Electronic Supplementary Information (ESI)

Triazolopyridines as ligands: structural diversity in iron(II), cobalt(II), nickel(II) and copper(II) complexes of 3-(2-pyridyl)-[1,2,4]triazolo[4,3-*a*]pyridine (L^{10}) and spin crossover in [Fe^{II}(L^{10})₂(NCS)₂]

Julia Klingele,*^{*a*} Dominik Kaase,^{*a*} Jakob Hilgert,^{*a*} Gunther Steinfeld,^{*a*} Marco H. Klingele^{*a*} and Jochen Lach^{*b*}

^{*a*} Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany; E-mail: julia.klingele@ac.uni-freiburg.de; Fax: +49-(0)761-203-6001.

^b Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany.

Fig. S1. Views of the three different coordination environments $(N_{12}, N_9 \text{ and } N_8)$ found in $[Eu^{II}(II)_2]$ (1). Hydrogen atoms have been omitted for clarity.

Fig. S2. View of the molecular structure of $[Fe^{II}(IV)_2(NCS)_2(MeOH)_2]$ (2). Hydrogen atoms have been omitted for clarity.

Fig. S3. View of the molecular structure of $[Cu^{II}(L^1)_2Cl_2]$ (3). Hydrogen atoms have been omitted for clarity.

Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry 2010

Fig. S4. View of the molecular structure of $[Ag_{2}^{I}(L^{2})_{2}(NO_{3})_{2}]$ (4). Hydrogen atoms have been omitted for clarity.

Fig. S5. View of the molecular structure of $[{Cu^{II}(L^3)_2(HCO_2)}_2(\mu-HCO_2)_2] \cdot 4H_2O$ (5). Hydrogen atoms, except those of the HCO_2^- co-ligands, and solvate molecules have been omitted for clarity.

Fig. S6. View of the molecular structure of $[Cu_4^{I}(L^3)_4(\mu-Br)_2(\mu_3-Br)_2]$ (6). Hydrogen atoms have been omitted for clarity.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Fig. S7. View of the molecular structure of $[Cu^{II}(L^4)_2(NO_3)_2(H_2O)]$ (7). Hydrogen atoms have been omitted for clarity.

Fig. S8. View of the molecular structure of the complex cation of $[Cu^{II}(L^5)_2(H_2O)_2](NO_3)_2$ (8). Hydrogen atoms have been omitted for clarity.

Fig. S9. View of the molecular structure of $[Cu^{II}(L^5)_2(NO_3)_2]$ (9). Hydrogen atoms have been omitted for clarity.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Fig. S10. View of the molecular structure of the complex cation of $[Cu^{II}(L^5)_2(H_2O)_2](ClO_4)_2$ (10). Hydrogen atoms have been omitted for clarity.

Fig. S11. View of the molecular structure of $[Cu^{II}(L^5)_2Cl_2]$ ·MeOH·2H₂O·HCl (11). Hydrogen atoms and solvate molecules have been omitted for clarity.

Fig. S12. View of the molecular structure of the complex cation of $[Fe^{II}(L^5)_3](BF_4)_2$ (12). Hydrogen atoms have been omitted for clarity.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Fig. S13. View of the molecular structure of $[Fe^{II}(L^5)_2(NCS)_2] \cdot 2CHCl_3$ (13). Hydrogen atoms and solvate molecules have been omitted for clarity.

Fig. S14. View of the molecular structure of the complex cation of $[Ru^{II}(L^5)(bpy)_2](PF_6)_2$ (14). Hydrogen atoms have been omitted for clarity.

Fig. S15. View of the molecular structure of the complex cation of $[Ru^{II}(L^6)(bpy)_2](PF_6)_2$ (15). Hydrogen atoms have been omitted for clarity.

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Fig. S16. View of the molecular structure of $[Cu^{II}(L^7)Cl_2]\cdot 2.5H_2O$ (16). Hydrogen atoms and solvate molecules have been omitted for clarity.

Fig. S17. View of the molecular structure of the complex cation of $[{Cu^{II}(L^8)}_4](NO_3)_4 \cdot 8H_2O$ (17). Only two of the four ligands L^8 are shown. Hydrogen atoms have been omitted for clarity.

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Fig. S18. View of the molecular structure of the complex cation of $[Zn^{II}(L^9)_2](ClO_4)_2 \cdot 0.5 MeCN$ (18). Hydrogen atoms have been omitted for clarity.

Fig. S19. View of the molecular structure of $[Re^{I}(L^{10})(CO)_{3}Cl]$ (19). Hydrogen atoms have been omitted for clarity.

Fig. S20. View of the molecular structure of N-(2-pyridylamino)-2-pyridineamidine (XV).

Fig. S21. Hydrogen bonding in the crystal structure of *N*-(2-pyridylamino)-2-pyridineamidine (**XV**). Selected distances $[\text{Å}]: N(1)\cdots H-N(12A) 3.007, N(1)\cdots H-N(14A) 3.041, N(2)-H\cdots N(11) 3.011, N(4)-H\cdots N(11) 3.045, N(4)-H\cdots N(5) 2.641, N(4)-H\cdots N(15B) 3.350$. Symmetry operations used to generate equivalent atoms: (A) -x+1, -y+1, -z; (B) x, -y+1.5, z+0.5.

Fig. S22. View of the molecular structure of 3-(2-pyridyl)-[1,2,4]triazolo[4,3-*a*]pyridine (L¹⁰).

Fig. S23. $\pi - \pi$ Stacking in the crystal structure of 3-(2-pyridyl)-[1,2,4]triazolo[4,3-*a*]pyridine (L¹⁰). Selected distances [Å]: cent<N(1)/C(1)/C(2)/C(3)/C(4)/C(5)>...cent<N(2A)/N(3A)/N(4A)/C(6A)/C(7A)> 3.387, cent<N(21)/C(21)/C(22)/C(23)/C(24)/C(25)>...cent<N(22B)/N(23B)/N(24B)/C(26B)/C(27B)> 3.712. Symmetry operations used to generate equivalent atoms: (A) -x +1, -y, -z+1; (B) -x+2, -y+2, -z.

Fig. S24. View of the molecular structure of $[Co^{II}(L^{10})_2(MeOH)_2](ClO_4)_2$ (**20**). Hydrogen atoms, except those of the hydroxyl groups of the MeOH co-ligands, have been omitted for clarity. The hydrogen-bonded ClO_4^- counterion is disordered over two positions with site occupancy factors of 0.50 [O(2)-O(4)] and 0.50 [O(5)-O(7)], twirling around the Cl(1)-O(11) bond. Selected distances [Å]: Co(1)-N(1) 2.139(2), Co(1)-N(2) 2.094(2), Co(1)-O(20) 2.093(2), $O(3)\cdots O(20)$ 2.740, $O(7A)\cdots O(20A)$ 2.806. Selected angles [°]: N(1)-Co(1)-N(2) 77.06(7), N(1)-Co(1)-O(20) 91.95(8), N(1)-Co(1)-N(2A) 102.94(7), N(1)-Co(1)-O(20A) 88.05(8), N(2)-Co(1)-O(20) 91.30(8), N(2)-Co(1)-O(20A) 88.70(8). Symmetry operation used to generate equivalent atoms: (A) –x, –y+2, –z.

Fig. S25. View of the molecular structure of $[Ni^{II}(L^{10})_2(MeOH)_2](ClO_4)_2$ (**21**). Hydrogen atoms, except those of the hydroxyl groups of the MeOH co-ligands, have been omitted for clarity. The hydrogen-bonded ClO_4^- counterion is disordered over two positions with site occupancy factors of 0.59 [O(2)-O(4)] and 0.41 [O(5)-O(7)], twirling around the Cl(1)-O(11) bond. Selected distances [Å]: Ni(1)–N(1) 2.108(2), Ni(1)–N(2) 2.070(2), Ni(1)–O(20) 2.052(2), $O(4)\cdots O(20)$ 2.857, $O(6A)\cdots O(20A)$ 2.747. Selected angles [°]: N(1)–Ni(1)–N(2) 79.28(8), N(1)–Ni(1)–O(20) 89.88(9), N(1)–Ni(1)–N(2A) 100.72(8), N(1)–Ni(1)–O(20A) 90.12(9), N(2)–Ni(1)–O(20) 88.81(9), N(2)–Ni(1)–O(20A) 91.19(9). Symmetry operation used to generate equivalent atoms: (A) –x, –y, –z.

Fig. S26. View of the molecular structure of $[Cu^{II}(L^{10})_2(MeOH)_2](ClO_4)_2$ (22). Hydrogen atoms, except those of the hydroxyl groups of the MeOH co-ligands, have been omitted for clarity. Selected distances [Å]: Cu(1)–N(1) 2.057(3), Cu(1)–N(2) 1.984(3), Cu(1)–O(1) 2.347(3), O(1)···O(12) 2.844. Selected angles [°]: N(1)–Cu(1)–N(2) 79.62(13), N(1)–Cu(1)–O(1) 90.45(12), N(1)–Cu(1)–N(2A) 100.38(13), N(1)–Cu(1)–O(1A) 89.55(12), N(2)–Cu(1)–O(1) 89.92(12), N(2)–Cu(1)–O(1A) 90.08(12). Symmetry operation used to generate equivalent atoms: (A) –x,