Supporting Information

belonging to

Organization of spin- and redox-labile metal centers into Langmuir and Langmuir-Blodgett films

Claudio Gandolfi, Naoko Miyashita, Dirk G. Kurth, Paulo N. Martinho, Grace G. Morgan, Martin Albrecht*

Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany, and UCD School of Chemistry & Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.

* corresponding author: email: martin.albrecht@ucd.ie; fax: +35–317162501

Content

1. Synthetic details	S2
2. Representative CV of Co(III) complexes	S4
3. Langmuir film characteristics	S4
4. UV-vis measurement of bilayer LB film	S6

1. Synthetic details

Synthesis of 3e. A suspension of 2,4-hydroxybenzaldehyde (1.40 g, 10.1 mmol), KI (328 mg, 2.0 mmol) and NaHCO₃ (1.08 g, 12.8 mmol) in MeCN (140 mL) was stirred at 70°C during 15 min. A warm solution of corresponding benzyl bromide 2e (4.0 g, 9.4 mmol) in dry THF (60 mL) was slowly added and stirring at reflux was continued for 3 d. The formed precipitate was filtered and washed with THF. The combined filtrates were evaporated *in vacuo* and the residue was purified by gradient column chromatography (SiO₂, hexane to hexane/EtOAc 9:1). The title compound was obtained as a yellow oil (3.87 g. 85%). Upon standing some white crystals formed, which were collected, washed with EtOH and dried in vacuo. M.p. 42 °C. ¹H NMR (CDCl₃, 360 MHz): 8 11.46 (s, 1H, OH), 9.72 (s, 1H, CHO), 7.44 (d, 1H, J = 8.7 Hz, C⁶H), 6.61 (d, 1H, J = 8.7 Hz, C⁵H), 6.52 (s, 2H, C⁸H), 6.49 (s, 1H, C³H), 6.41 (m, 2H, C¹⁰H), 5.03 (s, 2H, C^{ar}CH₂O), 3.93 (t, 4H, J = 6.3 Hz, CH₂CH₂O), 1.76 (m, 4H, CH₂CH₂O), 1.5–1.4 (m, 4H, CH₂CH₂CH₂O), 1.4–1.2 (m, 16H, all CH₂), 0.88 (t, 6H, J = 6.7 Hz, CH₃). ¹³C NMR ОН (CDCl₃, 90 MHz): δ 194.6 (CHO), 166.0, 164.6 (2 × C^{ar}O), 160.8 (C⁹), 137.9 (C⁷), 135.4 (C⁶H), 115.5 (CCHO), 109.1 (C⁵H), 105.8 (C⁸H), 101.8 (C³H), 101.1(C¹⁰H), 70.5 (OCH₂C^{ar}), 68.2 (OCH₂), 32.5–29.0, 22.8 (all CH₂), 29.5 (OCH₂CH₂), 26.2 (OCH₂CH₂CH₂), 14.3 (CH₃). HR-MS (ESI, Acetone): Calcd. for $C_{30}H_{43}O_5$ [M - H]⁻ $H_{2n+1}C_nO$ OC_nH_{2n+1} m/z = 483.3116, found m/z = 483.3105. Anal. found (calcd) for C₃₀H₄₄O₅ (484.68): C 74.41 (74.34); H 9.17 (9.15)

Synthesis of 3f. According to the method described for **3e**, a suspension of 2,4-hydroxybenzaldehyde (1.26 g, 8.9 mmol), KI (296 mg, 1.8 mmol) and NaHCO₃ (974 mg, 11.6 mmol) in MeCN (125 mL) was reacted with **2f** (3.61 g, 6.7 mmol) in THF (60 mL). The title compound was obtained as a white solid (2.15 g, 54%). M.p. 60°C. ¹H NMR (CDCl₃, 500 MHz): δ 11.46 (s, 1H, OH), 9.71 (s, 1H, CHO), 7.43 (d, 1H, J = 8.7 Hz, C⁶H), 6.60 (dd, 1H, J = 8.7, 2.3 Hz, C⁵H), 6.52 (d, 2H, J = 1.8 Hz, C⁸H), 6.49 (d, 1H, J = 2.4 Hz, C³H), 6.41 (t, 2H, J = 2.3 Hz, C¹⁰H), 5.02 (s, 2H, C_{ar}CH₂O), 3.93 (t, 4H, J = 6.6 Hz, CH₂CH₂O), 1.81–1.71 (m, 4H, CH₂CH₂O), 1.49–1.39 (m, 4H, CH₂CH₂CH₂O), 1.39–1.19 (m, 32H, all CH₂), 0.88 (t, 6H, J = 7.0 Hz, CH₃). ¹³C NMR (CDCl₃, 125 MHz): δ 194.6 (CHO), 166.0, 164.6 (2 × C^{ar}O), 160.8 (C⁹), 137.9 (C⁷), 135.4 (C⁶H), 115.8 (CCHO), 109.1 (C⁵H), 105.8 (C⁸H), 101.8 (C³H), 101.1(C¹⁰H), 70.5 (OCH₂C^{ar}), 68.2 (OCH₂), 32.1–29.0, 22.8 (all CH₂), 29.5 (OCH₂CH₂), 26.2 (OCH₂CH₂CH₂), 14.3 (CH₃). MS (ESI): m/z = 619.4 [M + Na]⁺. Anal. found (calcd) for C₃₈H₆₀O₅ (596.88): C 76.36 (76.47); H 10.22 (10.13).

Synthesis of 3g. According to the method described for 3e, a suspension of 2,4-hydroxybenzaldehyde (2.27 g, 16.1 mmol), KI (534 mg, 3.2 mmol) and NaHCO₃ (1.76 g, 20.9 mmol) in MeCN (460 mL) was reacted with 2g (8.54 g, 12.1 mmol) in THF (200 mL). After filtration of the reaction mixture, the combined filtrates were concentrated to ca. 150 mL and stored at 4°C for 1h. A precipitate formed, which was collected, washed with EtOH, and dried *in vacuo* to give 3g (6.78 g, 73%). M.p. 73 °C. ¹H NMR (CDCl₃, 500 MHz): δ 11.45 (s, 1H, OH), 9.71 (s, 1H, CHO), 7.43 (d, 1H, J = 8.7 Hz, C⁶H), 6.60 (dd, 1H, J = 8.7, 2.3 Hz, C⁵H), 6.52 (d, 2H, J = 1.8 Hz, C⁸H), 6.49 (d, 1H, J = 2.3 Hz,

 $C^{3}H$), 6.41 (t, 2H, J = 2.3 Hz, $C^{10}H$), 5.02 (s, 2H, $C^{ar}CH_{2}O$), 3.93 (t, 4H, J = 6.6 Hz, CH₂CH₂O), 1.81–1.71 (m, 4H, CH₂CH₂O), 1.49–1.39 (m, 4H, CH₂CH₂CH₂O), 1.39–1.19 (m, 56H, all CH₂), 0.88 (t, 6H, J = 7.0 Hz, CH₃). ¹³C NMR (CDCl₃, 90 MHz): δ 194.6 (CHO), 166.0, 164.6 (2 × $C^{ar}O$), 160.8 (C^{9}), 137.9 (C^{7}), 135.4 ($C^{6}H$), 115.8 (CCHO), 109.1 (C⁵H), 105.8 (C⁸H), 101.8 (C³), 101.1(C¹⁰), 70.5 (OCH₂C^{ar}), 68.2 (OCH₂), 32.1-29.0, 22.8 (all CH₂), 29.5 (OCH₂CH₂), 26.2 (OCH₂CH₂CH₂), 14.3 (CH₃). MS (ESI): *m*/*z* = 763.7 $[M - H]^{-}$. Anal. found (calcd) for C₅₀H₈₄O₅: C 78.51 (78.48); H 11.07 (11.06) Synthesis of 4c. To a solution of 3c (2.24 g, 7.3 mmol) in warm EtOH (150 mL) were added MgSO₄ (2.90 g, 24.1 mmol) and triethylenetetramine (0.55 mL, 3.65 mmol). The mixture was stirred at reflux for 16 h under an Ar atmosphere. Subsequently the precipitate was rapidly filtered, rinsed with EtOH (3×10 mL) and the combined filtrates were concentrated to 40 mL. Upon cooling to -25° C a precipitate slowly formed, which was collected by filtration, washed with cold EtOH (3 \times 30 mL) and dry Et₂O (2 \times 30 mL). After drying in vacuo, 4c was obtained as an off-white solid (1.30 g, 49%). M.p. 118–121 °C. IR (CHCl₃): 1632 (C=N), 1605 cm⁻¹ (C=C). ¹H NMR (CDCl₃, 360 MHz): δ 8.08 (s, 2H, N=CH), 6.93 (d, 2H, J = 8.6 Hz, C⁶H), 6.19 (d, 2H, J = 2.2 Hz, C³H), 6.04 (dd, 2H, J = 8.6, 2.3 Hz, C⁵H), 4.09–3.95 (m, 2H, CH₂N=), 3.88 (t, 4H, J = 6.7 Hz, OCH₂), 3.41–3.24 (m, 4H, CH₂N= and CH₂CH₂N=), 2.91–2.78 (m, 2H, NCH₂CH₂N), 2.57-2.37 (m, 4H, CH₂CH₂N= and NCH₂CH₂N), 1.92 (s, 2H, NH), 1.83-1.55 (m, 4H, OCH_2CH_2 , 1.46–1.35 (m, 4H, $OCH_2CH_2CH_2$), 1.35–1.12 (m, 56H, CH_2), 0.87 (t, 6H, J =6.7 Hz, CH₃), OH not resolved. ¹³C NMR (CDCl₃, 50 MHz): δ 172.5, 164.0 (2 × C^{ar}O), 167.1 (N=CH), 135.5 (C⁶H), 115.3 (CCHN), 105.2 (C⁵H), 102.6 (C⁴H), 67.6 (OCH₂), 55.8 (CH₂N=), 47.4 (CH₂CH₂N=), 44.4 (NCH₂CH₂N), 32.0, 30.0–29.3, 22.8 (all CH₂), 29.4 (OCH₂CH₂), 26.2 (OCH₂CH₂CH₂), 14.3 (CH₃). HR-MS (ESI): calcd for C₄₄H₇₅N₄O₄ [M + H]⁺ m/z = 723.5783, found m/z = 723.5783.

Synthesis of 4d. A solution of 3d (3.27 g, 8.37 mmol) in warm EtOH/THF 2:1 (60 mL) was added to a suspension of triethylenetetramine (612 mg, 4.18 mmol) and MgSO₄ (3.00 g) in EtOH (60 mL). The mixture was heated to reflux for 16 h under Ar and subsequently filtered. The residue was rinsed with EtOH (2×30 mL) and the product was extracted from the filter with THF (3×75 mL) to give, after evaporation of the solvent, the pale yellow solid 4d (2.51 g, 67%). M.p. 122–124 °C. IR (CHCl₃): 1634 (C=N), 1605 cm⁻¹ (C=C). ¹H NMR (CDCl₃, 360 MHz): δ 8.07 (s, 2H, N=CH), 6.92 (d, 2H, J = 8.6 Hz, C⁶H), 6.19 (d, 2H, J = 2.2 Hz, C³H), 6.03 (dd, 2H, J = 8.6, 2.3 Hz, C⁵H), 4.09–3.95 (m, 2H, CH₂N=), 3.88 (t, 4H, J = 6.6 Hz, OCH₂), 3.41–3.24 (m, 4H, CH₂N= and CH₂CH₂N=), 2.93-2.76 (m, 2H, NCH₂CH₂N), 2.59-2.35 (m, 4H, CH₂CH₂N= and NCH₂CH₂N), 1.90 (s, 2H, NH), 1.80-1.65 (m, 4H, OCH₂CH₂), 1.50–1.35 (m, 4H, OCH₂CH₂CH₂), 1.35–1.12 (m, 56H, CH₂), 0.88 (t, 6H, J = 6.7 Hz, CH₃), OH not resolved. ¹³C NMR (CDCl₃, 90 MHz): δ 172.5, 164.1 (2 × $C^{ar}O$), 167.1 (N=CH), 135.6 ($C^{6}H$), 115.3 (CCHN), 105.2 ($C^{5}H$), 102.6 (C³H), 67.6 (OCH₂), 55.8 (CH₂N=), 47.4 (CH₂CH₂N=), 44.5 (NCH₂CH₂N), 32.1, 30.2-29.8, 22.8 (all CH₂), 29.7 (OCH₂CH₂), 26.2 (OCH₂CH₂CH₂), 14.3 (CH₃). Anal. found (calcd) for $C_{56}H_{98}N_4O_4$ (891.76) × MgSO₄: C 66.30 (66.48); H 9.66 (9.76); N 5.64 (5.54). HR-MS (ESI): calcd for $C_{56}H_{99}N_4O_4 [M + H]^+ m/z = 891.7661$, found m/z = 891.7664.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

2. Representative CV of Co(III) complexes

Figure S1. Representative cyclic voltammogram of complex 6d indicating the irreversible reduction of the cobalt center.

3. Langmuir film characteristics

Figure S2. Representative pressure-area isotherms for the cobalt complexes **5c**, **5d**, and **5f** containing a CI^{-} anion, and for the analogous complexes **6c**, **6d**, and **6f** containing a NO_{3}^{-} anion.

Supplementary Material (ESI) for Dalton Transactions

Figure S3. Film stability deduced from the time-dependent pressure change at a fixed area.

Figure S4. Stability of films comprising cobalt complexes comprising $Cl^{-}(5)$ and $NO_{3}^{-}(6)$ anions, respectively, as deduced from the time-dependent pressure change at a fixed area.

Figure S5. Time-dependent change of the surface pressure at a fixed area, indicating the different stability of films composed of iron complexes **7e–g** at different initial compression.

4. UV-vis measurement of bilayer LB film

Figure S6. Superimposed absorption spectra of bilayers of complex **7d** in the visible range, illustrating a change in adsorption in the 250-170 K range. Addition of further layers is prevented by the partial desorption of the second layer, thus leading to a maximum coating of two complete layers on the support (cf. transfer ratios, Table 2 and Fig. 6 in the article).