SUPPLEMENTARY MATERIAL

**BELONGING TO THE PAPER** 

# Gold(I) Derived Thiosemicarbazone Complexes with rare halogen-halogen interaction – Reduction of [Au(damp-C<sup>1</sup>,N)Cl<sub>2</sub>]

by

Setshaba D. Khanye,<sup>[a]</sup> Nikoletta B. Báthori,<sup>[a]</sup> Gregory Smith,<sup>[a]</sup> and Kelly Chibale\*<sup>[a,b]</sup>

[a] Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
 [b] Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa,
 Phone: +27-21-650-2553, Fax: +27-21-689-7499, E-mail: Kelly.Chibale@uct.ac.za

# 1. Single Crystal X-ray Diffraction

**Summary of X-ray crystallography.** Crystal intensity data were collected on a Nonius Kappa CCD Single Crystal X-ray Diffractometer, using a graphite monochromated MoK $\alpha$  radiation ( $\lambda$ = 0.7107 Å, T= 173K) generated by a Nonius FR590 generator at 50 kV and 30 mV. A series of frames were recorded, each of width 1° in  $\phi$  or in  $\omega$  to ensure completeness of the data collected to  $\theta$ >28°. The unit cell was indexed from the first 10 frames, and positional data were refined along with diffractometer constants to give the final cell parameters. The strategy for data collection was evaluated using COLLECT<sup>1</sup> software. Integration and scaling (DENZO and Scalepack<sup>2</sup>) resulted in unique data sets corrected for Lorentz polarization effects and for the effects of crystal decay and absorption by a combination of averaging of equivalent reflection and overall volume and scaling CHELXS-97<sup>3</sup> and refined using full-matrix least squares methods in SHELXL-97<sup>3</sup>, with the aid of the program X-Seed.<sup>4</sup> The analysis of short contacts was carried out using PLATON.<sup>5</sup>

**Crystal data for 1** (CCDC No.720892 ): a) The crystals of 1 were grown by slow evaporation from a solution of acetonitrile.  $C_{18}H_{20}N_6Au_1Br_2S_2^+$ .CF.2(C<sub>2</sub>H<sub>3</sub>N), M = 858.86, Monoclinic, C2/c (No. 15), a= 11.846(2)Å, b= 10.358(2)Å, c= 24.577(5)Å, β= 101.89(3)°, V= 2950.9(10)Å3, Z=4, Dcalc= 1.933 Mg/m3, μ= 7.952mm-1, F(000)= 1648, crystal size: 0.01x 0.01x 0.01mm, T=173K, MoKα=0.71073Å, Θmin-max= 2.6-25.3°, No. of total reflections= 12752, No. of uniq reflections= 2705, Rint= 0.055, No. of I>2.0sigma(I)= 2313, Nref= 2705, Npar= 167, R= 0.0321, wR2= 0.0688, S= 1.05, w=1/[s2\(Fo2)+(0.0517P)2+0.1749P] where P=(Fo2+2Fc2)/3), Max. and Av. Shift/Error= 0.00, 0.00, Min. and Max. Resd. Dens.=-0.83, 1.12e/Å3.

**Crystal data for 2** (CCDC No. 720893): b) The crystals of **2** were grown by slow evaporation from a solution of acetonitrile.  $C_{18}H_{18}N_6S_2AuCl_4^+$ .Cl<sup>-</sup>.2(C<sub>2</sub>H<sub>3</sub>N), M = 838.83, Monoclinic, C2/c (No. 15), a= 11.776(2)Å, b= 10.658(2)Å, c= 24.515(5)Å, β= 96.79(3)°, V= 3055.3(10)Å3, Z=4, Dcalc= 1.824Mg/m3, μ= 5.417 mm-1, F(000)= 1632 crystal size: 0.05x 0.05x 0.05mm, T=173K, MoKα=0.71073Å, Θmin-max= 2.6-25.7°, No. of total reflections= 9300, No. of uniq reflections= 2889, Rint= 0.040, No. of I>2.0sigma(I)= 2377, Nref= 2889, Npar= 176, R= 0.0330, wR2= 0.0702, S= 1.07, w=1/[s2\(Fo2)+(0.0517P)2+0.1749P] where P=(Fo2+2Fc2)/3), Max. and Av. Shift/Error= 0.00, 0.00, Min. and Max. Resd. Dens.= -1.18, 1.74e/Å3.



**Figure S1:** RMS of overlay fit of the two molecules is 0.0279Å (all atoms were overlayed from 1 and 2 from the gold-coordinated thiosemicarbazone cation except the aromatic halogens.<sup>6</sup>



Figure S2: The fitted structure of 1 (red) and 2 (blue) from view down a axis (a), b axis (b) and c axis (c).



**Figure S3:** Results of cell similarity (a) and isostructurality (b) calculation of **1** and **2**. The following indices were used to comparison of structures: (i) cell similarity index:  $\prod = [(a+b+c)/(a'+b'+c')] - 1$ , where *a*, *b*, *c* and *a'*, *b' c'* are the orthogonalized lattice parameters of the related crystals. In the event of great similarity of the two unit cells  $\pi$  is lose to zero. (ii) mean elongation:  $\varepsilon = (V'/V)^{1/3} - 1$ , which describes the difference in cell size, while (iii) asphericity index:  $A = (2/3)[1 - \sum_{j>i} \{[(1+\varepsilon)M_i - 1]x[(1+\varepsilon)M_j - 1]/3\varepsilon^2\}^{1/2}$  accounts for the shape distortion. In the event of great similarity of the

two unit cells  $\varepsilon$  and A close to zero. (iv) isostructurality index:  $I_i(n) = [1 - (\sum \square R^2 i/n)^{1/2} x 100\%$ .  $I_i(n)$  takes into account both the differences in the geometry of the molecules and the positional differences caused by rotation and translation. The isostructurality index for 1 and 2 was calculated for 33 heavy atoms. (v) volumetric isostructurality index:  $I_v = 2V_0/(V_1+V_2)x100\%$ , expressed as the ratio of volume overlap to the average volume. In the event of great similarity of the two unit cells  $I_v$  close to 100%, when (vi)  $I_{vmax} = (2\min\{V_1, V_2\})/(V_1+V_2)x100\%$  when  $V_1 \neq V_2$  is the theoretical maximum of *T*he cell similarity index,  $\Pi = 0.006$ , the lattice distortion index,  $\varepsilon A = 0.035$ . The isostructurality indices show the two structures are isostructural ( $I_v = 80.7\%$ ,  $I_{vmax} = 98.9\%$ ).

Analysis of Cl...Cl contact in structure 2: The Cambridge Structural Database (version 5.29, November 2008) was searched for Cl...Cl intermolecular contacts within the sum of their van der Waals radii with the following filters: R factor < 0.05, no errors in crystal structures, no ions, not disorder, not polymeric, no powder structures, 3D coordinates determined. No any refcode restriction was applied. We got 39 hits and they were refined with the following filters: (i) -C(X)-C(X)- torsion angle= ca.-5 - +5, (ii) the angle of the fitted plane for -C(X)-C(X)- atoms and for the corresponding atom pairs (-C(X')-C(X')-) is close to 0 and (iii) the distance of the previously defined planes is < 1Å. All the chlorine tetramers are built from symmetry generated chlorine-chlorine dimers and the halogens atom is bonded to an sp<sup>2</sup> carbon, promoting the planarity of the interaction. The final number of analyzed hits is 16 and they are detailed in Table 1.

|     | Refcode  | ANG1 (°) | DIST1(Å) | TOR1 (°) |
|-----|----------|----------|----------|----------|
| 1   | ATUYIX   | 0        | 3.423    | -0.689   |
| 2   | CABTII   | 0        | 3.454    | 5.473    |
| 3   | COFPAO10 | 0        | 3.456    | -1.826   |
| 4   | DESKER01 | 0.034    | 3.499    | -2.076   |
| 5   | QOXWAB   | 0.02     | 3.496    | 1.603    |
| 6   | TCLOBQ02 | 0        | 3.431    | 1.964    |
| 7   | UFEROM   | 0.028    | 3.448    | -0.84    |
| 8   | WATHIJ   | 0.02     | 3.399    | 2.936    |
| 9   | WATHOP   | 0        | 3.363    | 1.013    |
| 10  | YEBHIW   | 0        | 3.446    | 2.296    |
| 11  | YICPOQ   | 0.02     | 3.323    | -0.478   |
| 12  | ZAJFAR   | 0.028    | 3.41     | -2.622   |
| 13a | EDEGIE   | 0        | 3.418    | -0.192   |
| 13b | EDEGIE   | 0.028    | 3.449    | 2.239    |
| 14  | SICLAS   | 0.034    | 3.413    | 0        |
| 15  | NIPYER   | 0        | 3.409    | 1.198    |
| 16  | TINWOD   | 0        | 3.453    | -0.789   |

Table S1: Summary of the results of CSD search for Cl...Cl interaction.

**Table S2**: Crystal Data and Details of the Structure Determination of 1.

#### **Crystal Data**

Formula

C18 H20 N6 AU1 BR2 S2+. 2(C2 H3 N).CL-

858.86 Formula Weight Crystal System Monoclinic Space group C2/c (No. 15) a, b, c [Angstrom] 11.846(2) 10.358(2) 24.577(5) alpha, beta, gamma [deg] 90 101.89(3) 90 V [Ang\*\*3] 2950.9(10)7 4 D(calc) [g/cm\*\*3] 1.933 Mu(MoKa) [ /mm ] 7.952 1648 F(000) Crystal Size [mm] 0.01 x 0.01 x 0.01 **Data Collection** Temperature (K) 173 Radiation [Angstrom] МоКа 0.71073 2.6, 25.3 Theta Min-Max [Deg] Dataset -14: 14 ; -12: 12 ; -29: 29 Tot., Uniq. Data, R(int) 12752, 2705, 0.055 Observed data [I > 2.0 sigma(I)] 2313 Refinement Nref, Npar 2705, 167 R, wR2, S 0.0321, 0.0688, 1.05  $w = 1/[s^{2}(6^{2})+(0.0282P)^{2}+4.8300P]$  where  $P=(Fo^{2}+2Fc^{2})/3$ Max. and Av. Shift/Error 0.00, 0.00 Min. and Max. Resd. Dens. [e/Ang^3] -0.83, 1.12

Table S3: Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms of 1.

| Atom | Х           | У           | Z           | U(eq) [Ang^2] |
|------|-------------|-------------|-------------|---------------|
|      |             |             |             |               |
| Aul  | 0           | 0.15149(3)  | 1/4         | 0.0311(1)     |
| Br1  | 0.62417(6)  | 0.83019(6)  | 0.53292(3)  | 0.0638(3)     |
| S1   | 0.18825(10) | 0.13275(12) | 0.24263(5)  | 0.0350(4)     |
| Nl   | 0.3852(3)   | 0.2180(4)   | 0.29962(17) | 0.0361(12)    |
| N2   | 0.2275(3)   | 0.3251(3)   | 0.31759(16) | 0.0308(12)    |
| NЗ   | 0.3062(3)   | 0.4030(4)   | 0.35342(16) | 0.0318(12)    |
| C1   | 0.2724(4)   | 0.2339(4)   | 0.28972(18) | 0.0283(17)    |
| C2   | 0.2660(4)   | 0.4790(4)   | 0.38628(19) | 0.0308(16)    |
| С3   | 0.1421(4)   | 0.4903(5)   | 0.3903(2)   | 0.0445(19)    |
| C4   | 0.3530(4)   | 0.5612(5)   | 0.42226(19) | 0.0343(17)    |
| C5   | 0.4579(4)   | 0.5882(5)   | 0.4071(2)   | 0.0398(17)    |
| C6   | 0.5394(5)   | 0.6666(5)   | 0.4400(2)   | 0.0456(17)    |
| C7   | 0.5159(5)   | 0.7178(5)   | 0.4882(2)   | 0.0445(17)    |
| C8   | 0.4160(6)   | 0.6906(6)   | 0.5046(2)   | 0.057(2)      |
| С9   | 0.3339(6)   | 0.6124(6)   | 0.4717(2)   | 0.052(2)      |
| N4   | 0.6153(5)   | 0.3334(5)   | 0.3549(2)   | 0.0582(19)    |
| C10  | 0.7068(5)   | 0.3653(5)   | 0.3563(2)   | 0.0385(17)    |
| C11  | 0.8250(4)   | 0.4039(6)   | 0.3591(2)   | 0.0460(17)    |
| C11  | 0           | 0.47264(15) | 1/4         | 0.0303(5)     |
| / )  | 1/0 0.11    |             |             |               |

U(eq) = 1/3 of the trace of the orthogonalized U Tensor

Electronic Supplementary Information for Dalton Transactions This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2010

| Atom    | Х       | У       | Z      | U(iso) | [Ang^2] |
|---------|---------|---------|--------|--------|---------|
|         |         |         |        |        |         |
| H1A     | 0.43000 | 0.26700 | 0.3243 | 0      | 0.0430  |
| H1B     | 0.41570 | 0.15840 | 0.2816 | 0      | 0.0430  |
| Н2      | 0.15250 | 0.33550 | 0.3136 | 0      | 0.0370  |
| НЗА     | 0.11180 | 0.57410 | 0.3754 | 0      | 0.0670  |
| НЗВ     | 0.13570 | 0.48340 | 0.4293 | 0      | 0.0670  |
| H3C     | 0.09760 | 0.42090 | 0.3687 | 0      | 0.0670  |
| Н5      | 0.47360 | 0.55240 | 0.3739 | 0      | 0.0470  |
| нб      | 0.61050 | 0.68480 | 0.4295 | 0      | 0.0550  |
| Н8      | 0.40210 | 0.72500 | 0.5384 | 0      | 0.0680  |
| Н9      | 0.26390 | 0.59370 | 0.4832 | 0      | 0.0620  |
| H11A    | 0.87380 | 0.36760 | 0.3927 | 0      | 0.0690  |
| H11B    | 0.83030 | 0.49830 | 0.3604 | 0      | 0.0690  |
| H11C    | 0.85100 | 0.37190 | 0.3263 | 0      | 0.0690  |
| ======= |         |         |        |        |         |

#### Table S4 - Hydrogen Atom Positions and Isotropic Displacement Parameters of 1.

The Temperature Factor has the Form of Exp(-T) Where

T = 8\*(Pi\*\*2)\*U\*(Sin(Theta)/Lambda)\*\*2 for Isotropic Atoms
\_\_\_\_\_\_

#### Table S5: (An)isotropic Displacement Parameters of 1.

| Atom | U(1,1) or U | U(2,2)    | U(3,3)    | U(2,3)      | U(1,3)     | U(1,2)      |
|------|-------------|-----------|-----------|-------------|------------|-------------|
|      |             |           |           |             |            |             |
| Aul  | 0.0291(2)   | 0.0258(2) | 0.0359(2) | 0           | 0.0010(1)  | 0           |
| Br1  | 0.0785(5)   | 0.0509(4) | 0.0488(4) | -0.0112(3)  | -0.0173(3) | -0.0091(3)  |
| S1   | 0.0290(6)   | 0.0329(7) | 0.0408(7) | -0.0103(5)  | 0.0018(6)  | 0.0033(5)   |
| N1   | 0.027(2)    | 0.035(2)  | 0.044(2)  | -0.0094(19) | 0.0019(19) | 0.0034(18)  |
| N2   | 0.026(2)    | 0.029(2)  | 0.036(2)  | -0.0036(17) | 0.0035(18) | 0.0016(17)  |
| N3   | 0.036(2)    | 0.021(2)  | 0.036(2)  | -0.0027(17) | 0.0016(19) | -0.0004(17) |
| C1   | 0.031(3)    | 0.022(3)  | 0.032(3)  | 0.0009(19)  | 0.007(2)   | 0.002(2)    |
| C2   | 0.040(3)    | 0.024(3)  | 0.028(2)  | 0.005(2)    | 0.006(2)   | 0.003(2)    |
| С3   | 0.042(3)    | 0.049(4)  | 0.045(3)  | -0.011(3)   | 0.015(3)   | -0.005(3)   |
| C4   | 0.045(3)    | 0.023(3)  | 0.032(3)  | 0.007(2)    | 0.001(2)   | 0.004(2)    |
| C5   | 0.038(3)    | 0.040(3)  | 0.038(3)  | -0.011(2)   | 0.000(2)   | 0.009(2)    |
| C6   | 0.039(3)    | 0.039(3)  | 0.053(3)  | -0.007(3)   | -0.004(3)  | 0.006(2)    |
| C7   | 0.056(3)    | 0.034(3)  | 0.036(3)  | -0.001(2)   | -0.008(3)  | 0.000(3)    |
| C8   | 0.088(5)    | 0.048(4)  | 0.034(3)  | -0.013(3)   | 0.012(3)   | -0.010(3)   |
| С9   | 0.070(4)    | 0.047(4)  | 0.042(3)  | -0.009(3)   | 0.020(3)   | -0.013(3)   |
| N4   | 0.044(3)    | 0.067(4)  | 0.063(3)  | -0.003(3)   | 0.010(3)   | 0.000(3)    |
| C10  | 0.039(3)    | 0.036(3)  | 0.038(3)  | 0.001(2)    | 0.002(2)   | 0.002(2)    |
| C11  | 0.042(3)    | 0.041(3)  | 0.055(3)  | -0.001(3)   | 0.010(3)   | -0.005(3)   |
| C11  | 0.0239(8)   | 0.0250(9) | 0.0423(9) | 0           | 0.0076(7)  | 0           |

The Temperature Factor has the Form of Exp(-T) Where T = 8\*(Pi\*\*2)\*U\*(Sin(Theta)/Lambda)\*\*2 for Isotropic Atoms T = 2\*(Pi\*\*2)\*Sumij(h(i)\*h(j)\*U(i,j)\*Astar(i)\*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

# Table S6: Bond Distances (Angstrom) of 1.

| Au1 | -S1   | 2.2825(13) | C5  | -C6   | 1.387(7) |
|-----|-------|------------|-----|-------|----------|
| Au1 | -S1_a | 2.2825(13) | C6  | -C7   | 1.378(7) |
| Br1 | -C7   | 1.905(5)   | C7  | -C8   | 1.356(9) |
| S1  | -C1   | 1.719(5)   | C8  | -C9   | 1.390(9) |
| Nl  | -C1   | 1.318(6)   | С3  | -НЗВ  | 0.9800   |
| N2  | -N3   | 1.399(5)   | С3  | -H3C  | 0.9800   |
| N2  | -C1   | 1.340(6)   | C3  | -H3A  | 0.9800   |
| NЗ  | -C2   | 1.287(6)   | C5  | -H5   | 0.9500   |
| Nl  | -H1A  | 0.8800     | C6  | -H6   | 0.9500   |
| Nl  | -H1B  | 0.8800     | C8  | -H8   | 0.9500   |
| N2  | -H2   | 0.8800     | С9  | -Н9   | 0.9500   |
| N4  | -C10  | 1.127(8)   | C10 | -C11  | 1.444(8) |
| C2  | -C3   | 1.496(7)   | C11 | -H11A | 0.9800   |
| C2  | -C4   | 1.481(7)   | C11 | -H11B | 0.9800   |
| C4  | -C5   | 1.397(7)   | C11 | -H11C | 0.9800   |
| C4  | -C9   | 1.386(7)   |     |       |          |

## Table S7: Bond Angles (Degrees) of 1.

| S1  | -Aul | -S1_a | 170.24(6)  | C7   | -C8  | -C9   | 119.8(5) |
|-----|------|-------|------------|------|------|-------|----------|
| Au1 | -S1  | -C1   | 109.59(17) | C4   | -C9  | -C8   | 120.8(6) |
| NЗ  | -N2  | -C1   | 116.4(4)   | C2   | -C3  | -H3A  | 109.00   |
| N2  | -N3  | -C2   | 117.6(4)   | C2   | -C3  | -НЗВ  | 109.00   |
| H1A | -N1  | -H1B  | 120.00     | C2   | -C3  | -H3C  | 109.00   |
| C1  | -N1  | -H1A  | 120.00     | НЗА  | -C3  | -НЗВ  | 109.00   |
| C1  | -N1  | -H1B  | 120.00     | НЗА  | -C3  | -H3C  | 109.00   |
| NЗ  | -N2  | -H2   | 122.00     | НЗВ  | -C3  | -H3C  | 110.00   |
| C1  | -N2  | -H2   | 122.00     | C4   | -C5  | -Н5   | 120.00   |
| S1  | -C1  | -N1   | 118.2(3)   | C6   | -C5  | -Н5   | 120.00   |
| S1  | -C1  | -N2   | 122.5(4)   | C5   | -C6  | -н6   | 121.00   |
| Nl  | -C1  | -N2   | 119.2(4)   | C7   | -C6  | -н6   | 120.00   |
| NЗ  | -C2  | -C3   | 125.7(4)   | С7   | -C8  | -H8   | 120.00   |
| С3  | -C2  | -C4   | 119.2(4)   | С9   | -C8  | -H8   | 120.00   |
| NЗ  | -C2  | -C4   | 115.1(4)   | C4   | -C9  | -Н9   | 120.00   |
| C2  | -C4  | -C9   | 121.6(5)   | C8   | -C9  | -Н9   | 120.00   |
| C5  | -C4  | -C9   | 118.2(5)   | N4   | -C10 | -C11  | 178.6(6) |
| C2  | -C4  | -C5   | 120.2(4)   | C10  | -C11 | -H11A | 109.00   |
| C4  | -C5  | -C6   | 120.8(5)   | C10  | -C11 | -H11B | 109.00   |
| C5  | -C6  | -C7   | 119.1(5)   | C10  | -C11 | -H11C | 109.00   |
| Br1 | -C7  | -C6   | 120.0(4)   | H11A | -C11 | -H11B | 109.00   |
| C6  | -C7  | -C8   | 121.3(5)   | H11A | -C11 | -H11C | 109.00   |
| Br1 | -C7  | -C8   | 118.7(4)   | H11B | -C11 | -H11C | 110.00   |

# Table S8 Torsion Angles (Degrees) of 1.

| Au1 | -S1 | -C1 | -N1 | 166.5(3)  |
|-----|-----|-----|-----|-----------|
| Au1 | -S1 | -C1 | -N2 | -11.6(4)  |
| C1  | -N2 | -N3 | -C2 | -170.6(4) |
| NЗ  | -N2 | -C1 | -S1 | -178.2(3) |
| NЗ  | -N2 | -C1 | -N1 | 3.7(6)    |
| N2  | -N3 | -C2 | -C3 | 1.0(7)    |
| N2  | -N3 | -C2 | -C4 | -178.6(4) |

| N3  | -C2 | -C4 | -C5  | 22.5(7)   |
|-----|-----|-----|------|-----------|
| NЗ  | -C2 | -C4 | -C9  | -157.0(5) |
| С3  | -C2 | -C4 | -C5  | -157.2(5) |
| С3  | -C2 | -C4 | -C9  | 23.4(7)   |
| C2  | -C4 | -C5 | -C6  | 179.0(5)  |
| С9  | -C4 | -C5 | -C6  | -1.5(8)   |
| C2  | -C4 | -C9 | -C8  | -179.2(5) |
| C5  | -C4 | -C9 | -C8  | 1.3(8)    |
| C4  | -C5 | -C6 | -C7  | 0.1(8)    |
| С5  | -C6 | -C7 | -Br1 | -178.0(4) |
| C5  | -C6 | -C7 | -C8  | 1.5(8)    |
| Br1 | -C7 | -C8 | -C9  | 177.8(4)  |
| C6  | -C7 | -C8 | -C9  | -1.7(9)   |
| C7  | -C8 | -C9 | -C4  | 0.3(9)    |

# Table S9: Contact Distances(Angstrom) of 1.

| Au1 | .Cl1    | 3.3265(17) | Cl1 | .H1B_m      | 2.3700   |
|-----|---------|------------|-----|-------------|----------|
| Au1 | .C5_f   | 4.047(5)   | S1  | .N3_f       | 3.362(4) |
| Au1 | .Cl1_c  | 3.3265(17) | S1  | .C2_f       | 3.684(5) |
| Au1 | .C5_e   | 4.047(5)   | S1  | .H11C_d     | 2.9800   |
| Au1 | .H11C_b | 3.6300     | Nl  | .N3         | 2.609(6) |
| Au1 | .H2_a   | 2.8600     | Nl  | .N4         | 3.030(7) |
| Au1 | .H11C_d | 3.6300     | Nl  | .Cl1_l      | 3.237(4) |
| Au1 | .H5_e   | 3.2900     | Nl  | .Cl1_j      | 3.237(4) |
| Au1 | .H2     | 2.8600     | N2  | .Cl1_c      | 3.242(4) |
| Au1 | .H5_f   | 3.2900     | N2  | .Cl1        | 3.242(4) |
| Br1 | .H3B_g  | 3.0300     | NЗ  | .N1         | 2.609(6) |
| Br1 | .H6_h   | 3.0900     | NЗ  | .S1_m       | 3.362(4) |
| Br1 | .H11B_i | 3.1200     | N4  | .N1         | 3.030(7) |
| C11 | .C3     | 3.516(5)   | Nl  | .H11B_k     | 2.8700   |
| C11 | .N1_m   | 3.237(4)   | N2  | .H3C        | 2.3900   |
| C11 | .N1_v   | 3.237(4)   | NЗ  | .H1A        | 2.2500   |
| C11 | .N2     | 3.242(4)   | NЗ  | <b>.</b> H5 | 2.4800   |
| C11 | .C3_a   | 3.516(5)   | N4  | .H8_p       | 2.7400   |
| C11 | .Aul    | 3.3265(17) | N4  | .H3A_q      | 2.7300   |
| C11 | .N2_a   | 3.242(4)   | N4  | .H1A        | 2.2800   |
| C11 | .Aul    | 3.3265(17) | N4  | .H5         | 2.9200   |
| C11 | .H11C_d | 3.0100     | C2  | .S1_m       | 3.684(5) |
| C11 | .H1B_v  | 2.3700     | С3  | .Cl1_c      | 3.516(5) |
| C11 | .H3C_a  | 2.9600     | С3  | .Cl1        | 3.516(5) |
| C11 | .H2     | 2.5600     | C5  | .Au1_m      | 4.047(5) |
| C11 | .H3C    | 2.9600     | C5  | .Au1_g      | 4.047(5) |
| C11 | .H11C_b | 3.0100     | C1  | .H11B_k     | 2.9900   |
| C11 | .H2_a   | 2.5600     | С3  | .H2         | 2.5000   |
| С3  | .H9     | 2.6600     | H3C | .Cl1        | 2.9600   |
| C5  | .H11A_n | 3.0600     | Н5  | .N4         | 2.9200   |
| C6  | .H11A_n | 2.9300     | Н5  | .N3         | 2.4800   |
| C7  | .H11A_n | 3.0200     | Н5  | .Au1_m      | 3.2900   |
| С9  | .H3B    | 2.7200     | Н5  | .Au1_g      | 3.2900   |
| H1A | .N4     | 2.2800     | НG  | .Br1_h      | 3.0900   |
| H1A | .N3     | 2.2500     | H8  | .N4_o       | 2.7400   |
| H1B | .Cl1_j  | 2.3700     | Н9  | .C3         | 2.6600   |
| H1B | .Cl1_l  | 2.3700     | Н9  | .H3B        | 2.1300   |
|     |         |            |     |             |          |

| Н2  | .Cl1_c | 2.5600 | H11A | .C5_q  | 3.0600 |
|-----|--------|--------|------|--------|--------|
| H2  | .Aul   | 2.8600 | H11A | .C7_q  | 3.0200 |
| H2  | .C3    | 2.5000 | H11A | .C6_q  | 2.9300 |
| H2  | .H3C   | 1.8400 | H11B | .N1_g  | 2.8700 |
| H2  | .Cl1   | 2.5600 | H11B | .Br1_h | 3.1200 |
| НЗА | .N4_n  | 2.7300 | H11B | .C1_g  | 2.9900 |
| НЗВ | .Br1_e | 3.0300 | H11C | .Au1_r | 3.6300 |
| НЗВ | .H9    | 2.1300 | H11C | .Cl1_s | 3.0100 |
| НЗВ | .C9    | 2.7200 | H11C | .Cl1_u | 3.0100 |
| H3C | .H2    | 1.8400 | H11C | .S1_t  | 2.9800 |
| H3C | .Cl1_c | 2.9600 | H11C | .Au1_t | 3.6300 |
| HЗC | .N2    | 2.3900 |      |        |        |

#### Table S10: Hydrogen Bonds (Angstrom, Deg) of 1.

| N1 | H1A .  | . N3  | 0.8800 | 2.2500 | 2.609(6) | 104.00   | •   |  |  |  |
|----|--------|-------|--------|--------|----------|----------|-----|--|--|--|
| N1 | H1A .  | . N4  | 0.8800 | 2.2800 | 3.030(7) | 144.00   | •   |  |  |  |
| N1 | H1B .  | . Cl1 | 0.8800 | 2.3700 | 3.237(4) | 168.00 5 | 545 |  |  |  |
| N2 | H2 .   | . Cl1 | 0.8800 | 2.5600 | 3.242(4) | 135.00   |     |  |  |  |
| C3 | H3C .  | . N2  | 0.9800 | 2.3900 | 2.809(6) | 105.00   |     |  |  |  |
|    | - 12 - |       |        |        |          |          |     |  |  |  |

#### Translation of Symmetry Code to Equiv.Pos

```
2555.00 ] = -x, y, 1/2-z; b = [1455.00] = -1+x, y, z
a =[
      2555.00 ] = -x, y, 1/2-z; d = [2655.00] = 1-x, y, 1/2-z
c =[
      5445.00] = -1/2+x, -1/2+y, z; f = [ 6545.00 ] = 1/2-x, -1/2+y, 1/2-z
e =[
g = [
      5555.00 ] = 1/2+x, 1/2+y, z; h = [ 7666.00 ] = 3/2-x, 3/2-y, 1-z
      7666.00 ] = 3/2-x, 3/2-y, 1-z; j = [ 5545.00 ] = 1/2+x, -1/2+y, z
i =[
      5445.00 ] = -1/2+x,-1/2+y,z; 1 = [ 6545.00 ] = 1/2-x,-1/2+y,1/2-z
k = [
      6555.00 ] = 1/2-x,1/2+y,1/2-z; n = [ 5455.00 ] = -1/2+x,1/2+y,z
m = [
      3666.00] = 1-x, 1-y, 1-z; p = [ 3666.00] = 1-x, 1-y, 1-z
o = [
      1655.00 ] = 1+x,y,z; s = [ 1655.00 ] = 1+x,y,z
r = [
      2655.00] = 1-x, y, 1/2-z; u = [ 2655.00 ] = 1-x, y, 1/2-z
t = [
      5455.00 ] = -1/2+x, 1/2+y, z
v = [
```

#### Table S11: Crystal Data and Details of the Structure Determination of 2.

#### **Crystal Data**

| Formula                  | C18 | H18 | ΝG  | S2  | AU | CL4+, | 2 (C2 | ΗЗ | N1),  | CL-  |
|--------------------------|-----|-----|-----|-----|----|-------|-------|----|-------|------|
| Formula Weight           |     |     |     |     |    |       |       |    | 83    | 8.83 |
| Crystal System           |     |     |     |     |    |       |       | Мо | onocl | inic |
| Space group              |     |     |     |     |    | C2/c  |       |    | (No.  | 15)  |
| a, b, c [Angstrom]       |     | 11. | 776 | (2) |    | 10.65 | 8(2)  | 2  | 24.51 | 5(5) |
| alpha, beta, gamma [deg] |     |     |     | 90  |    | 96.7  | 9(3)  |    |       | 90   |
| V [Ang**3]               |     |     |     |     |    |       |       | 30 | )55.3 | (10) |
| Z                        |     |     |     |     |    |       |       |    |       | 4    |
| D(calc) [g/cm**3]        |     |     |     |     |    |       |       |    | 1     | .824 |
| Mu(MoKa) [ /mm ]         |     |     |     |     |    |       |       |    | 5     | .417 |

| F(000)                              | 1632                                                     |
|-------------------------------------|----------------------------------------------------------|
| Crystal Size [mm]                   | 0.05 x 0.05 x 0.05                                       |
| Data Col                            | lection                                                  |
| Temperature (K)                     | 173                                                      |
| Radiation [Angstrom]                | МоКа 0.71073                                             |
| Theta Min-Max [Deg]                 | 2.6, 25.7                                                |
| Dataset                             | -14: 13 ; -11: 12 ; -28: 29                              |
| Tot., Uniq. Data, R(int)            | 9300, 2889, 0.040                                        |
| Observed data [I > 2.0 sigma(I)     | 2377                                                     |
| Refin                               | ement                                                    |
| Nref, Npar                          | 2889, 176                                                |
| R, wR2, S                           | 0.0330, 0.0702, 1.07                                     |
| $w = 1/[\s^2^(Fo^2^) + (0.0275P)^2$ | +5.3451P] where P=(Fo <sup>2</sup> +2Fc <sup>2</sup> )/3 |
| Max. and Av. Shift/Error            | 0.00, 0.00                                               |
| Min. and Max. Resd. Dens. [e/And    | y^3] -1.18, 1.74                                         |

Table S12: Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms of 2.

| Atom  | Х            | У            | Z             | U(eq) [Ang^2] |
|-------|--------------|--------------|---------------|---------------|
|       |              |              |               |               |
|       |              |              |               |               |
| Aul   | 0            | 0.12628(3)   | 1/4           | 0.0316(1)     |
| C12   | 0.65645(11)  | 0.62732(13)  | 0.41695(6)    | 0.0473(4)     |
| C13   | 0.58445(14)  | 0.76839(14)  | 0.52138(6)    | 0.0541(5)     |
| S1    | 0.19017(10)  | 0.10699(12)  | 0.24170(5)    | 0.0358(4)     |
| Nl    | 0.3778(3)    | 0.1844(4)    | 0.29922(17)   | 0.0367(12)    |
| N2    | 0.2193(3)    | 0.3001(4)    | 0.31238(15)   | 0.0292(12)    |
| N3    | 0.2914(3)    | 0.3730(3)    | 0.34846(15)   | 0.0262(11)    |
| C1    | 0.2677(4)    | 0.2062(4)    | 0.28792(18)   | 0.0280(14)    |
| C2    | 0.2468(4)    | 0.4475(4)    | 0.38128(18)   | 0.0282(16)    |
| С3    | 0.1217(4)    | 0.4602(5)    | 0.3867(2)     | 0.0368(17)    |
| C4    | 0.3300(4)    | 0.5253(4)    | 0.41636(18)   | 0.0292(16)    |
| C5    | 0.4409(4)    | 0.5408(4)    | 0.40332(19)   | 0.0309(17)    |
| C6    | 0.5194(4)    | 0.6133(4)    | 0.4350(2)     | 0.0329(17)    |
| C7    | 0.4886(4)    | 0.6733(5)    | 0.4810(2)     | 0.0371(17)    |
| C8    | 0.3798(4)    | 0.6578(5)    | 0.4955(2)     | 0.0388(17)    |
| С9    | 0.3001(4)    | 0.5848(5)    | 0.4631(2)     | 0.0356(17)    |
| N4    | 0.6020(4)    | 0.2956(5)    | 0.3520(2)     | 0.0539(17)    |
| C10   | 0.6946(5)    | 0.3275(5)    | 0.3544(2)     | 0.0413(17)    |
| C11   | 0.8127(4)    | 0.3690(5)    | 0.3590(3)     | 0.048(2       |
| C11   | 0            | 0.44239(15)  | 1/4           | 0.0295(5)     |
| U(eq) | = 1/3 of the | trace of the | orthogonalize | d U Tensor    |

Table S13: Hydrogen Atom Positions and Isotropic Displacement Parameters of 2.

| Atom | Х       | У       | z U(iso) | [Ang^2] |
|------|---------|---------|----------|---------|
|      |         |         |          |         |
|      |         |         |          |         |
| H1A  | 0.41970 | 0.23200 | 0.32300  | 0.0440  |
| H1B  | 0.40960 | 0.12210 | 0.28300  | 0.0440  |
| Н2   | 0.14540 | 0.31530 | 0.30600  | 0.0350  |
| НЗА  | 0.09620 | 0.54510 | 0.37590  | 0.0550  |
| НЗВ  | 0.10890 | 0.44490 | 0.42490  | 0.0550  |

| H3C     | 0.07850         | 0.39890        | 0.36270        | 0.0550        |
|---------|-----------------|----------------|----------------|---------------|
| Н5      | 0.46290         | 0.50020        | 0.37170        | 0.0370        |
| Н8      | 0.35920         | 0.69710        | 0.52770        | 0.0470        |
| Н9      | 0.22500         | 0.57570        | 0.47300        | 0.0430        |
| H11A    | 0.86260         | 0.30220        | 0.37550        | 0.0730        |
| H11B    | 0.82190         | 0.44400        | 0.38220        | 0.0730        |
| H11C    | 0.83330         | 0.38880        | 0.32240        | 0.0730        |
|         |                 |                |                |               |
| =====   |                 |                |                |               |
| The     | e Temperature F | actor has the  | e Form of Exp( | -T) Where     |
| T = 8 * | (Pi**2)*U*(Sin( | (Theta)/Lambda | a)**2 for Isc  | otropic Atoms |
| =====   |                 |                |                |               |

Table S14: (An)isotropic Displacement Parameters of 2.

| Atom | U(1,1) or U | U(2,2)    | U(3,3)     | U(2,3)      | U(1,3)      | U(1,2)      |
|------|-------------|-----------|------------|-------------|-------------|-------------|
|      |             |           |            |             |             |             |
| Au1  | 0.0260(2)   | 0.0308(2) | 0.0370(2)  | 0           | -0.0004(1)  | 0           |
| C12  | 0.0367(7)   | 0.0489(8) | 0.0561(8)  | 0.0022(7)   | 0.0044(6)   | -0.0141(7)  |
| C13  | 0.0644(10)  | 0.0441(8) | 0.0487(8)  | -0.0047(7)  | -0.0145(7)  | -0.0156(7)  |
| S1   | 0.0270(6)   | 0.0380(7) | 0.0414(7)  | -0.0137(6)  | 0.0004(5)   | 0.0019(6)   |
| N1   | 0.024(2)    | 0.039(2)  | 0.047(2)   | -0.012(2)   | 0.0034(19)  | 0.0063(19)  |
| N2   | 0.022(2)    | 0.033(2)  | 0.032(2)   | -0.0069(19) | 0.0008(17)- | -0.0009(18) |
| NЗ   | 0.0249(19)  | 0.025(2)  | 0.0283(19) | 0.0003(18)  | 0.0016(16)  | 0.0007(18)  |
| C1   | 0.024(2)    | 0.029(3)  | 0.031(2)   | 0.000(2)    | 0.003(2)    | 0.000(2)    |
| C2   | 0.030(3)    | 0.029(3)  | 0.025(2)   | 0.003(2)    | 0.001(2)    | 0.003(2)    |
| С3   | 0.031(3)    | 0.038(3)  | 0.042(3)   | -0.008(2)   | 0.007(2)    | 0.004(2)    |
| C4   | 0.030(3)    | 0.027(3)  | 0.030(2)   | 0.003(2)    | 0.001(2)    | 0.004(2)    |
| С5   | 0.034(3)    | 0.026(3)  | 0.032(3)   | 0.003(2)    | 0.001(2)    | 0.001(2)    |
| C6   | 0.032(3)    | 0.029(3)  | 0.037(3    | ) 0.006(2)  | 0.001(2)    | -0.003(2)   |
| С7   | 0.041(3)    | 0.031(3)  | 0.036(3)   | 0.000(2)    | -0.009(2)   | -0.001(2)   |
| C8   | 0.045(3)    | 0.038(3)  | 0.033(3)   | -0.005(2)   | 0.003(2)    | 0.004(2)    |
| С9   | 0.034(3)    | 0.037(3)  | 0.035(3)   | -0.004(2)   | 0.001(2)    | 0.001(2)    |
| N4   | 0.034(3)    | 0.060(3)  | 0.069(3)   | -0.013(3)   | 0.011(2)    | -0.004(2)   |
| C10  | 0.041(3)    | 0.042(3)  | 0.042(3)   | -0.005(3)   | 0.009(3)    | 0.004(3)    |
| C11  | 0.032(3)    | 0.053(4)  | 0.062(4)   | -0.003(3)   | 0.013(3)    | -0.001(3)   |
| C11  | 0.0217(8)   | 0.0292(9) | 0.0377(9)  | 0           | 0.0040(7)   | 0           |

The Temperature Factor has the Form of Exp(-T) Where
T = 8\*(Pi\*\*2)\*U\*(Sin(Theta)/Lambda)\*\*2 for Isotropic Atoms
T = 2\*(Pi\*\*2)\*Sumij(h(i)\*h(j)\*U(i,j)\*Astar(i)\*Astar(j)), for
Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and
h(i) are the Reflection Indices.

Table S15: Bond Distances (Angstrom) of 2.

| Au1 | -S1   | 2.2818(13) | C4 | -C5 | 1.391(7) |
|-----|-------|------------|----|-----|----------|
| Au1 | -S1_a | 2.2818(13) | C5 | -C6 | 1.373(7) |
| C12 | -C6   | 1.730(5)   | C6 | -C7 | 1.382(7) |
| C13 | -C7   | 1.737(5)   | C7 | -C8 | 1.380(7) |

| S1 | -C1  | 1.729(5) | C8  | -C9   | 1.393(7) |
|----|------|----------|-----|-------|----------|
| N1 | -C1  | 1.314(6) | С3  | -НЗВ  | 0.9800   |
| N2 | -N3  | 1.389(5) | С3  | -H3C  | 0.9800   |
| N2 | -C1  | 1.329(6) | С3  | -H3A  | 0.9800   |
| NЗ | -C2  | 1.286(6) | C5  | -H5   | 0.9500   |
| N1 | -H1A | 0.8800   | C8  | -H8   | 0.9500   |
| N1 | -H1B | 0.8800   | С9  | -Н9   | 0.9500   |
| N2 | -H2  | 0.8800   | C10 | -C11  | 1.451(8) |
| N4 | -C10 | 1.137(8) | C11 | -H11A | 0.9800   |
| C2 | -C4  | 1.479(6) | C11 | -H11B | 0.9800   |
| C2 | -C3  | 1.501(7) | C11 | -H11C | 0.9800   |
| C4 | -C9  | 1.391(7) |     |       |          |

## Table S16: Bond Angles (Degrees) of 2.

| S1  | -Aul | -S1_a | 169.66(6)  | C6   | -C7  | -C8   | 119.8(5) |
|-----|------|-------|------------|------|------|-------|----------|
| Au1 | -S1  | -C1   | 109.52(17) | C13  | -C7  | -C8   | 118.9(4) |
| NЗ  | -N2  | -C1   | 116.5(4)   | C7   | -C8  | -C9   | 120.2(5) |
| N2  | -N3  | -C2   | 118.7(4)   | C4   | -C9  | -C8   | 120.4(4) |
| C1  | -N1  | -H1A  | 120.00     | C2   | -C3  | -H3A  | 109.00   |
| C1  | -N1  | -H1B  | 120.00     | C2   | -C3  | -НЗВ  | 109.00   |
| H1A | -N1  | -H1B  | 120.00     | C2   | -C3  | -H3C  | 109.00   |
| C1  | -N2  | -H2   | 122.00     | НЗА  | -C3  | -НЗВ  | 110.00   |
| NЗ  | -N2  | -H2   | 122.00     | НЗА  | -C3  | -H3C  | 109.00   |
| S1  | -C1  | -N2   | 122.3(4)   | НЗВ  | -C3  | -H3C  | 110.00   |
| N1  | -C1  | -N2   | 120.2(4)   | C4   | -C5  | -H5   | 119.00   |
| S1  | -C1  | -N1   | 117.5(3)   | C6   | -C5  | -H5   | 119.00   |
| NЗ  | -C2  | -C3   | 126.1(4)   | C7   | -C8  | -H8   | 120.00   |
| NЗ  | -C2  | -C4   | 114.7(4)   | С9   | -C8  | -H8   | 120.00   |
| С3  | -C2  | -C4   | 119.2(4)   | C4   | -C9  | -Н9   | 120.00   |
| С5  | -C4  | -C9   | 118.1(4)   | C8   | -C9  | -Н9   | 120.00   |
| C2  | -C4  | -C9   | 121.3(4)   | N4   | -C10 | -C11  | 178.5(6) |
| C2  | -C4  | -C5   | 120.6(4)   | C10  | -C11 | -H11A | 109.00   |
| C4  | -C5  | -C6   | 121.6(4)   | C10  | -C11 | -H11B | 109.00   |
| C12 | -C6  | -C5   | 119.4(4)   | C10  | -C11 | -H11C | 109.00   |
| C5  | -C6  | -C7   | 119.9(4)   | H11A | -C11 | -H11B | 109.00   |
| C12 | -C6  | -C7   | 120.8(4)   | H11A | -C11 | -H11C | 109.00   |
| C13 | -C7  | -C6   | 121.3(4)   | H11B | -C11 | -H11C | 109.00   |

# Table S17: Torsion Angles (Degrees) in 2.

| Au1 | -S1 | -C1 | -N1 | 162.4(3)  |
|-----|-----|-----|-----|-----------|
| Au1 | -S1 | -C1 | -N2 | -16.3(4)  |
| C1  | -N2 | -N3 | -C2 | -166.0(4) |
| NЗ  | -N2 | -C1 | -S1 | -179.8(3) |
| NЗ  | -N2 | -C1 | -N1 | 1.5(6)    |
| N2  | -N3 | -C2 | -C3 | 3.1(6)    |
| N2  | -N3 | -C2 | -C4 | -177.4(4) |
| NЗ  | -C2 | -C4 | -C5 | 17.1(6)   |
| NЗ  | -C2 | -C4 | -C9 | -162.9(4) |
| C3  | -C2 | -C4 | -C5 | -163.3(4) |
| C3  | -C2 | -C4 | -C9 | 16.7(6)   |
| C2  | -C4 | -C5 | -C6 | 179.5(4)  |

| C9  | -C4 | -05 | -C6  | -0.5(7)   |
|-----|-----|-----|------|-----------|
| C2  | -C4 | -C9 | -C8  | -179.9(4) |
| C5  | -C4 | -C9 | -C8  | 0.1(7)    |
| C4  | -C5 | -C6 | -C12 | 179.3(4)  |
| C4  | -C5 | -C6 | -C7  | -0.2(7)   |
| C12 | -C6 | -C7 | -C13 | 1.8(6)    |
| C12 | -C6 | -C7 | -C8  | -178.1(4) |
| C5  | -C6 | -C7 | -C13 | -178.7(4) |
| C5  | -C6 | -C7 | -C8  | 1.4(7)    |
| C13 | -C7 | -C8 | -C9  | 178.3(4)  |
| C6  | -C7 | -C8 | -C9  | -1.8(8)   |
| С7  | -C8 | -C9 | -C4  | 1.0(8)    |

## Table S18: Contact Distances (Angstrom) in 2.

| Au1 | .Cl1    | 3.3691(18) | C11 | .H3C_a | 2.8500   |
|-----|---------|------------|-----|--------|----------|
| Au1 | .C5_c   | 4.008(5)   | C11 | .H2    | 2.4700   |
| Au1 | .Cl1_b  | 3.3691(18) | C11 | .H3C   | 2.8500   |
| Au1 | .C5_d   | 4.008(5)   | C11 | .H1B_k | 2.3800   |
| Aul | .H2     | 2.8800     | C12 | .H11B  | 2.9500   |
| Aul | .H5_c   | 3.3500     | C13 | .H3B_e | 3.0600   |
| Au1 | .H2_a   | 2.8800     | S1  | .C10_h | 3.697(5) |
| Aul | .H5_d   | 3.3500     | S1  | .C2_d  | 3.614(5) |
| Cll | .N1_t   | 3.254(4)   | S1  | .N3_d  | 3.356(4) |
| Cll | .N1_k   | 3.254(4)   | Nl  | .N3    | 2.612(5) |
| Cll | .Aul    | 3.3691(18) | Nl  | .N4    | 3.040(6) |
| Cll | .Aul    | 3.3691(18) | Nl  | .Cl1_j | 3.254(4) |
| Cll | .N2     | 3.221(4)   | Nl  | .Cl1_i | 3.254(4) |
| Cll | .C3     | 3.491(5)   | N2  | .Cll   | 3.221(4) |
| Cll | .N2_a   | 3.221(4)   | N2  | .Cl2_c | 3.311(4) |
| Cll | .C3_a   | 3.491(5)   | N2  | .Cl1_b | 3.221(4) |
| C12 | .Cl3_f  | 3.426(2)   | NЗ  | .N1    | 2.612(5) |
| C12 | .C10    | 3.595(5)   | NЗ  | .S1_k  | 3.356(4) |
| C12 | .Cl3    | 3.170(2)   | N4  | .N1    | 3.040(6) |
| C12 | .C3_e   | 3.638(6)   | N2  | .H3C   | 2.4200   |
| C12 | .N2_e   | 3.311(4)   | NЗ  | .H5    | 2.4400   |
| C13 | .C4_g   | 3.575(5)   | NЗ  | .H1A   | 2.2700   |
| C13 | .Cl2    | 3.170(2)   | N4  | .H8_g  | 2.9300   |
| C13 | .Cl2_f  | 3.426(2)   | N4  | .H1A   | 2.2800   |
| Cll | .H1B_t  | 2.3800     | N4  | .H5    | 2.8000   |
| Cll | .H11C_h | 2.8600     | N4  | .H3A_o | 2.7400   |
| Cll | .H11C_s | 2.8600     | C2  | .S1_k  | 3.614(5) |
| C11 | .H2_a   | 2.4700     | С3  | .Cl1_b | 3.491(5) |
|     |         |            |     |        |          |

## Table S19: Contact Distances (Angstrom) in 2. (continued)

| С3 | .Cl2_c | 3.638(6) | H2  | .Aul   | 2.8800 |
|----|--------|----------|-----|--------|--------|
| С3 | .Cl1   | 3.491(5) | НЗА | .C9    | 3.0500 |
| C4 | .Cl3_g | 3.575(5) | НЗА | .N4_1  | 2.7400 |
| C5 | .Au1_e | 4.008(5) | НЗВ | .C9    | 2.7700 |
| C5 | .Au1_k | 4.008(5) | НЗВ | .H9    | 2.2000 |
| C6 | .C8_g  | 3.490(7) | НЗВ | .Cl3_c | 3.0600 |
| C8 | .C6_g  | 3.490(7) | H3C | .Cl1   | 2.8500 |

| C10 | .C12    | 3.595(5) | H3C  | .N2    | 2.4200 |
|-----|---------|----------|------|--------|--------|
| C10 | .S1_p   | 3.697(5) | H3C  | .H2    | 1.9000 |
| С3  | .H2     | 2.5500   | H3C  | .Cl1_b | 2.8500 |
| С3  | .H9     | 2.6200   | Н5   | .N4    | 2.8000 |
| C5  | .H11A_l | 2.9900   | Н5   | .Au1_e | 3.3500 |
| C6  | .H11A_l | 2.9900   | Н5   | .Au1_k | 3.3500 |
| С9  | .H3B    | 2.7700   | Н5   | .N3    | 2.4400 |
| С9  | .H3A    | 3.0500   | H8   | .N4_n  | 2.9300 |
| С9  | .H8_m   | 3.0100   | H8   | .C9_m  | 3.0100 |
| C10 | .H8_g   | 3.0400   | H8   | .C10_n | 3.0400 |
| H1A | .N4     | 2.2800   | Н9   | .H3B   | 2.2000 |
| H1A | .N3     | 2.2700   | Н9   | .C3    | 2.6200 |
| H1B | .Cl1_i  | 2.3800   | H11A | .C5_o  | 2.9900 |
| H1B | .Cl1_j  | 2.3800   | H11A | .C6_0  | 2.9900 |
| Н2  | .Cl1    | 2.4700   | H11B | .C12   | 2.9500 |
| Н2  | .H3C    | 1.9000   | H11C | .Cl1_q | 2.8600 |
| Н2  | .Cl1_b  | 2.4700   | H11C | .Cl1_r | 2.8600 |
| Н2  | .C3     | 2.5500   |      |        |        |

## Table S20: Hydrogen Bonds (Angstrom, Deg) in 2.

| N1     | H1A N3  | 0.8800 | 2.2700 | 2.612(5) | 103.00 |       |  |
|--------|---------|--------|--------|----------|--------|-------|--|
| N1     | H1A N4  | 0.8800 | 2.2800 | 3.040(6) | 144.00 |       |  |
| N1     | H1B Cl1 | 0.8800 | 2.3800 | 3.254(4) | 173.00 | 5_545 |  |
| N2     | H2 Cl1  | 0.8800 | 2.4700 | 3.221(4) | 144.00 |       |  |
| C3     | H3C N2  | 0.9800 | 2.4200 | 2.837(6) | 105.00 |       |  |
| - 12 - |         |        |        |          |        |       |  |

## Translation of Symmetry Code to Equiv.Pos

| a =[ | 2555.00 ] | = -x,y,1/2-z; b =[ 2555.00 ] = -x,y,1/2-z              |
|------|-----------|--------------------------------------------------------|
| с =[ | 5445.00 ] | = -1/2+x,-1/2+y,z; d =[ 6545.00 ] = 1/2-x,-1/2+y,1/2-z |
| e =[ | 5555.00 ] | = 1/2+x,1/2+y,z; f =[ 7666.00 ] = 3/2-x,3/2-y,1-z      |
| g =[ | 3666.00 ] | = 1-x,1-y,1-z; h =[ 2655.00 ] = 1-x,y,1/2-z            |
| i =[ | 5545.00 ] | = 1/2+x,-1/2+y,z; j =[ 6545.00 ] = 1/2-x,-1/2+y,1/2-z  |
| k =[ | 6555.00 ] | = 1/2-x,1/2+y,1/2-z; 1 =[ 5455.00 ] = -1/2+x,1/2+y,z   |
| m =[ | 7566.00 ] | = 1/2-x,3/2-y,1-z; n =[ 3666.00 ] = 1-x,1-y,1-z        |
| p =[ | 2655.00 ] | = 1-x,y,1/2-z; q =[ 1655.00 ] = 1+x,y,z                |
| r =[ | 2655.00 ] | = 1-x,y,1/2-z; s =[ 1455.00 ] = -1+x,y,z               |
| t =[ | 5455.00 ] | = -1/2 + x, 1/2 + y, z                                 |
|      |           |                                                        |









Figure S5: <sup>1</sup>H NMR spectrum of 2.



Figure S6: Infrared spectrum of 2.

# References

- 1. COLLECT, Data Collection Software, Nonius, Delft, The Netherlands, 1999.
- 2. Z. Otwinowski, W. Minor, *DENZO and SCALEPACK*. In International Tables of Crystallography, Vol F. ed.: M.G. Rossman, E. Arnold, Kluwer, Dordrecht, 2000.
- 3. G.M. Sheldrick, *SHELXS-97 and SHELXL-97 Programs for crystal structure determination and refinement*. University of Gottingen, 1997.
- 4. L.J. Barbour, J. Supramol. Chem. 2000, 1, 86.
- 5. A.L. Spek, J. Appl. Crystallogr. 2003. 36. 7.
- Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. *Appl. Cryst.*, 2008, 41, 466-470.