Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010 OCHTAHEDRAL IRON (II) PHTHALOCYANINE COMPLEXES: MULTINUCLEAR NMR AND RELEVANCE AS NO₂ CHEMICAL SENSORS

Pascual Oña Burgos,[†] María Casimiro,[†] Ignacio Fernández^{†,*} Angel Valero Navarro,[‡] Jorge F. Fernández Sánchez,^{‡,*} Antonio Segura Carretero,[‡] Alberto Fernández Gutiérrez[‡]

[†] Área de Química Orgánica, Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain. [‡] Department of Analytical Chemistry, University of Granada. Av. Fuentenueva s/n, 18071, Granada, Spain.

Contents:

- Figure 1. ¹H NMR (500.13 MHz) spectrum of 4 in THF- d_8 .
- Figure 2. ¹³C NMR (125.7 MHz) spectrum of 4 in THF- d_8 .
- Figure 3. ¹H NMR (500.13 MHz) spectrum of **5** in THF- d_8 .
- Figure 4. ¹³C NMR (125.7 MHz) spectrum of **5** in THF- d_8 .
- Figure 5. ¹H NMR (500.13 MHz) spectrum of **6** in THF- d_8 .
- Figure 6. ³¹P NMR (202.4 MHz) spectrum of **6** in THF- d_8 .
- Figure 7. ¹H, ¹⁵N gHMQC NMR spectrum of **6** in THF- d_8 .
- Figure 8. ³¹P, ⁵⁷Fe HMQC NMR spectrum of **6** in THF- d_8 .
- Figure 9. ¹H NMR (500.13 MHz) spectrum of 7 in THF- d_8 .
- Figure 10. ³¹P NMR (202.4 MHz) spectrum of **7** in THF- d_8 .
- Figure 11. ¹³C NMR (75.5 MHz) spectrum of 7 in THF- d_8 .
- Figure 12. ¹H, ¹⁵N gHMQC NMR spectrum of **7** in THF-*d*₈.
- Figure 13. ³¹P,⁵⁷Fe HMQC NMR spectrum of **7** in THF-d₈.
- Figure 14. Calibration curve for the NO₂sensing film.
- Figure 15. Stability graphs as a function of time & temperature for sensing layers containing 4-5.
- Figure 16. Stability graphs as a function of time & temperature for sensing layers containing 6-7.
- Figure 17. ¹H NMR of the THF cocktail based on **1**:benzylamine in the ratio 1:30.
- Figure 18. ¹H NMR of the THF cocktail based on **1**:benzylamine:P(OEt)₃) in the ratio 1:30:15.
- Figure 19. Molecular absorption spectra for the THF coktails for 2-5.
- Figure 20. Molecular absorption spectra for the coktails for 6 and 7.
- Figure 21. Molecular absorption spectra for complex 7 in THF solution and incorporated into the film

Figure 1. ¹H NMR (500.13 MHz) spectrum of **4** in THF- d_8 .

Figure 2. ¹³C NMR (125.7 MHz) spectrum of **4** in THF- d_8 .

Figure 3. ¹H NMR (500.13 MHz) spectrum of **5** in THF- d_8 .

Figure 4. ¹³C NMR (125.7 MHz) spectrum of 5 in THF- d_8 .

Figure 5. ¹H NMR (500.13 MHz) spectrum of **6** in THF- d_8 .

Figure 6. ³¹P NMR (202.4 MHz) spectrum of **6** in THF- d_8 .

Figure 7. ¹H, ¹⁵N gHMQC NMR spectrum of **6** in THF- d_8 .

Figure 8. ³¹P, ⁵⁷Fe HMQC NMR spectrum of **6** in THF- d_8 .

Figure 9. ¹H NMR (500.13 MHz) spectrum of **7** in THF.

Figure 10. ³¹P NMR (202.4 MHz) spectrum of **7** in THF.

Figure 11. ¹³C NMR (75.5 MHz) spectrum of **7** in THF- d_8 .

Figure 12. ¹H, ¹⁵N gHMQC NMR spectrum of **7** in THF.

Figure 13. ³¹P,⁵⁷Fe HMQC NMR spectrum of **7** in THF.

Figure 14. Calibration curve of complex 7 immobilized into AP200/19 for NO₂; the calculated LOD is 1.2 ppb. A_0 is the absorbance before exposure to NO₂ and A_x is the absorbance upon exposure to NO₂ for 300 s in air with 50% RH at a flow rate of 200 mL min⁻¹.

Electronic Supplementary Information for Dalton Transactions This journal is o The Royal Society of Chemistry 2010

Figure 15. Stability studies at (\bullet) 4°C, (\bullet) 25°C and (\blacktriangle) 60°C for sensing layers containing a) complex 4, and b) complex 5, incorporated into AP200/19. A₀ is the absorbance before exposure to NO₂ and A_x is the absorbance upon exposure to NO₂ for 300 s in air with 50% RH.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Figure 16. Stability studies at (\bullet) 4°C, (\bullet) 25°C and (\blacktriangle) 60°C for sensing layers containing a) complex **6**, and b) complex **7**, incorporated into AP200/19. A₀ is the absorbance before exposure to NO₂ and A_x is the absorbance upon exposure to NO₂ for 300 s in air with 50% RH.

1H, j23mt+b, 1:30

Figure 17. ¹H NMR of the THF cocktail based on **1**:benzylamine, in the ratio 1:30. Complex **3** can be clearly identified among THF and benzylamine signals.

1H, j23mt+b+f, 1:30:15

Figure 18. ¹H NMR of the THF cocktail based on 1:benzylamine: $P(EtO)_3$), in the ratio 1:30:15. Complex 7 can be clearly identified among THF, benzylamine, and triethylphosphite signals.

Figure 19. Absorption spectra of complexes 2-5 (FePc:amine molar ratio 1:30) immobilized into AP200/19 in air with 50% RH and at flow-rate of 200 mL min⁻¹.

Figure 20. Absorption spectra of the cocktails for complexes **6** and **7** formation (FePc:amine:P(OEt)₃ molar ratio 1:30:15) immobilized into AP200/19 in air with 50% RH and at flow-rate of 200 mL min⁻¹.

Figure 21. Absorption spectra of complex 7 in THF solution (top) and incorporated into AP200/19 (bottom).