Mechanism of Electrocatalytic Hydrogen Production by a Di-Iron Model of Iron-

Iron Hydrogenase: A Density Functional Theory Study of Proton Dissociation

Constants and Electrode Reduction Potentials

Panida Surawatanawong, Jesse W. Tye, Marcetta Y. Darensbourg, and Michael B. Hall*

Department of Chemistry, Texas A&M University, College Station, TX 77843-3255

Supporting Information

Standard state conversion¹

To convert free energy from gas phase at 1 atm to solution phase at 1 M, we used the equation:

$$\Delta G^{o'} = \Delta G^o + RT \ln(\frac{Q^{o'}}{Q^o})$$

where Q is the reaction quotient, the ratio of concentrations that appear in the equilibrium constant. $\Delta G^{o'}$ and $Q^{o'}$ are defined for all species at 1 M and ΔG^{o} and Q^{o} are defined for all species at 1 atm. From ideal gas law, at 298.15 K and 1 atm the molar volume of a perfect gas is 22.47 L mol⁻¹. Assuming A, B, and C are ideal gases, their concentration at 1 atm are 1/22.47 M. For example: $A + B \rightarrow C$, the reaction quotient Q is [C]/[A][B].

$$\Delta G^{o'} = \Delta G^{o} + RT \ln \left(\frac{\frac{1}{1 \cdot 1}}{\frac{24.47 \cdot 24.47}{24.47}} \right)$$

$$\Delta G^{o} = \Delta G^{o} - RTln(24.47)$$

$$\Delta G^{o'} = \Delta G^{o} - 1.89$$
 kcal/mol at 298.15 K

ⁱ Cramer, C. J. Essentials of Computational Chemistry: Theories and Models; 2nd ed.; Wiley 2004.

Figure S1. The plot of experimental pK_a of metal carbonyl hydride complexes, Co(CO)₄H (8.3), Fe(CO)₄H₂ (11.4), Mn(CO)₅H (15.1), Ru(CO)₄H₂ (18.7), Os(CO)₄H₂ (20.8), and Re(CO)₅H (21.1), against the pK_a calculated by B3LYP/BS2//B3LYP/BS1. The proton solvation free energy used for the calculation of pK_a is -252 kcal/mol.

Figure S2. Frontier molecular orbitals of [2(a)] (left) and [2(b)] (right).

Figure S3. Frontier molecular orbitals of $[2(a)]^{2-}$ (left) and $[2(b)]^{2-}$ (right).