Supplementary Information Figure Caption

Fig. S1 Relations between D_{Cs} and the concentration of BPC6 in $[C_n mim][NTf_2]$.

Fig. S2 Dependence of D_{Cs} on the initial HNO₃ concentration in aqueous phase of BPC6/[C_nmim][NTf₂] systems. [BPC6]_{initial} = 15 mmol L⁻¹, [Cs⁺]_{initial} = 10 mmol L⁻¹.

Fig. S3 Dependence of the absorbance of $[C_4mim]^+$ at 211 nm in the aqueous phase on the concentration of extracted Cs⁺.

Fig. S4 Dependence of pH in aqueous solutions and E_{Cs} on γ -dose when Cs^+ extraction from the aqueous solution using irradiated [C₄mim][NTf₂] in combination with BPC6.

Fig. S1 Relations between D_{Cs} and the concentration of BPC6 in [C_nmim][NTf₂].

Fig. S2 Dependence of D_{Cs} on the initial HNO₃ concentration in aqueous phase of BPC6/[C_nmim][NTf₂] systems. [BPC6]_{initial} = 15 mmol L⁻¹, [Cs⁺]_{initial} = 10 mmol L⁻¹.

Fig. S3 Dependence of the absorbance of $[C_4mim]^+$ at 211 nm in the aqueous phase on the concentration of extracted Cs⁺. Apparently illustrated by this figure, there is a linear correlation between the two variables. More Cs⁺ extracted, more $[C_4mim]^+$ exchanged to the aqueous phase.

Fig. S4 Dependence of pH in aqueous solutions and E_{Cs} on γ -dose when Cs⁺ extraction from the aqueous solutions using irradiated [C₄mim][NTf₂] in combination with BPC6. pH in aqueous solutions decreases with increasing absorbed dose of [C₄mim][NTf₂], leading to the decrease of E_{Cs} .