Electronic Supplementary Information

Synthesis and structures of novel 1-methylcytosinato-bridged (ethylenediamine)platinum(II) and platinum(III) dinuclear complexes

Vesna M. Djinovic, Mathea S. Galanski, Vladimir B. Arion, and Bernhard K. Keppler^{*}

University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria

Contents

Figure S1.¹⁹⁵Pt NMR (9:1 H₂O:D₂O) spectrum of the products obtained from the reaction of $[Pt(en)(H_2O)_2]^{2+}$ with 1 equiv of 1-MeCyt.

Figure S2. ¹H NMR spectrum (9:1 $H_2O:D_2O$) of ht-[(en)Pt(MetCyt-H)_2Pt(en)](NO_3)_2·H_2O (1).

Figure S3. ¹⁹⁵Pt NMR (9:1 H₂O:D₂O) spectrum of ht-[(en)Pt(MetCyt-H)₂Pt(en)](NO₃)₂·H₂O(1).

Figure S4. ¹H NMR spectrum (D_2O) of $[Pt^{II}(en)(MetCyt)_2](NO_3)_2 \cdot MetCyt (2)$.

Figure S5. ¹⁹⁵ Pt NMR spectrum (D_2O) of $[Pt^{II}(en)(MetCyt)_2](NO_3)_2$ ·MetCyt (2).

Figure S6. ¹H NMR spectrum (D_2O) of $[Pt^{II}(en)(MetCyt)_2](NO_3)_2$ (3).

Figure S7. ¹⁹⁵ Pt NMR spectrum (D_2O) of $[Pt^{II}(en)(MetCyt)_2](NO_3)_2$ (3).

Figure S8. ¹H NMR spectrum (D₂O) of [Pt^{II}(en)(MetCyt)Cl]NO₃ complex (4).

Figure S9. ¹⁹⁵ Pt NMR spectrum (D_2O) of [Pt^{II}(en)(MetCyt)Cl]NO₃ (4).

Figure S10. ¹H NMR spectrum (D₂O) of ht-[H₂O(en)Pt(MetCyt-H)₂Pt(en)OH](ClO₄)₃(**6**).

Figure S11. ¹⁹⁵ Pt NMR spectrum (D₂O) of ht-[H₂O(en)Pt(MetCyt-H)₂Pt(en)OH](ClO₄)₃(6).

Table S1. Comparison of Geometric Parameters of Head-to-Head α -Pyridonate and Head-to-Tail 1-Methylcytosinate-Bridged Platinum Dimers

Synthesis, Characterization and X-ray structure analysis of [Pt^{II}(dmen)(MetCyt)Cl]NO₃ (S1)

Table S2. Crystal data and details of data collection for $S1 \cdot H_2O$

Figure S12. Structure of the cation [Pt^{II}(dmen)(MeCyt)Cl]⁺ in **S1** displaying ellipsoids at 50% probability.

Figure S1. ¹⁹⁵Pt NMR (9:1 H₂O:D₂O) spectrum of the products obtained from the reaction of $[Pt(en)(H_2O)_2]^{2+}$ with 1 equiv of 1-MeCyt (as described in the Experimental Section) after 24 h at 40 °C. The pH of the solution was 3. The chemical shifts are referenced to K₂[PtCl₄]. The resonances are assigned as follows: (a) $[Pt(en)(MeCyt)_2]^{2+}$ (3), -1178 ppm; (b) $[Pt(en)(MetCyt)Cl]^+$ (4), -975 ppm; (f) ht-[(en)Pt(MetCyt-H)_2Pt(en)]^{2+} (1), -823 ppm; (g) $[Pt(en)(MetCyt-H)(H_2O)]^+$, -733 ppm.

Figure S2. ¹H NMR spectrum (9:1 H₂O:D₂O) of ht-[(en)Pt(MetCyt-H)₂Pt(en)](NO₃)₂·H₂O (1).

Figure S3. ¹⁹⁵Pt NMR (9:1 H₂O:D₂O) spectrum of ht-[(en)Pt(MetCyt-H)₂Pt(en)](NO₃)₂·H₂O(1).

Figure S5.¹⁹⁵ Pt NMR spectrum (D₂O) of $[Pt^{II}(en)(MetCyt)_2](NO_3)_2 \cdot MetCyt$ (2).

Figure S6. ¹H NMR spectrum (D₂O) of $[Pt^{II}(en)(MetCyt)_2](NO_3)_2$ (3).

Figure S7. ¹⁹⁵ Pt NMR spectrum (D₂O) of $[Pt^{II}(en)(MetCyt)_2](NO_3)_2$ (3).

Figure S8. ¹H NMR spectrum (D₂O) of [Pt^{II}(en)(MetCyt)Cl]NO₃ (4).

Figure S10. ¹H NMR spectrum (D₂O) of ht-[H₂O(en)Pt(MetCyt-H)₂Pt(en)OH](ClO₄)₃(**6**).

Compound	Formal oxidation state	Pt-Pt Distance (Å)	$\tau(^{o})^{a}$	$\omega(^{\circ})^{b}$	Ref.
Head-Head α -Pyridonate Bridged Platinum Dimers					
$[Pt_2(en)_2(C_5H_4NO)_2]_2(NO_3)_4 (9)$	2	2.992(1)	39.6	24.9	33
$[Pt_2(en)_2(C_5H_4NO)_2(NO_2)(NO_3)]_2(NO_3)_5 (10)$	3	2.6382(6)	30.7	36.2	17
$[Pt_2(NH_3)_4(C_5H_4NO)_2]_2(NO_3)_4 (11)$	2	2.877(1)	30.0	20.3	33
$[Pt_2(NH_3)_4(C_5H_4NO)_2(H_2O)(NO_3)](NO_3)_3 (12)$	3	2.540(1)	20.0	23.2	33
Head-Tail 1-Methylcytosinate-Bridged Platinum Dimers		1	1		
$[Pt_2(en)_2(MetCyt-H)_2](NO_3)_2$ (1)	2	2.9816(3)	34.4	18.7	с
$[(SO_4)(en)Pt(MeCyt-H)_2Pt(en)(SO_4)] (5)$	3	2.5982(4)	26.6	28.1	c
$[H_2O(en)Pt(MetCyt-H)_2Pt(en)OH](ClO_4)_3 (6)$	3	2.5569(3)	26.5	24.4	с
$[Pt_2(NH_3)_4(MeCyt-H)_2](NO_3)_2$ (7)	2	2.981(2)	34.0	16.0	22
$[Pt_2(NH_3)_4(MeCyt-H)_2(NO_2)_2](NO_3)_2 (8)$	3	2.584(1)	21.0	25.0	22

 Table S1. Comparison of Geometric Parameters of Head-to-Head α-Pyridonate and Head-to-Tail

 1-Methylcytosinate-Bridged Platinum Dimers

^a τ is the tilt angle between adjacent platinum coordination planes in the dinuclear complex. ^b

 ω is the average torsion (or twist) angle about the Pt(1)-Pt(2) vector. ^c This work.

Synthesis, Characterization and X-ray structure analysis of $[Pt^{II}(dmen)(MetCyt)CI]NO_{3}$ (S1)

Materials and Methods. All reagents and solvents were obtained from commercial suppliers and were used as received. The starting compound $[Pt^{II}(dmen)Cl_2]$ was synthesized according to standard literature procedures. ¹H and ¹⁹⁵Pt NMR spectra were recorded with a Bruker Avance III 500 MHz NMR spectrometer at 500.32 (¹H) and 107.55 MHz (¹⁹⁵Pt) in D₂O at 298 K, using the solvent residual peak for ¹H as internal reference. ¹⁹⁵Pt chemical shifts were referenced relative to external K₂[PtCl₄]. Elemental analyses were performed using a Perkin-Elmer 2400CHN elemental analyzer by the micro laboratory of the Institute of Physical Chemistry, University of Vienna.

[**Pt^{II}(dmen)**(**MetCyt)Cl]NO₃ (S1):** [Pt^{II}(dmen)Cl₂] (0.109 g, 3.068·10⁻⁴ mol) was dissolved in 40 ml of *N*,*N*-dimethylformamide, and to this solution 1 equiv. of AgNO₃ (0.0521g, 3·068.10⁻⁴ mol) was added. The reaction mixture was then continuously stirred in the dark for 24h at room temperature. The AgCl precipitate was filtered off, using celite as a filter. To the filtrate [Pt^{II}(dmen)(H₂O)Cl]NO₃, 1 equiv. of MeCyt (0.0384 g, 3.068·10⁻⁴ mol) was added. The reaction mixture was then stirred for 24 h at room temperature. A pale yellow solution was obtained. This solution was filtered and concentrated to 3 ml under reduced pressure; acetone was then added to obtained the product **S1**. A pale yellow product **3** was filtered, washed with CH₂Cl₂ and acetone. Crystals of **S1·H₂O** suitable for X-ray data collection were grown via vapor diffusion of acetone into a solution of **S1** in DMF. The final product was dried in vacuo. Yield 101 mg, 65 %. Anal. Calcd. for C₉H₁₉N₆ClO₄Pt: C 21.36; H 3.76; N 16.62. Found: C 21.47; H 3.63; N 16.77. ¹H NMR (D₂O): δ = 7.52 (m, H; C₆H), 5.94 (m, H; C₃H), 3.34 (s, 3H; CH₃), 3.33 (s, 3H; CH₃), 2.92-2.27 (m, 4H; CH₂). ¹⁹⁵Pt NMR (400 MHz, D₂O, 23 °C): δ = -983 ppm.

Crystallographic Structure Determination.

X-ray diffraction measurements for **S1** were performed on a Bruker X8 APEXII CCD diffractometer. A single crystal was positioned at 40 mm from the detector, and 2204 frames were measured, each for 20 s over 1° scan width. The data were processed using SAINT software.¹ Crystal data, data collection parameters, and structure refinement details are given in Table S2. The structure was solved by direct methods and refined by full-matrix least-squares techniques. Non-H atoms were refined with anisotropic displacement parameters. H atoms were inserted in calculated positions and refined with a riding model. The positions of H atoms in the disordered water molecule have not been calculated. The following software, computer and table were used: structure solution, *SHELXS-97*;² refinement, *SHELXL-97*;³ molecular diagrams, *ORTEP*;⁴ computer, Pentium IV; scattering factors.⁵ Crystal data, data collection parameters, and structure refinement details are given in Table S2.

Complex	S1·H ₂ O
Empirical formula	$C_9H_{21}ClN_6O_5Pt$
Fw	523.86
space group	$P2_{1}/c$
<i>a</i> [Å]	12.4934(4)
<i>b</i> [Å]	12.7860(4)
<i>c</i> [Å]	12.6634(4)
V [Å ³]	1771.37(10)
Ζ	4
λ [Å]	0.71073
$ ho_{ m calcd}$ [g cm ⁻³]	1.964
crystal size [mm ³]	$0.13 \times 0.10 \times 0.02$
<i>T</i> [K]	100
$\mu [{ m cm}^{-1}]$	81.01
R1 ^[a]	0.0279
wR2 ^[b]	0.0735
GOF ^[c]	1.068

Table S2. Crystal data and details of data collection for S1·H₂O

[a] R1 = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. [b] $wR2 = \{\Sigma [w (F_o^2 - F_c^2)^2] / \Sigma [w (F_o^2)^2] \}^{1/2}$. [c] GOF = $\{\Sigma [w (F_o^2 - F_c^2)^2] / (n - p) \}^{1/2}$, where *n* is the number of reflections and *p* is the total number of parameters refined.

Figure S12. Structure of the cation $[Pt^{II}(dmen)(MeCyt)Cl]^+$ in **S1** displaying ellipsoids at 50% probability. Selected bond lengths (Å) and angles (deg): Pt–N4, 2.042(5); Pt–N5, 2.054(5); Pt–N2, 2.030(5); Pt–Cl, 2.3050(14); N2–Pt–N5, 92.62(18); N4–Pt–N5, 84.48(19); N2–Pt–Cl, 87.90(13); N4–Pt–Cl, 94.94(14).

¹ SAINT-Plus (Version 7.06a) and APEX2; Bruker-Nonius AXS Inc.: Madison, Wisconsin, USA, 2004.

² G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution; University of Göttingen, Göttingen, Germany, 1997.

³ G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.

⁴ G. K. Johnson, Report ORNL-5138; OAK Ridge National Laboratory; Oak Ridge, TN, 1976.

⁵ International Tables for X-ray Crystallography; Kluwer Academic Press: Dordrecht, The Netherlands, 1992; Vol. C, Tables 4.2.6.8 and 6.1.1.4.