## **Supporting Information**

## FerriNaphth: A Fluorescent Dosimeter for Redox Active Metals

## Randy K. Jackson, Yu Shi, Xudong Yao and Shawn Burdette\*

Department of Chemistry, University of Connecticut, 55 North Eagleville Road U-3060, Storrs, Connecticut 06269

shawn.burdette@uconn.edu

| II.  | NMR spectraS                   | 1 |
|------|--------------------------------|---|
| III. | Additional spectroscopic dataS | 5 |

## I. NMR spectra



0



Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010







**Figure S-1.** Oxidation of FerriNaphth with  $Fe^{III}$  in methanol. The spectrum of a 10  $\mu$ M solution of FerriNaphth in methanol was recorded followed by the addition of 2 equivalents of  $Fe(NO_3)_3$ . The solution was allowed to equilibrate for two minutes followed by the acquisition of spectra taken until there was no further change.



**Figure S-2.** Oxidation of FerriNaphth with incremental additions of  $Cu(NO_3)_2$  in acetonitrile. Metal from a 10 mM stock solution was added to a 10  $\mu$ M solution of FerriNaphth in 2.5  $\mu$ M increments. Absorption measurements were recorded after no additional changes were observed following the addition of metal.



**Figure S-3.** Oxidation of FerriNaphth with  $Cu^{II}$  in methanol. The absorption of a 10  $\mu$ M solution of FerriNaphth was measured followed by the addition of 2 equivalence of  $Cu(NO_3)_2$  from a 10 mM stock solution in 60/40 EtOH/CH<sub>3</sub>CN. The spectrum of the equilibrated mixture was taken after three minutes and subsequent measurements were taken to ensure no further changes.



**Figure S-4.** UV-vis titration of 10  $\mu$ M FerriNaphth with Ga(NO<sub>3</sub>)<sub>3</sub> in methanol. Metal was added in 20  $\mu$ M increments (6 $\mu$ L aliquots) from a 10 mM stock solution. Each spectrum was corrected for dilution by multiplying measured absorption by the inverse of the dilution factor.



**Figure S-5.** Oxidation of FerriNaphth with incremental additions of  $Fe(NO_3)_3$  in methanol. Iron from a 10 mM stock solution was added to a 10  $\mu$ M solution of FerriNaphth in 2.5  $\mu$ M increments up to 2 equivalents. An additional 0.6 equivalents were added incrementally to complete the oxidation. Absorption measurements were recorded after no additional changes were observed following the addition of metal.



**Figure S-6.** Emission spectra of oxidation of 10  $\mu$ M FerriNaphth in methanol with 2 equivalents of Fe(NO<sub>3</sub>)<sub>3</sub>. Spectra were recorded over a period of 48 min. Excitation was provided at 400 nm with an excitation slit width of 5.0 nm and an emission slit width of 10 nm.



**Figure S-7.** Oxidation of 10  $\mu$ M of FerriNaphth with 2 equivalents of Fe(NO<sub>3</sub>)<sub>3</sub> at different concentrations of probe in acetonitrile.

Electronic Supplementary Information for Dalton Transactions This journal is  $\ensuremath{\mathbb{O}}$  The Royal Society of Chemistry 2010



Figure S-8. Absorption of species formed at 368 nm, plotted as a function of concentration.



Figure S-9. Absorption spectra of 20  $\mu M$  Fe(NO\_3)\_3 and 20  $\mu M$  FeCl\_3 in methanol and acetonitrile.