Supporting information

The First Ferroelectric Templated Borate: [Ni(en) 2pip][B5O6(OH)4]2

Chun-Yang Pan,* Sheng Hu, Da-Guang Li, Ping Ouyang, Feng-Hua Zhao, Yu-Ying

Zheng

Faculty of Light Industry and Chemical Engineering, Guangdong University of technology,

Ghuangzhou 510006, China.; E-mail: panchuny@gdut.edu.cn

Experimental Section

Synthesis: GDUT-4 was synthesized by refluxing H_3BO_3 , water and triethylenetriamine. A standard reaction was typically 1.00 g H_3BO_3 and 0.36 g NiCl₂·6H₂O was mixed together in a 30 ml Teflon–lined bomb. Water (0.40mL) followed by triethylenetramine (0.20 mL) was added to the mixture drop by drop. The sealed bomb was heated at 200°C for 1 day and then allowed to slowly cool to room temperature. Large purple block crystals were recovered by filtration, washed with distilled water and dried in air. The yield of [Ni(en)₂pip][B₅O₆(OH)₄]₂ (denoted as **GDUT-4**) is very high (almost 60% based on NiCl₂·6H₂O).

Crystal data for **GDUT-4**: C₈H₃₄B₁₀N₆NiO₂₀, $M_r = 701.18$, monoclinic, C_2 , a = 14.4598(17), b = 11.7213(17), c = 8.5302(14) Å, $\beta = 90.875(10)^\circ$, V = 1445.6(4) Å³, Z = 2, $\rho = 1.611$ g cm⁻³, F(000) = 770, GOF = 1.098, A total of 2956 reflections were collected and 2579 are unique ($R_{int} = 0.0373$). R1/wR2 = 0.0686/0.1947 for 2579 reflections ($I > 2\sigma(I)$) and 205 parameters. The intensity data were collected on a Mercury CCD diffractometer with graphite-monochromated MoK_a radiation ($\lambda = 0.71073$ Å) at room temperature. All absorption corrections were performed using the multi-scan program. The structure was solved by direct methods and refined by full-matrix least squares on F^2 with the SHELXTL-97 program package. All non-hydrogen atoms were refined anisotropically. CCDC-721173 for **GDUT-4** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

SHG Test : The powder second-harmonic generation test was carried out on the sample by the

Kurtz and Perry method. Second-harmonic generation intensity data were obtained by placing a sieved (80–100 mesh) powder sample in an intense fundamental beam from a Q-switched Nd:YAG laser of wavelength 1064 nm. The output ($\lambda = 532$ nm) was filtered first to remove the multiplier and was then displayed on an oscilloscope. This procedure was then repeated using standard NLO material (microcrystalline KDP).

TGA Test: Thermogravimetric analysis was performed in a dry N_2 atmosphere from 30 to 1000 °C with a heating rate of 10 °C/min. As shown in Figure S5, the TG curve of **GDUT-4** showed that the compound was stable up to about 215°C. On further heating, a one-step weight

loss was observed. The weight loss between 215 and 720 °C corresponds to the removal of organic amines and the dehydration of hydroxyls (observed: 41.0%; expected: 39.7%).

IR spectrum (KBr pellet): The existence of BO₃ and BO₄ as well as organic groups can be confirmed by their characteristic bonds in the IR spectrum. The sharp peaks at 2940 and 2890 cm^{-1} are characteristic of the stretching vibration of $-\text{CH}_2-$ groups, the peak at 1610-1690 \text{cm}^{-1} are characteristic of N-H bending, and peaks at 3340-3180 cm⁻¹ correspond to N-H stretching frequencies. The bands at about 1140-910 cm⁻¹ were attributed to the existence of trigonal boron (BO₃), the bands at about 1047 cm⁻¹ and 983 cm⁻¹ are attributed to the existence of tetrahedral boron (BO₄). (Figure S6).

Powder XRD: The experimental XRD pattern fits well with the stimulated pattern, indicating the phase-purity of **GDUT-4**. The difference in reflection intensities between the simulated and experimental patterns was due to the variation in preferred orientation for the powder sample (Figure S7).

Scheme 1: Decomposition of triethylenetramine and organic amines coordinated with Ni²⁺ cations to form complex cations *in situ* under boric reflux conditions.

Figure S1: The guest-framework H-bonding interactions involved in the structure-directing effect appears to consist of two three-centre H-bonds for each polyanion through O4, O7 and O10 atoms, respectively.

Figure S2:View of the hydrogen bonded architectures of **GDUT-4** in [001] and [010] directions, complex cations were omitted for clarity.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Figure S3: Frequency dependence of permittivity $((\varepsilon) = \varepsilon 1(\omega) - i\varepsilon 2(\omega))$ of **GDUT-4** at room temperature.

Figure S4: The electric hysteresis loops at various temperatures of a pellet obtained from a powdered sample of **GDUT-4**. Its Curie temperature is 200 °C .When temperature is more than 200 °C, electric hysteresis loop is disappeared.

Figure S5: TG curve of GDUT-4

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Figure S6: IR spectrum of GDUT-4.

Figure S7: Experimental and simulated X-ray powder diffraction pattern of GDUT-4