Supporting Information for:

A Homologous Heterospin Series of Mononuclear Lanthanide/TCNQF₄

Organic Radical Complexes

Nazario Lopez,^a Hanhua Zhao,^a Andrey V. Prosvirin,^a Wolfgang Wernsdorfer^b and Kim

R. Dunbar^{a*}

[^a] Department of Chemistry, Texas A&M University, College Station, TX 77842 (USA). Fax: (+1) 979-845-7177; Tel: (+1) 979-845-5235. e-mail: dunbar@mail.chem.tamu.edu
[^b] Institut Néel, CNRS & Université J. Fourier, BP-166, Grenoble, Cedex 9 (France)

Contents:

1.	Structure of TCNQF ₄	iii
2.	Color version of figure 1. Molecular structure of compound Ho	iii
3.	Color version of figure 2. Packing diagram of Ho	iv
4.	Temperature dependence of the χT product for La	v
5.	Field dependent magnetization of La	v
6.	Temperature dependence of the χT product for Y	vi
7.	Field dependent magnetization of Y	vi
8.	Hysteresis loop for Dy	vii
9.	FC-ZFC and remanent magnetization of Dy	vii
10.	Temperature dependence of the χT product for dehydrated Gd	viii
11.	Temperature dependence of the χT product for dehydrated D y	viii
12.	FC-ZFC and remanent magnetization of dehydrated Gd	ix
13.	FC-ZFC and remanent magnetization of dehydrated $\mathbf{D}\mathbf{y}$	ix
14.	AC susceptibility studies of Gd	х
15.	AC susceptibility studies of Dy	xi
16.	AC susceptibility studies of dehydrated Gd	xii
17.	AC susceptibility studies of dehydrated Dy	xiii
18.	AC susceptibility studies of diluted compounds 7 and 9	xiv
19.	Micro-SQUID magnetization scans for Dy at several temperatures	XV
20.	Hydrogen-bond distances for Ho	XV
21.	View of the hydrogen bond interactions in the Ho complex	xvi

Scheme S1. Schematic drawing of TCNQF₄. The bond lengths used in the Kistenmacher relationship are labeled with the corresponding lower case letters.

Figure S1. Color version of Figure 1. Molecular structure of the cationic complex along with the uncoordinated TCNQF₄ molecule in **Ho**. Interstitial water molecules and hydrogen atoms have been omitted for the sake of clarity. Ho = pink, O = red, N = blue, C = gray F = green.

Figure S2. Color version of figure 2. Packing diagrams of the **Ho** compound (a) viewed along the *a* axis and (b) depicting – stacking interactions in the crystal structure of **Ho**. The interstitial water molecules are omitted for the sake of clarity. Blue = the cationic complex $[Ho(TCNQF_4)_2(H_2O)_6]^+$, which has the unstacked TCNQF₄ moleculey pointing down; red = the cationic complex $[Ho(TCNQF_4)_2(H_2O)_6]^+$, for which the unstacked TCNQF₄ unit is pointing up; green = uncoordinated TCNQF₄ molecules.

Figure S3. Temperature dependence of the χT product for La. The solid line is the best fit to a Heisenberg chain model with the Hamiltonian H = $-2J\Sigma S_i S_{i-1}$, and parameters: $J = -140 \text{ cm}^{-1}$, g = 2.00.

Figure S4. The field dependent magnetization of the La complex at 1.8 K, in the range of 0-7 T. The solid line is the Brillouin function fit with parameters of $1.12 \text{ S} = \frac{1}{2}$ and g = 2.0.

Figure S5. Temperature dependence of the χT product for **Y**. The solid line is the best fit to a Heisenberg chain model with the Hamiltonian H = $-2J\Sigma S_i S_{i-1}$, and parameters: $J = -230 \text{ cm}^{-1}$, g = 2.00.

Figure S6. The field dependent magnetization of the Y complex at 1.8 K, in the range of 0-7 T. The solid line is the Brillouin function fit with parameters $S = \frac{1}{2}$ and g = 2.05.

Figure S7. Hysteresis loop for the Dy complex.

Figure S8. Field-cooled (FC), zero-field-cooled (ZFC) and remanent magnetization (RM) of the **Dy** complex.

Figure S9. Temperature dependence of the χT product for dehydrated Gd.

Figure S10. Temperature dependence of the χT product for dehydrated Dy.

Figure S11. Field-cooled (FC), zero-field-cooled (ZFC) and remanent magnetization (RM) of dehydrated **Gd**.

Figure S12. Field-cooled (FC), zero-field-cooled (ZFC) and remanent magnetization (RM) of dehydrated **Dy**.

Figure S13. Temperature dependence of the real χ' and imaginary χ'' components of the AC magnetic susceptibility of the **Gd** complex measured in an oscillating field of 3 Oe at different frequencies.

Figure S14. Temperature dependence of the real χ' and imaginary χ'' components of the AC magnetic susceptibility of the **Dy** complex measured in an oscillating field of 3 Oe at different frequencies.

Figure S15. Temperature dependence of the real χ' and imaginary χ'' components of the AC magnetic susceptibility of the dehydrated **Gd** compound measured in an oscillating field of 3 Oe at different frequencies.

Figure S16. Temperature dependence of the real χ' and imaginary χ'' components of the AC magnetic susceptibility of the dehydrated **Dy** compound measured in an oscillating field of 3 Oe at different frequencies.

Figure S17. Temperature dependence of the imaginary χ'' component of the AC magnetic susceptibility for compounds 7 (top) and 9 (bottom) measured in an oscillating field of 5 Oe at zero applied magnetic field.

Figure S18. Micro-SQUID magnetization scans collected for **Dy** at temperatures from 0.04 K to 1.1 K at 0.004 T/s. Magnetization values are normalized to the magnetization value at 1.0 T.

D—Н […] А	D—H (Å)	H A (Å)	D A (Å)	D—H A (°)		
01—H1A N9	0.80(3)	2.04(5)	2.84(8)	171(8)		
01—H1B O1S	0.81(3)	1.96(8)	2.78(1)	171(0)		
O3—H3A O2S	0.80(3)	1.87(8)	2.68(1)	169(7)		
O4—H4A O3S	0.87(3)	1.87(2)	275(5)	166(0)		
O1S—H1SA […] O2S	0.83(3)	2.12(6)	2.95(9)	153(7)		

Table S1. Hydrogen-bond distances for Ho

Figure S19. View of the hydrogen bond interactions in the **Ho** complex. Ho = pink, O = red, N = blue, C = gray, F = yellow, H = light blue.