495000	-0.249571000	0.142435000
17	-1.314027000	-0.920837000	1.830474000
17	-1.702501000	-1.530701000	-1.178984000
17	-3.192688000	0.825207000	0.119422000
6	1.528295000	0.373034000	-0.045828000
6	1.858794000	-0.867600000	-0.610907000
1	1.096815000	-1.474809000	-1.082783000
6	2.516087000	1.148813000	0.579655000
1	2.264773000	2.105410000	1.023782000
6	3.825518000	0.685990000	0.635406000
6	3.172242000	-1.318656000	-0.550986000
6	4.152101000	-0.545354000	0.069595000
1	3.429144000	-2.277778000	-0.984083000
1	4.587779000	1.283074000	1.121319000
1	5.173513000	-0.905093000	0.116146000
9	-0.258402000	1.822979000	-1.493325000

HPClPh·BCl₃9a

15	0.148024000	0.750329000	-0.439171000
1	0.170636000	1.115202000	-1.796625000
17	0.352614000	2.581556000	0.490757000
5	1.673858000	-0.538458000	-0.049945000
17	1.181224000	-1.978215000	-1.104452000
17	1.693654000	-0.908932000	1.749311000
17	3.187650000	0.309966000	-0.644262000
6	-1.552747000	0.207407000	-0.181915000
6	-2.522207000	0.498060000	-1.151501000
6	-1.898006000	-0.512132000	0.970151000
1	-2.258495000	1.052836000	-2.044729000
1	-1.148486000	-0.747909000	1.715059000
6	-3.832026000	0.070151000	-0.966238000
6	-3.211477000	-0.932879000	1.144718000
1	-4.581340000	0.291447000	-1.716798000
1	-3.480046000	-1.492653000	2.032497000
6	-4.175593000	-0.643650000	0.180364000
1	-5.196998000	-0.977689000	0.321394000

HPBrPh·BCl₃ 10a

15	0.123958000	0.331257000	-0.561741000
1	0.153925000	0.491120000	-1.958995000
5	1.563772000	-1.006655000	-0.003950000
17	0.958892000	-2.526980000	-0.869683000
17	1.566836000	-1.148757000	1.826552000
17	3.131702000	-0.355527000	-0.696537000

6	-1.606185000	-0.069548000	-0.231880000
6	-1.993630000	-0.530555000	1.033771000
1	-1.261575000	-0.648478000	1.822776000
6	-2.554783000	0.069056000	-1.254047000
1	-2.259290000	0.423882000	-2.234781000
6	-3.884936000	-0.254077000	-1.008826000
6	-3.326788000	-0.847462000	1.267452000
6	-4.270220000	-0.710204000	0.250231000
1	-3.627464000	-1.207392000	2.244058000
1	-4.617745000	-0.151169000	-1.800196000
1	-5.307540000	-0.961661000	0.438590000
35	0.482412000	2.420182000	0.147673000

HPPhPh·BCl₃ 11a

15	0.003498000	0.105875000	-0.676148000
1	-0.089165000	0.174702000	-2.079316000
5	-0.130014000	1.990586000	0.041066000
17	-1.753627000	2.609289000	-0.594425000
17	1.302401000	2.922365000	-0.673267000
17	-0.081096000	1.895219000	1.890825000
6	1.546110000	-0.812729000	-0.351623000
6	1.735648000	-2.058210000	-0.967358000
6	2.532951000	-0.295624000	0.493817000
1	0.971752000	-2.469586000	-1.617971000
1	2.399017000	0.665683000	0.971251000
6	2.903980000	-2.775687000	-0.740029000
6	3.699059000	-1.024755000	0.719809000
1	3.047912000	-3.736118000	-1.221075000
1	4.461130000	-0.620923000	1.375761000
6	3.886150000	-2.259177000	0.105126000
1	4.796477000	-2.820484000	0.282147000
6	-1.390033000	-0.974344000	-0.230650000
6	-1.416892000	-1.600767000	1.021188000
6	-2.461728000	-1.136072000	-1.115891000
1	-0.593792000	-1.473840000	1.714182000
1	-2.454584000	-0.643344000	-2.081230000
6	-2.508083000	-2.386177000	1.377596000
6	-3.548963000	-1.925412000	-0.751865000
1	-2.527490000	-2.867812000	2.348127000
1	-4.376792000	-2.048954000	-1.440157000
6	-3.572594000	-2.550086000	0.492762000
1	-4.421024000	-3.162962000	0.774612000

HPMePh·BCl₃ 12a

15	0.185557000	0.839447000	-0.633230000
1	0.222883000	0.859851000	-2.039479000
5	1.644679000	-0.357206000	0.054133000
17	1.286055000	-2.051359000	-0.575619000

17	1.595707000	-0.243157000	1.907720000
17	3.206905000	0.356986000	-0.652481000
6	-1.524281000	0.344859000	-0.272978000
6	-1.982023000	0.298152000	1.050632000
1	-1.319403000	0.548205000	1.870316000
6	-2.382211000	-0.015123000	-1.319102000
1	-2.034291000	0.005701000	-2.345588000
6	-3.688315000	-0.409807000	-1.043538000
6	-3.289196000	-0.095982000	1.316465000
6	-4.142488000	-0.448531000	0.272312000
1	-3.638295000	-0.134603000	2.341565000
1	-4.347583000	-0.689175000	-1.856905000
1	-5.159155000	-0.758079000	0.485188000
6	0.406049000	2.581844000	-0.125431000
1	0.356684000	2.641183000	0.962444000
1	1.391217000	2.919106000	-0.449399000
1	-0.371341000	3.207675000	-0.564043000

HP(OMe)Ph·BCl₃ 13a

15	0.145989000	0.648510000	-0.624354000
1	0.198187000	0.625050000	-2.036735000
5	1.498988000	-0.648889000	0.067176000
17	0.872081000	-2.294164000	-0.495566000
17	1.567737000	-0.480185000	1.910571000
17	3.105490000	-0.199465000	-0.753376000
6	-1.583708000	0.300270000	-0.264054000
6	-2.035012000	0.282406000	1.062152000
1	-1.349876000	0.485664000	1.875759000
6	-2.469075000	0.022893000	-1.312024000
1	-2.124494000	0.032928000	-2.339769000
6	-3.800336000	-0.271053000	-1.033619000
6	-3.368134000	-0.006896000	1.329602000
6	-4.248973000	-0.284259000	0.284980000
1	-3.717889000	-0.021795000	2.355013000
1	-4.484668000	-0.487562000	-1.845298000
1	-5.286392000	-0.513388000	0.499955000
8	0.319735000	2.188388000	-0.164730000
6	1.598489000	2.850222000	0.005616000
1	2.189663000	2.346861000	0.769794000
1	2.148596000	2.873057000	-0.936289000
1	1.354487000	3.862236000	0.321215000

HP(NH₂)Ph·BCl₃ 14a

15	-0.192566000	-0.501841000	-0.935856000
1	-0.252048000	0.121910000	-2.204376000
5	-1.634489000	0.273659000	0.217021000
17	-1.423495000	2.104345000	0.068518000
17	-1.398203000	-0.351467000	1.934149000

17	-3.225681000	-0.326814000	-0.547601000
6	1.520655000	-0.220182000	-0.436068000
6	2.091269000	-1.001405000	0.576918000
1	1.519902000	-1.802152000	1.029730000
6	2.252515000	0.822682000	-1.016123000
1	1.812844000	1.434154000	-1.796080000
6	3.551080000	1.078621000	-0.586734000
6	3.392107000	-0.741504000	0.995127000
6	4.120450000	0.296604000	0.416040000
1	3.834597000	-1.345791000	1.778233000
1	4.116855000	1.886137000	-1.036020000
1	5.132766000	0.496945000	0.747755000
7	-0.390324000	-2.155757000	-1.049885000
1	0.206101000	-2.696323000	-1.659810000
1	-1.340818000	-2.497252000	-0.988584000

HPFH·BCl₃ 15a

15	1.414793000	0.587414000	-0.000176000
9	2.640357000	-0.434024000	0.000031000
1	1.692179000	1.406870000	-1.107840000
1	1.691812000	1.406944000	1.107536000
5	-0.455007000	-0.095564000	0.000009000
17	-1.207664000	1.622906000	-0.002006000
17	-0.751692000	-1.026235000	-1.540398000
17	-0.752060000	-1.022611000	1.542558000

HPClH·BCl₃ 16a

15	0.995289000	0.885118000	-0.000380000
17	2.777509000	-0.125983000	0.000070000
1	1.121793000	1.754975000	-1.098572000
1	1.121627000	1.755744000	1.097226000
5	-0.770694000	-0.129497000	0.000005000
17	-1.858351000	1.379697000	-0.000575000
17	-0.851307000	-1.102277000	-1.539083000
17	-0.851338000	-1.100849000	1.540001000

HPBrH·BCl₃ 17a

15	0.450863000	0.948447000	-0.001246000
35	2.430013000	-0.053419000	-0.000092000
1	0.531115000	1.827630000	-1.097671000
1	0.531014000	1.829763000	1.093454000
5	-1.284714000	-0.137005000	-0.000022000
17	-2.436656000	1.321887000	-0.000301000
17	-1.325285000	-1.113041000	-1.538271000
17	-1.323468000	-1.110575000	1.540116000

HPPhH·BCl₃ 18a

15	0.194746000	-0.305987000	-1.146426000
6	-1.519548000	-0.134137000	-0.582967000
6	-2.069640000	1.140776000	-0.398863000
1	-1.488620000	2.028251000	-0.620676000
6	-2.270829000	-1.273713000	-0.272598000
1	-1.848899000	-2.263663000	-0.402587000
6	-3.568301000	-1.135654000	0.211356000
6	-3.368138000	1.267801000	0.083101000
6	-4.117042000	0.132389000	0.387269000
1	-3.792771000	2.254613000	0.223921000
1	-4.148119000	-2.019139000	0.450660000
1	-5.127854000	0.236477000	0.764099000
1	0.318311000	0.517436000	-2.281522000
1	0.264749000	-1.600764000	-1.691079000
5	1.700457000	0.025508000	0.156830000
17	3.223637000	-0.299065000	-0.841425000
17	1.543511000	1.788813000	0.684994000
17	1.461129000	-1.176554000	1.533232000

HPMeH·BCl₃ 19a

15	1.257885000	0.956852000	-0.000766000
1	1.365829000	1.830092000	-1.098928000
1	1.365857000	1.831494000	1.096277000
5	-0.467798000	-0.070780000	0.000046000
17	-1.800690000	1.203104000	-0.001086000
17	-0.429491000	-1.092274000	-1.542420000
17	-0.429527000	-1.089552000	1.544320000
6	2.785395000	-0.043414000	-0.000055000
1	3.669489000	0.594421000	-0.000641000
1	2.786126000	-0.677267000	0.887309000
1	2.786075000	-0.678873000	-0.886258000

HP(OMe)H·BCl₃ 20a

0.015043883	0.676151925	-0.402566880
0.021354883	0.980599925	-1.782332880
1.718473000	-0.484767000	0.006047000
1.351492000	-1.953096000	-1.072573000
1.663268000	-0.879461000	1.806795000
3.251743000	0.404136000	-0.500387000
-1.298693883	0.192636075	-0.210613120
0.183172883	2.078889925	0.379370120
-0.688480117	3.202066925	0.149487120
-0.339671117	3.992286925	0.810454120
-0.616671117	3.535030925	-0.890084880
-1.722902117	2.945240925	0.388965120
	0.015043883 0.021354883 1.718473000 1.351492000 1.663268000 3.251743000 -1.298693883 0.183172883 -0.688480117 -0.339671117 -0.616671117 -1.722902117	0.0150438830.6761519250.0213548830.9805999251.718473000-0.4847670001.351492000-1.9530960001.663268000-0.8794610003.2517430000.404136000-1.2986938830.1926360750.1831728832.078889925-0.6884801173.202066925-0.3396711173.992286925-0.6166711173.535030925-1.7229021172.945240925

HP(NH₂)H·BCl₃ 21a

15	-1.270383000	0.911629000	-0.011454000
1	-1.395592000	1.787721000	1.081907000
1	-1.400058000	1.759458000	-1.126251000
5	0.453358000	-0.073936000	0.000540000
17	1.748158000	1.240563000	-0.010263000
17	0.429482000	-1.081815000	1.555533000
17	0.436180000	-1.114384000	-1.532464000
7	-2.731679000	0.059749000	-0.000368000
1	-2.856522000	-0.514743000	0.827075000
1	-2.872065000	-0.509621000	-0.828735000

References

¹ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y., Nanavakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian 03, Revision B.05, Gaussian Inc., Pittsburgh PA, 2003. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648; (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785; (c) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
³ (a) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639. (b) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. (c) Wachters, A. J. H. J. Chem. Phys. 1970, 52, 1033. (d) Hay, P. J. J. Chem. Phys. 1977, 66, 4377. (e) Raghavachari, K.; Trucks, G. W. J. Chem. Phys. 1989, 91, 1062.