Metalloligands for designing Single-Molecule and Single-Chain Magnets

Jean-Pierre Costes,^{a,b}* Laure Vendier^{a,b}, Wolfgang Wernsdorfer^{c*}

^{*a*} CNRS ; LCC (Laboratoire de Chimie de Coordination) ; 205, route de Narbonne, F-

31077 Toulouse, France (jean-pierre.costes@lcc-toulouse.fr)

^b Université de Toulouse ; UPS, INPT ; LCC ; F-31077 Toulouse, France

^c Institut Néel, CNRS, BP 166, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9, France

Supplementary Material

Figure S1. Experimental $\chi_M T$ vs. *T* for $[L^1CuGd(thd)_2]_2$ **1**.

Figure S2. Field dependence of the magnetization for $[L^2CuGd(thd)_2]_2$ 1 at 2 K. The solid line corresponds to the best fit described in the text.

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Figure S3. Experimental $\chi_M T$ vs. *T* for $[L^1CuTb(thd)_2]_2$ **2**.

Figure S4. Field dependence of the magnetization for $[L^2CuTb(thd)_2]_2$ 4 at 2 K.

Figure S5. Field dependence of the magnetization for $[L^1CuTb(thd)_2]_2$ at 2 K.

Figure S6. Magnetization (M) vs. magnetic field (H) hysteresis loops for 4 at different field sweep rates. M is normalized to its saturation value at 1.4 T.

Figure S7. Magnetization (M) vs. magnetic field (H) hysteresis loops for **2** at different field sweep rates. M is normalized to its saturation value at 1.4 T.

Figure S8. Magnetization (M) vs. magnetic field (H) hysteresis loops for $[(L^1Cu)_2Tb(NO_3)(H_2O)]_n$ at different field sweep rates. M is normalized to its saturation value at 1.4 T.

Figure S9. Arrhenius plot using ac data for $[(L^1Cu)_2Tb(NO_3)(H_2O)]_n$.

Figure S10. Dc magnetization decay data for $[(L^1Cu)_2Tb(NO_3)(H_2O)]_n$.

Figure S11. Arrhenius plot using dc data for $[(L^1Cu)_2Tb(NO_3)(H_2O)]_n$.