Supplementary Data to

Salts of the 1-Cyanocarba-*closo*-dodecaborate Anions [1-NC-*closo*-1-CB₁₁X₁₁]⁻ (X = H, F, Cl, Br, I)

Maik Finze, *^a Jan A. P. Sprenger^a and Bernd Bastian Schaack^b

 ^a Institut für Anorganische Chemie und Strukturchemie II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
 ^b Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany Electronic Supplementary Information for Dalton Transactions This journal is @ The Royal Society of Chemistry 2010

Fig. S1. MALDI-mass spectra of $[1-NC-closo-1-CB_{11}X_{11}]^-$ (X = H (1), Cl (3), Br (4), I (5)) and ESI-mass spectrum of $[1-NC-closo-1-CB_{11}F_{11}]^-$ (2).

Fig. S2. (–)-ESI mass spectrum of [1-NC-6-HO-*closo*-1-CB₁₁F₁₀]⁻ in CH₃CN containing a small amount of aqueous HCl (1 mol L⁻¹).

Fig. S3. ¹⁹F NMR spectrum of $[1-NC-6-HO-closo-1-CB_{11}F_{10}]^-$ measured in CH₃CN containing a small amount of aqueous HCl (1 mol L⁻¹).

Fig. S4. ¹¹B NMR spectrum of $[1-NC-6-HO-closo-1-CB_{11}F_{10}]^-$ measured in CH₃CN containing a small amount of aqueous HCl (1 mol L⁻¹).

Fig. S5. Calculated structures and calculated $\tilde{v}(CN)$ of $[1-NC-6-HO-closo-1-CB_{11}F_{10}]^-$ and $[1-NC-4,6-(HO)_2-closo-1-CB_{11}F_9]^-$ at the B3LYP/6-311++G(d,p) level of theory.

Fig. S6. ¹¹B{¹H} NMR spectra of $[1-NC-closo-1-CB_{11}X_{11}]^-$ (X = H (1), F (2), Cl (3), Br (4), I (5)).

Fig. S7. ¹¹B{¹H} NMR spectra of $[1-NC-closo-1-CB_{11}X_{11}]^-$ (X = H (1), F (2), Cl (3), Br (4), I (5))]. (The vibrational spectra of Cs[1-NC-*closo*-1-CB_{11}F_{11}] (Cs[2]) are not depicted due to small amounts of impurities present in the salt.)

Electronic Supplementary Information for Dalton Transactions This journal is C The Royal Society of Chemistry 2010

Anion			2–6		F7-11		F12		B2–6			B7-11		B12	Ref.
$[1-NC-closo-1-CB_{11}F_{11}]^{-}(1)$	exp.	-25	52.9		-256.0		-241.3		-16.8			-16.8		-6.5	с
	calc.	-28	84.5		-287.8		-268.0		-17.8			-17.5		-7.0	с
$[1-H-closo-1-CB_{11}F_{11}]^{-}$	exp.	-25	57.2		-256.7		-253.1		-18.2			-16.6		-8.5	1, 2
	calc.	-29	91.6		-289.1		-282.0		-19.9			-17.7		-9.4	с
$[1-H_2N-closo-1-CB_{11}F_{11}]^-$	exp.	-25	55.9		-263.3		-252.7		-18.5			-17.3		-10.7	2
	calc.	-29	90.9	-295.9			-281.0		-20.0			-18.3		-11.8	2
		F2+5	F3+4	F7+9	F8	F10+11	F12	B2+5	B3+4	B6	B7+9	B8	B10+11	B12	
$[1-NC-6-HO-closo-1-CB_{11}F_{10}]^-$	exp. ^{d, e}	. ^{d, e} –253.0 –252.2 (–2			-259.6	259.6 (-255.5) -241.9								-5.5	с
	calc.	-286.5	-284.1	-287.6	-288.8	-287.6	-266.5	-17.6	-17.4	-18.8	-17.4	-17.5	-16.7	-6.2	с
$[1-H_2N-6-HO-closo-1-CB_{11}F_{10}]^-$	exp.	-255.8	-254.9	-263.1	-265.0	-262.2	-251.9	-18.1	-18.1	-19.7	-17.3	-18.1	-16.7	-10.4	2
	calc.	-292.8	-291.2	-295.4	-297.0	-294.8	-280.0	-20.2	-20.3	-22.0	-18.4	-18.5	-17.7	-10.6	2
		F2+3	F5	F7	F8+11	F9+10	F12	B2+3	B4+6	В5	B7	B8+11	B9+10	B12	
[1-NC-4,6-(HO) ₂ -closo-1-CB ₁₁ F ₉] ⁻	calc.	-288.2	-285.0	-289.1	-289.4	-286.2	-265.5	-17.2	-18.7	-17.0	-17.5	-16.8	-16.7	-6.0	с
[1-H ₂ N-4,6-(HO) ₂ -closo-1-CB ₁₁ F ₉] ⁻	exp.	-254.8	-254.0	-262.9	-263.8	-262.0	-251.1	-17.7	-19.8	-17.7	-17.3	-17.0	-16.6	-10.2	2
	calc.	-290.7	-292.9	-296.1	-299.2	-295.2	-279.4	-19.4	-22.4	-19.5	-18.1	-17.9	-17.2	-11.3	2

Table S1 Experimental and calculated^{a 19}F and ¹¹B chemical shifts [ppm]^b

^{*a*} GIAO-B3LYP/6-311++G(2d,p) with geometries calculated at the B3LYP/6-311++G(d,p) level of theory. ^{*b*} δ in ppm. ^{*c*} This work. ^{*d*} Assignment based on calculated chemical shifts. ^{*e*} Measured in CH₃CN containing a small amount of aqueous HCl (1 mol L⁻¹).

	[1-NC- <i>closo</i> -1-CB ₁₁ H ₁₁] ⁻ (1)			$[1-NC-closo-1-CB_{11}F_{11}]^{-}$ (2)			$[1-NC-closo-1-CB_{11}Cl_{11}]^{-}$ (3)			[1-NC- <i>closo</i> -1-CB ₁₁ Br ₁₁] ⁻ (4)			$[1-NC-closo-1-CB_{11}I_{11}]^{-}(5)$		
	NBO	APT	Mulliken	NBO	APT	Mulliken	NBO	APT	Mulliken	NBO	APT	Mulliken	NBO	APT	Mulliken
Ν	-0.36	-0.44	-0.12	-0.28	-0.33	-0.17	-0.26	-0.26	-0.13	-0.25	-0.24	-0.13	-0.25	-0.22	-0.08
С	0.37	0.28	-1.13	0.33	0.21	-0.06	0.33	0.12	-0.48	0.33	0.09	0.21	0.33	0.07	-0.07
C _{cluster}	-0.66	-0.21	-2.08	-0.71	-0.34	-0.97	-0.78	-0.32	2.29	-0.83	-0.34	1.66	-0.91	-0.38	2.47
B26	0.03	0.15	-0.24	0.54	0.60	-0.30	0.18	0.40	-0.92	0.09	0.34	-0.45	-0.07	0.26	-0.64
B7-11	-0.17	0.07	0.61	0.35	0.51	-0.48	-0.03	0.27	1.04	-0.13	0.20	-0.19	-0.30	0.11	-0.17
B12	-0.13	0.12	0.00	0.38	0.61	-0.48	0.03	0.37	2.35	-0.06	0.30	0.15	-0.23	0.20	-0.17
X2-6	0.04	-0.15	-0.30	-0.46	-0.58	0.45	-0.08	-0.38	-0.36	0.02	-0.31	0.06	0.19	-0.22	0.10
X7-11	0.05	-0.18	-0.40	-0.47	-0.63	0.39	-0.11	-0.39	-0.60	-0.01	-0.32	0.00	0.16	-0.23	0.06
X12	0.04	-0.18	-0.33	-0.47	-0.64	0.38	-0.11	-0.41	-0.79	-0.01	-0.33	0.00	0.16	-0.24	0.05

 $\textbf{Table S2} Calculated NBO, ^{a} APT^{b} and Mulliken^{c} partial charges of [1-NC-closo-1-CB_{11}X_{11}]^{-} (X = H (1), F (2), Cl (3), Br (4), I (5))$

References

- S. V. Ivanov, J. J. Rockwell, O. G. Polyakov, C. M. Gaudinski, O. P. Anderson, K. A.
 Solntsev and S. H. Strauss, J. Am. Chem. Soc., 1998, 120, 4224-4225.
- S2 M. Finze, G. J. Reiss and M. Zähres, *Inorg. Chem.*, 2007, 46, 9873-9883.