Metal oxide-organic frameworks (MOOFs), a new series of coordination hybrids constructed from molybdenum(VI) oxide and bitopic 1,2,4-triazole linkers

Andrey B. Lysenko,^a Ganna A. Senchyk,^a Jörg Lincke,^b Daniel Lässig,^b Andrey A. Fokin,^c Ekaterina D. Butova,^c Peter R. Schreiner,^d Harald Krautscheid^b and Konstantin V. Domasevitch^{*a}

^{*a*} Inorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodimirska Street 64, Kyiv 01033, Ukraine. E-mail: dk@univ.kiev.ua

^b Institut für Anorganische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Deutschland

^c Department of Organic Chemistry, Kiev Polytechnic Institute, Peremogy Ave 37, Kyiv 03056, Ukraine.

^{*d*} Institut für Organische Chemie, Justus-Liebig Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Deutschland

SUPPORTING INFORMATION -

Details for weak interactions (convenient hydrogen bonding OH---O, NH---N,O; weak hydrogen bonding CH---O) in the structures 1-7

Donor	Hydrogen	a Acceptor	DA/ Å	D-H/ Å	HA/ Å	∠DHA/°		
$[Mo_4O_{12}(tr_2eth)_2]$ (1)								
C1 C2 C4 C5	H1 H2 H4 H5	O6 (1.5- <i>x</i> , 1.5- <i>y</i> , -0.5+ <i>z</i>) O4 (1.5- <i>x</i> , 1.5- <i>y</i> , 0.5+ <i>z</i>) O5 O3 (1.5- <i>x</i> , 1.5- <i>y</i> , -0.5+ <i>z</i>)	2.972(14) 3.148(15) 2.961(14) 3.039(14)	0.94 0.94 0.94 0.94	2.35 2.39 2.23 2.30	123.2 137.9 134.3 135.2		
[Mo ₂ O ₆	$(tr_2 cy)]$ (3))						
C1 C2	H1 H2	O3 (0.5+ <i>x</i> , 0.5- <i>y</i> , 1- <i>z</i>) O1 (- <i>x</i> , 0.5- <i>y</i> , <i>z</i>)	2.949(7) 3.079(7)	0.94 0.94	2.33 2.34	122.7 134.7		
$[MoO_3(trtz)]$ (7)								
Conventional hydrogen bonding: The bifurcated NH…N,O bond of tetrazole group								
N7 N7	H1N H1N	N6 (-0.5- <i>x</i> , 0.5- <i>y</i> , 0.5- <i>z</i>) O2 (-0.5+ <i>x</i> , <i>y</i> , 0.5- <i>z</i>)	2.937(3) 3.004(3)	0.87 0.87	2.42 2.23	118.6 147.9		
	Weak hydrogen bonding CH…O							
C1 C2	H1 C H2 C	$\begin{array}{l} 0.5 \\$	3.018(3) 2.938(2)	0.94 0.94	2.29 2.30	134.0 124.3		

Table S1 Weak interactions in structures $[Mo_4O_{12}(tr_2eth)_2]$ **1**, $[Mo_2O_6(tr_2cy)]$ **3** and $[MoO_3(trtz)]$ **7** (**Type A**)

Table S2 Weak interactions in structures	$[Mo_2O_6(tr_2pr)]$ 2 , $[Mo_2O_6(tr_2ad)]$ ·6H ₂ O 4 and
[Mo ₂ O ₆ (4,9- <i>tr</i> ₂ <i>dia</i>)]·0.5H ₂ O 5 (Type B).	

Donor	Hydrogen	Acceptor	DA/ Å	D-H/ Å	H…A/ Å	∠DH…A/°				
[Mo ₂ O ₆	$[Mo_2O_6(tr_2pr)]$ (2)									
C1 C2 C3 C4	H1 H2 H3 H4	O6 (0.5- <i>x</i> , 2- <i>y</i> , -0.5+ <i>z</i>) O3 (0.5- <i>x</i> , 2- <i>y</i> , 0.5+ <i>z</i>) O2 (1- <i>x</i> , -0.5+ <i>y</i> , -0.5- <i>z</i>) O5 (1- <i>x</i> , -0.5+ <i>y</i> , 0.5- <i>z</i>)	3.165(5) 2.889(5) 3.040(5) 3.158(5)	0.93 0.93 0.93 0.93	2.32 2.39 2.29 2.50	150.6 113.4 137.2 128.0				
[Mo ₂ O ₆	$[Mo_2O_6(tr_2ad)]$ ·6H ₂ O (4)									
	Conventional hydrogen bonding OH…O									
O5 O5 O6 O7 ^{a)} O8 O8	H1W H2W H3W H3W H5W H6W H7W	O1 (1+ <i>x</i> , <i>y</i> , <i>z</i>) O7 O2 (0.5- <i>x</i> , <i>y</i> -0.5, <i>z</i> -0.5) O5 (1- <i>x</i> , -0.5+ <i>y</i> , - <i>z</i>) O8 (0.5+ <i>x</i> , <i>y</i> , -0.5- <i>z</i>) O4 (- <i>x</i> , -0.5+ <i>y</i> , - <i>z</i>) O6	2.886(3) 2.703(5) 2.965(3) 2.753(3) 2.749(3) 3.085(3) 2.807(4)	0.86 0.83 0.82 0.86 0.89 0.83 0.89	2.03 1.88 2.16 1.89 1.87 2.32 2.00	171.9 174.5 170.3 172.4 169.2 154.2 151.1				
Weak hydrogen bonding CH…O										
C1 C2 ^{a)} Atom	H1 H2 O7 is situat	O4 (- x , 1- y , - z) O2 (0.5- x , 1- y , -0.5+ z) ed on a mirror plane, only	3.120(3) 3.162(3) y one H atom i	0.94 0.94 is unique (H5	2.35 2.40 W).	139.4 137.6				
$[Mo_2O_6(4,9-tr_2dia)] \cdot 0.5H_2O$ (5)										

	C1	H1	O3 (0.5- <i>x</i> , 1.5- <i>y</i> , 1- <i>z</i>)	3.057(3)	0.93	2.23	146.7	
--	----	----	---	----------	------	------	-------	--

Figure S1. Weak CH···O hydrogen bonding in the structure of $[Mo_2O_6(tr_2cy)]$ (3). Symmetry codes: a) *x*, 1-*y*, 0.5-*z*; b) 0.5+*x*, 0.5-*y*, 1-*z*; c) –*x*, 0.5-*y*, *z*.

Figure S2. Weak CH···O hydrogen bonding in the structure of $[MoO_3(trtz)]$ (7). Symmetry codes: a) 0.5-*x*, -*y*, 0.5+*z*; b) 0.25-*y*, 0.25+*x*, -0.25+*z*.

Figure S3. The bifurcated hydrogen bonding of the tetrazole group in the structure of [MoO₃(*trtz*)] (7), viewed along the direction of Mo-oxide helices. Symmetry codes: c) -0.5-*x*, 0.5-*y*, 0.5-*z*; d) -0.5+*x*, *y*, 0.5-*z*.

When neglecting N7-H---O2d branch of this bifurcated bond, the hydrogen bonded dimer tetrazole/tetrazole provides simple connection of the ligands into "extended linker" between MoO₃ helices. This convenient scheme was used for the discussion of the resulting 3D structure, as five-fold interpenetrated "**asf**" framework. However, taking into account the additional NH----O interactions (which completely cross all the interpenetrated nets), the interpenetration disappears and a single 3D framework of complex topology is found.

Figure S4. Weak CH···O hydrogen bonding in the structure of $[Mo_2O_6(tr_2ad)]$ ·6H₂O (4) Symmetry codes: a) x, 0.5-y, z; b) -0.5+x, y, -0.5-z; c) -x, 1-y, -z; d) 0.5-x, 1-y, -0.5+z.

Figure S5. Weak CH…O hydrogen bonding in the structure of [Mo₂O₆(4,9-*tr*₂*dia*)]·0.5H₂O **(5)** Symmetry codes: a) –*x*, *y*, *z*; b) *x*, 2-*y*, 2-*z*; c) –*x*, 2-*y*, 2-*z*; d) 0.5-*x*, 1.5-*y*, 1-*z*.

Figure S6. Weak CH···O hydrogen bonding in the structure of $[Mo_4O_{12}(1,6-tr_2dia)]$ ·2H₂O (6).

> Note the CH···O bonding with aliphatic diamantane skeleton and the structural role of solvate water molecule. Also notable feature is a specific O··· π interaction with the triazole ring: O5···C(N) 3.069-3.411 Å; O5··· π 3.029 Å.

Table S3 Weak interactions in structure $[Mo_4O_{12}(1,6-tr_2dia)]$ ·2H₂O (6).

Donor	Hydrogen	Acceptor	DA/ Å	D-H/ Å	H…A/ Å	∠DH…A/ °
07	H2W	O4 (1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>)	3.168(5)	0.86	2.31	171.4
07	H1W	O5	3.000(5)	0.86	2.14	171.3
C1	H1	O7 (1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>)	3.227(6)	0.94	2.44	141.0
C7	H7B	O5 (- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>)	3.444(4)	0.98	2.50	162.4
C2	H2	O6 (- <i>x</i> , - <i>y</i> , 1- <i>z</i>)	3.215(4)	0.94	2.28	172.1