Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 Electronic Supplementary Information (ESI)

Palladium(II) complexes with pentafluorophenyl ligands: Structures, C₆F₅ fluxionality by 2D NMR studies and pre-catalysts for the vinyl addition polymerization of norbornene

Frederik Blank,^a Harald Scherer,^a José Ruiz,^{b,*} Venancio Rodriguez^b and Christoph Janiak^{a,*}

^a Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany. Fax: int+49 761 2036147; Tel: int+49 761 2036127; E-mail: janiak@unifreiburg.de

^b Departamento de Química Inorgánica, Universidad de Murcia, 30071 Murcia, Spain; Fax: Fax: +34 968 364148; Tel: +34 968 367455; E-mail: jruiz@um.es

Scheme Palladium(II)- C_6F_5 complexes with their structural formula and number.

1

2 3 4

Figure S1 Packing diagram of 1 projected onto the ac and bc plane to show the identical molecule orientation along the c direction (H atoms not shown) and C-H...X analysis.

Figure S2 Packing diagrams of 3 (H atoms not shown).

Analysis of π -stacking interactions in **3** (highlighted in yellow):

Analy	sis	of	Sh	ort Rin	ıg-I	nteraction	s with Cg-Cg	pDistances <	6.0 Ang	gstrom and	l Beta < 6	0.0 Deg.			
- Cg(- Alpi - Bet - Gam - Cg- - CgI - CgJ - CgJ - Slij - P,Q	 Cg(I) = Plane number I (= ring number in () above) Alpha = Dihedral Angle between Planes I and J (Deg) Beta = Angle Cg(I)>Cg(J) or Cg(I)>We vector and normal to plane I (Deg) Garma = Angle Cg(I)>Cg(J) vector and normal to plane J (Deg) Cg-Cg = Distance between ring Centroids (Ang.) CgJ_Perp = Perpendicular distance of Cg(J) on ring J (Ang.) CgJ_Perp = Perpendicular distance of Cg(J) on ring I (Ang.) Slippage = Distance between Cg(I) and Perpendicular Projection of Cg(J) on Ring I (Ang). P,Q,R,S = J-Plane Parameters for Carth. Coord. (Xo, Yo, Zo) 														
Cg(I)	Re	s(I)	Cg(J)	[ARU(J)]	Cg-Cg	Transformed J	-Plane P,	Q, R, S	Alpha	Beta Gamma	CgI_Perp	CgJ_Perp	Slippage
Cg(1) Cg(1)	[[1] 1]	-> ->	Cg(1) Cg(1)	[[6455.01] 6555.01]	4.3839(11) 4.3838(11)	0.9993-0.030 0.9993-0.030	2 0.0218 2 0.0218	0.8056 7.8371	2	35.41 37.91 37.91 35.41	3.4588(7) -3.5727(7)	-3.5728(7) 3.4587(7)	
Cg(1) Cg(1)] [1] 1]	-> ->	Cg (2) Cg (2)	[[6455.01] 6555.01]	3.4734(11) 3.6027(11)	0.9973-0.065 0.9973-0.065	6 0.0334 6 0.0334	0.8141 7.8315	3.76(9) 3.76(9)	6.43 10.05 6.43 3.13	3.4200(7) -3.5973(7)	-3.4514(8) 3.5801(8)	
Cg(1) Cg(1)	[1]	->	Cg (3) Cg (3)	[6455.01] 6555.01]	5.8009(12) 5.6979(12)	0.9958-0.085	9-0.0301	0.2844 7.2916	3.24(9) 3.24(9)	51.09 51.94 53.52 52.98	3.5765(7)	-3.6437(8) 3.3878(8)	
Cg(2) Cg(2)	[1]	-> ->	Cg(1) Cg(1)	[6555.01]	3.6027(11) 3.4733(11)	0.9993-0.030	2 0.0218	7.8371	3.76(9)	3.13 6.43 10.05 6.43	-3.4515(8)	-3.5973(7) 3.4200(7)	
Cg(2) Cg(2) Cg(2) Cg(2) Cg(3)] [[]	1] 1] 1] 1] 1]	-> -> -> ->	Cg(2) Cg(2) Cg(3) Cg(3) Cg(1)	[[[[6455.01] 6555.01] 6455.01] 6555.01] 6455.01]	4.0409(12) 4.0409(12) 4.3867(12) 4.1406(12) 5.6978(12)	0.9973-0.065 0.9973-0.065 0.9958-0.085 0.9958-0.085 0.9958-0.085	6 0.0334 6 0.0334 9-0.0301 9-0.0301 2 0.0218	0.8141 7.8315 0.2844 7.2916 0.8056	4 1.18(10) 1.18(10) 3.24(9)	31.58 27.78 27.78 31.58 34.16 35.09 35.10 34.37 52.98 53.52	3.5750(8) -3.4424(8) 3.5893(8) -3.4179(8) 3.3878(8)	-3.4423(8) 3.5750(8) -3.6297(8) 3.3876(8) -3.4308(7)	

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010

					• • •							
Cg(3)	[1] -> Cg	(1) [6555.01]	5.8008(12)	0.9993-0.0302	0.0218	7.8371	3.24(9)	51.94	51.09	-3.6437(8)	3.5764(7)
Cg(3)	[1] -> Cg	(2) [6455.01]	4.1405(12)	0.9973-0.0656	0.0334	0.8141	1.18(10)	34.37	35.10	3.3876(8)	-3.4178(8)
Cg(3)	[1] -> Cg	(2) [6555.01]	4.3868(12)	0.9973-0.0656	0.0334	7.8315	1.18(10)	35.09	34.16	-3.6298(8)	3.5894(8)
Cg(3)	[1] -> Cg	(4) [7645.01]	4.7760(12)	-0.3705 0.8103	0.4540	-4.1656	64.86(10)	55.37	9.51	4.7103(9)	2.7144(9)
Cg(4)	[1] -> Cg	(3) [1555.01]	5.3013(13)	0.9958-0.0859	0.0301	4.1715	71.76(10)	55.49	82.56	-0.6861(9)	-3.0034(9)
Cg(4)	[1] -> Cg	(3) [7655.01]	4.7759(12)	-0.9958-0.0859	0.0301	-7.0677	64.86(10)	9.51	55.37	2.7143(9)	4.7103(9)
Cg(4)	[1] -> Cg	(4) [3455.01]	5.2574(13)	0.3705-0.8103	-0.4540	-1.5586	43	25.42	65.96	-2.1416(9)	-4.7485(9)
			Min or	Max 3.473				1.18	3.13	82.56	-3.644	-4.748

[6455] = -1/2+X,Y,1/2-Z [6555] = 1/2+X,Y,1/2-Z [7645] = 3/2-X,-1/2+Y,Z [1555] = X,Y,Z [7655] = 3/2-X,1/2+Y,Z [3455] = -1/2+X,1/2-Y,-Z

Ring systems in **3**:

Nr 1	P	Q	R	S	Sigref	0.002	Sigpln	0.053	Chisq	1968.4	Pl.Hyp	. P<5
Ring A 5	0.9993(1) 7.0315(2)	-0.0302(6) -0.511(10)	-0.0218(7) -0.555(19)	4.044(4) 4.044(4)	#Pd #C(16) C(2) C(6) C(10) C(15)	-0.035(1) -0.031(2) -1.351(2) 0.831(2) -0.024(2) -0.108(2)	#N(1) Cl C(3) C(7) C(12)	0.035(1) -0.105(1) -1.477(2) 0.071(2) 0.103(2)	#N(2) F(3) C(4) C(8) C(13)	0.045(1) -0.510(1) -0.412(2) 0.058(2) 0.060(2)	#C(11) C(1) C(5) C(9) C(14)	-0.014(2) -0.200(2) 0.751(2) -0.001(2) -0.067(2)
Nr 2	P	Q	R	S	Sigref	0.002	Sigpln	0.005	Chisq	17.9	Pl.Hyp	. P<5
Ring A 6	0.9973(1) 7.0173(5)	-0.0656(9) -1.112(15)	-0.0334(8) -0.85(2)	3.898(7) 3.898(7)	#N(1) #C(10) F(3) C(4) C(13)	-0.002(1) 0.005(2) -0.609(1) -0.499(2) 0.164(2)	#C(7) #C(11) N(2) C(5) C(14)	0.001(2) -0.001(2) 0.068(1) 0.683(2) 0.060(2)	#C(8) Pd C(1) C(6) C(15)	0.003(2) -0.087(1) -0.264(2) 0.774(2) -0.010(2)	#C(9) Cl C(2) C(12) C(16)	-0.006(2) -0.242(1) -1.434(2) 0.155(2) 0.015(2)
Nr 4	Р	Q	R	S	Sigref	0.002	Sigpln	0.006	Chisq	27.6	Pl.Hyp	. P<5
Ring A 6	0.3705(9) 2.607(6)	0.8103(5) 13.743(9)	0.4540(8) 11.56(2)	6.617(2) 6.617(2)	#C(1) #C(5) F(2) N(1) C(10)	0.006(2) -0.003(2) -0.021(2) 0.141(2) -1.222(2)	#C(2) #C(6) F(3) C(7) C(11)	-0.002(2) -0.003(2) 0.018(1) 1.158(2) -1.044(2)	#C(3) Pd F(4) C(8)	-0.004(2) 0.130(1) 0.005(2) 1.039(2)	#C(4) F(1) F(5) C(9)	0.007(2) -0.005(1) 0.011(1) -0.165(2)

C-H...X analysis in 3:

Analysis of Potential Hydrogen Bonds and Schemes with d(D...A) < R(D) + R(A) + 0.50, d(H...A) < R(H) + R(A) - 0.12 Ang., D-H...A > 100.0 Deg Note: - ARU codes in [] are with reference to the Coordinates printed above (Possibly transformed, when MOVE .NE. 1.555)

Nr	Typ R	es Donor	H	.Accepto	r [ARU]	D - H	нА	DA	D - HA	AHA* A'H	HA" Sum(XY,YZ)	Sum(XZ)
1 2 3 4 5	Intra	1 C(7) 1 C(7) 1 C(8) 1 C(10) 1 C(12)	H(7) H(7) H(8) H(10) H(12)	Cl F(1) F(5) Cl F(4)	[[[[] 6555.01] 6455.01] 4645.01] 3455.01]	0.95 0.95 0.95 0.95 0.95	2.70 2.52 2.47 2.64 2.43	3.295(2) 3.166(3) 3.164(3) 3.499(2) 3.058(3)	121 125' 130 150 123	112'	358.00	

:: No Classic Hydrogen Bonds Found

Translation of ARU-code to Equivalent Position Code

[6455.]	=	-1/2+x,y,1/2-z
[6555.]	=	1/2+x,y,1/2-z
[3455.]	=	-1/2+x,1/2-y,-z
[4645.]	=	1-x,-1/2+y,1/2-z

C-F...ring analysis in 3:

Analysis of Y	/-XCg(Pi-Rir	.g) Ir	nteractions	s (XCg < 4.	0 Ang Gamma < 30.0	Deg)					
YX(I)	Res(I) Cg(J	T) [ARU(J)]	XCg	Transformed J-Plane P,	Q, R, S	X-Perp	Gamma	Y-XCg	YCg	Y-X,Pi
C(5) -F(4)	[1] -> Cg(4) [3555.01]	3.2485(17)	0.3705-0.8103-0.4540	1.0483	-3.219	7.72	123.10(13)	4.140(2)	34.07
			Min or	Max 3.249			-3.219	7.72	123.10	4.140	34.07
[3555] = 1/	/2+X,1/2-Y,-Z										

Figure S3 Packing diagrams of 5 (H atoms not shown).

C-H...X analysis in 5:

Analysis of Potential Hydrogen Bonds and Schemes with d(D...A) < R(D) + R(A) + 0.50, d(H...A) < R(H) + R(A) - 0.12 Ang., D-H...A > 100.0 Deg Note: - ARU codes in [] are with reference to the Coordinates printed above (Possibly transformed, when MOVE .NE. 1.555) Nr Typ Res Donor --- H....Acceptor [ARU] D - H н...А D...A D - H...A A..H..A* A'..H..A" Sum(XY,YZ) Sum(XZ) 1 Intra 1 C(10) --H(10A) ..Cl 2 1 C(17) --H(17A) ..F(1) 3 1 C(17) --H(17B) ..F(3) 131 117 140 0.98 2.83 3.550(3) 0.98 2.42 2.988(3) 3.295(3) 4554.011 3565.01]

:: No Classic Hydrogen Bonds Found

Translation of ARU-code to Equivalent Position Code

3565.] = -x,1-y,-z 4554.] = x,1/2-y,-1/2+z

C-F...ring analysis in **5**:

Analy	sis of N	/-XCg(Pi-Ri	ng) I =====	nteractions	(XCg < 4.	0 Ang Gamma < 30.0	Deg)					
Y-	-X(I)	Res(I) Cg(J) [ARU(J)]	XCg	Transformed J-Plane P,	Q, R, S	X-Perp	Gamma	Y-XCg	YCg	Y-X,Pi
C(3) C(3) C(4)	-F(2) -F(2) -F(3)	[1] -> Cg([1] -> Cg([1] -> Cg(1) [2) [1) [2555.01] 2555.01] 2655.01]	3.094(2) 3.0268(19) 3.785(2)	-0.9685 0.1775-0.1748 -0.2679 0.7767 0.5701 -0.9685 0.1775-0.1748	3.8517 14.0499 -3.0884	-3.067 -2.970 3.663	7.63 11.12 14.59	98.26(16) 157.97(16) 76.40(15)	3.547(3) 4.305(3) 3.706(3)	15.86 78.77 11.07
				Min or	Max 3.027			-3.067	7.63	157.97	3.547	78.77

[2555] = -X,1/2+Y,1/2-Z [2655] = 1-X,1/2+Y,1/2-Z

Ring systems in **5**:

Nr 1	Р	Q	R	S	Sigref	0.003	Sigpln	0.005	Chisq	7.0	Pl.Hyp	. P<5
Ring A 5	0.9685(4) 6.940(3)	0.1775(14) 3.06(2)	0.1748(14) 0.91(2)	2.776(5) 2.776(5)	#N(1) #C(9) F(3) N(4) C(4) C(11)	0.002(2) -0.004(3) 0.754(2) -1.497(2) 0.543(3) 0.005(4)	#N(2) Pd F(4) C(1) C(5) C(12)	0.001(2) 0.004(1) 0.890(2) 0.156(3) 0.616(3) -0.133(3)	#C(7) F(1) F(5) C(2) C(6)	-0.003(3) -0.215(1) 0.569(2) 0.080(3) 0.435(3)	#C(8) F(2) N(3) C(3) C(10)	0.004(3) 0.211(2) -1.372(2) 0.272(3) -0.011(3)
Nr 2	P	Q	R	S	Sigref	0.002	Sigpln	0.009	Chisq	27.6	Pl.Hyp	. P<5
Ring A 5	0.2679(13) 1.919(9)	0.7767(8) 13.378(14)	-0.5701(10) -9.107(16)	2.807(5) 2.807(5)	#N(3) #C(15) N(1) C(16)	0.006(2) -0.008(2) -1.415(2) -0.038(3)	#N(4) Pd C(1) C(17)	-0.002(2) -0.330(1) 1.303(3) -0.075(3)	#C(13) Cl C(2)	-0.004(3) -0.768(1) 1.399(3)	#C(14) F(1) C(12)	0.007(3) 0.289(2) -0.104(3)

¹ $J(^{1}H, ^{13}C)$ in red rectangles, ² $J(^{1}H, ^{13}C)$ in green rectangles, ³ $J(^{1}H, ^{13}C)$ in blue rectangles and

 ${}^{4}J({}^{1}H,{}^{13}C)$ in violet rectangles.

Due to low sample concentration a good quality ¹³C NMR spectrum could not be measured separately.

Figure S5 ¹⁹F, ¹⁹F-COSY spectrum of complex **5** in CD_2Cl_2 (0.03 mol·l⁻¹) at room temperature.

Supplementary Material (ESI) for Dalton Transactions

Figure S6 ¹⁹F, ¹³C-HSQC spectrum of complex **5** in CD_2Cl_2 (0.03 mol·l⁻¹) at room temperature. The Heteronuclear Single Quantum Coherence (HSQC¹) is a 2D experiment, which correlates resonances of nuclei with the resonances of other nuclei by means of the one-bond coupling between them.

¹ G. Bodenhausen and D. J. Ruben, Chem. Phys. Lett., 1980, 69, 185-189.

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010

¹⁹ F resonance					
/ppm	-119.3	-121.4	-161.7	-164.5	-165.0
-119.3		${}^{4}J = 7.5 \text{ Hz}$	${}^{4}J = 1.2 \text{ Hz}$	3 J = 29.0 Hz	${}^{5}J = 8.6 \text{ Hz}$
-121.4	${}^{4}J = 7.5 \text{ Hz}$		$^{4}J = 29.5 \text{ Hz}$	${}^{5}J = 9.0 \text{ Hz}$	3 J = 29.5 Hz
-161.7	${}^{4}J = 1.2 \text{ Hz}$	${}^{4}J = 1.2 \text{ Hz}$		3 J = 19.8 Hz	3 J = 19.7 Hz
-164.5	3 J = 29.0 Hz	${}^{5}J = 9.0 \text{ Hz}$	3 J = 19.8 Hz		$^{4}J = 3.2 \text{ Hz}$
-165.0	${}^{5}J = 8.6 \text{ Hz}$	$^{3}J = 29.5 \text{ Hz}$	$^{3}J = 19.7 \text{ Hz}$	$^{4}J = 3.2 \text{ Hz}$	

Table S1. 19 F, 19 F-coupling constants for the pentafluorophenyl, C₆F₅ ligand of complex **5**.

Figure S7 Section with the C₆F₅ ipso-C atom (106 ppm) and the two pyrazolyl-methine *C*H atoms (around 108 ppm, cf. Table 2 in publication) of the ¹³C NMR spectrum of **5** (0.03 mol·l⁻¹) at room temperature;

a) ¹⁹F-decoupled ¹³C-NMR spectrum of complex 5 in CD₂Cl₂;
b) ¹H-decoupled ¹³C-NMR spectrum of complex 5.

Figure S8 ¹⁹F-NMR spectrum of complex **5** in acetone- d_6 (0.03 mol·l⁻¹) at room temperature.

Figure S9 ¹⁹F, ¹⁹F-EXSY spectrum of complex 5 (mixing time: 0.8 s) in CD_2Cl_2 (0.03 mol·l⁻¹) at room temperature, which displays crosspeaks between the two *ortho*-fluorine resonances and the *meta*-fluorine resonances, respectively.

Figure S10 ¹H, ¹H-NOESY spectrum of **5** (mixing time: 1.5 s) in CD₂Cl₂ (0.03 mol·l⁻¹) at room temperature, which displays crosspeaks between the resonances of the two methylene protons at δ = 6.02 and 7.21 ppm.

Figure S11 ¹⁹F NMR of complex [Pd(C₆F₅)Cl(tmeda)], 1; *ortho*-fluorine atoms at –121.0 ppm, *para*-fluorine atom $\delta = -161.4$ ppm and the *meta*-fluorine atoms $\delta = -163.9$ ppm.

Figure S12 ¹⁹F NMR of complex [Pd(C₆F₅)Cl(bipy)], **3**; *ortho*-fluorine atoms at –119.5 ppm, *para*-fluorine atom at –160.6 ppm and *meta*-fluorine atoms at δ = –163.3 ppm.

Figure S13 ¹³C, ¹H-HMBC spectrum of 5/MAO (Pd:Al = 1:10, 0.03 mol·l⁻¹ in Pd, at room temperature). The crosspeaks represent the coupling constants ${}^{1}J({}^{1}H, {}^{13}C), {}^{2}J({}^{1}H, {}^{13}C), {}^{3}J({}^{1}H, {}^{13}C)$ and ${}^{4}J({}^{1}H, {}^{13}C)$.

The red rectangle highlights the crosspeaks from the ${}^{1}J({}^{1}H, {}^{13}C)$ coupling constant for the new resonance at 0.43 ppm in the ${}^{1}H$ NMR for methylated **5**, i.e. $[Pd(C_{6}F_{5})CH_{3}(bpzm^{*})]$ from which the carbon resonance at –13 ppm was identified.

The spectrum was recorded in a 1:1 mixture of CD_2Cl_2 and toluene- d_8 .

Figure S14 ¹H-NMR spectrum of the MAO activated complex **5** with a molecular Pd:Al ratio of 1:10 (in a 1:1 mixture of CD₂Cl₂ and toluene- d_8 as a 0.03 mol·l⁻¹ solution in Pd, RT). The integral for **5** was chosen for the CH₃ group at 2.44 ppm with no underlying signal from **5**/MAO. The integrals show that only ~13% of **5** were methylated to [Pd(C₆F₅)CH₃(bpzm^{*})].

Figure S15a *o*-F region of the ¹⁹F-NMR spectrum of the MAO activated complex **5** with a molecular Pd:Al ratio of 1:10, i.e., a mixture of $[Pd(C_6F_5)Cl(bpzm^*)]$ and the methyl derivative $[Pd(C_6F_5)CH_3(bpzm^*)]$ (in a 1:1 mixture of CD_2Cl_2 and toluene-*d*₈ as a 0.03 mol·l⁻¹ solution in Pd, RT).

Figure S15b *p*-F and *m*-F region of the ¹⁹F-NMR spectrum of the MAO activated complex **5** with a molecular Pd:Al ratio of 1:10, i.e., a mixture of $[Pd(C_6F_5)Cl(bpzm^*)]$ and the methyl derivative $[Pd(C_6F_5)CH_3(bpzm^*)]$ (in a 1:1 mixture of CD_2Cl_2 and toluene-*d*₈ as a 0.03 mol·l⁻¹ solution in Pd, RT).

Figure S16 ¹H, ¹⁹F-HOESY spectrum of **5** (mixing time: 0.8 s) in CD₂Cl₂ (0.03 mol·l⁻¹) at room temperature. The crosspeaks (red rectangle) indicate a spatial proximity of the pyrazolyl methyl group at 1.75 ppm to the *o*-F atoms (cf. Fig. 10).