Electronic Supplementary Information (ESI)

Comparison of ruthenium(II) and cyclometalated iridium(III) azacrown ether phenanthroline hybrids for the detection of metal cations by electrochemiluminescence

Hengwei Lin, Mehmet Emin Cinar, and Michael Schmittel*

Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Str., D-57068 Siegen, Germany; FAX: int (+49) 271-740-3270, E-mail: schmittel@chemie.unisiegen.de

Contents

Characterisation of the new complex 1	р 2 – р 3
Luminescence Data	p 4
Computational Results	p 5 – p 9

^{*} Fax: int (+49) 271-740-3270, E-mail: schmittel@chemie.uni-siegen.de

¹H NMR (400 MHz) spectrum of iridium complex **1** in CD₂Cl₂.

 ^{13}C NMR (100 MHz) spectrum of iridium complex 1 in CD₂Cl₂.

ESI MS of iridium complex 1 along with the experimental (left) and simulated (right) isotopic splitting.

Luminescence Data

Figure S1. (left) ECL emission spectra of complexes **1-6** (10 μ M) in MeCN. 50 mM TPrA and 0.1 M ^{*n*}Bu₄PF₆ were used as coreactant and electrolyte, respectively. The electrode potential was swept between 0 to 1.6 V (*vs.* silver wire) at a scan rate of 100 mV s⁻¹. (right) Inset enlarged.

Figure S2 (a) PL responses of **1** (10 μ M in MeCN) with increasing concentrations of Ba²⁺ addition ($\lambda_{exc} = 374$ nm). (b) Linear fitting of PL emission intensity of **1** (10 μ M in MeCN) at 572 nm with respect to log [Ba²⁺].

Computational Results

Table 1. Molecular orbitals calculated of **1**' at B3LYP/6-311+G(d)/LANL2DZ//B3LYP/6-31G(d)/LANL2DZ level (views on to the MOs from three different angles).

*Isocontour plots (0.02 ebohr $^{-3}$) **(1 Hartree= 27.2116 eV).

Table 2. Molecular orbitals calculated of **2'** at B3LYP/6-311+G(d)/LANL2DZ//B3LYP/6-31G(d)/LANL2DZ level (views on to the MOs from two different angles).

*Isocontour plots (0.02 ebohr ⁻³) **(1 Hartree= 27.2116 eV), calculated HOMO-LUMO gap is 3.001 eV.

Geometry optimization of symmetric Ru-complex was performed within C_2 symmetry constraints at the DFT level by using the Gaussian 03 program.¹ B3LYP² method with 6-31G(d) basis set on H, C, N atoms, and double- ζ quality basis set (LANL2DZ)³, containing the Hay and Wadt's effective core potential (ECP), on Ru atom was applied. Fast multipole method (FMM),⁴ implemented in Gaussian 03 and default for big molecules, was used to solve the self-consistent field problem.⁵ The minima was verified by analyzing the harmonic vibrational frequencies, using analytical second derivatives, which have NIMAG=0. Single point calculation on the optimized geometry was performed at B3LYP/6-311+G(d)/LANL2DZ level. The visualization of orbitals was done with GaussView 3.07.

Coordinates of 1' after minimisation

С	-0.0000	2.9971	0.3596
С	0.4054	4.3184	0.4698
С	1.4350	4.6246	1.3649
С	2.0097	3.6044	2.1092
С	1.5623	2.2816	1.9650
Ν	0.5566	2.0028	1.0792
С	2.0674	1.1208	2.6950
С	3.1118	1.1921	3.6337
С	3.5340	0.0450	4.2951
С	2.9091	-1.1764	4.0190
С	1.8720	-1.2509	3.0866
С	1.4255	-0.1124	2.3974
С	-1.8720	1.2509	3.0866
С	-2.9091	1.1764	4.0190
С	-3.5340	-0.0450	4.2951
С	-3.1118	-1.1921	3.6337
С	-2.0674	-1.1208	2.6950
С	-1.4255	0.1124	2.3974
С	-1.5623	-2.2816	1.9650
С	-2.0097	-3.6044	2.1092
С	-1.4350	-4.6246	1.3649
С	-0.4054	-4.3184	0.4698
С	0.0000	-2.9971	0.3596
N	-0.5566	-2.0028	1.0792
Ir	-0.0000	0.0000	0.9680
Н	-0.7966	2.7016	-0.3120
Н	-0.0769	5.0838	-0.1281
Н	1.7804	5.6475	1.4817
Н	2.8044	3.8239	2.8123
Н	3.5974	2.1390	3.8537
Н	4.3384	0.0995	5.0225

¹ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Gaussian, Inc., Wallingford CT, 2004.

² (a) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 1372-1377. (b) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648-5652. (c) C. Lee, W. Yang and R.G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.

³ (a) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 270-283. (b) W. R. Wadt and P. J. Hay, *J. Chem. Phys.*, 1985, **82**, 284-298. (c) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 299-310.

 ⁴ (a) L. Greengard and V. Rokhlin, J. Comput. Phys., 1987, 73, 325-348. (b) L. Greengard, Science, 1994, 265, 909-914. (c) C. A. White and M. Head-Gordon, J. Chem. Phys., 1994, 101, 6593-6605. (d) J. C. Burant, M. C. Strain, G. E. Scuseria and M. J. Frisch, Chem. Phys. Lett., 1996, 248, 43-49. (e) M. C. Strain, G. E. Scuseria and M. J. Frisch, Science, 1996, 271, 51-53.

⁵ a) J. M. Millam and G. E. Scuseria, J. Chem. Phys., 1997, **106**, 5569. b) A. D. Daniels, J. M. Millam and G. E. Scuseria, J. Chem. Phys., 1997, **107**, 425.

Н	3.2308	-2.0755	4.5391
Н	1.4044	-2.2140	2.9026
Н	-1.4044	2.2140	2.9026
Н	-3.2308	2.0755	4.5391
Н	-4.3384	-0.0995	5.0225
Н	-3.5974	-2.1390	3.8537
Н	-2.8044	-3.8239	2.8123
Н	-1.7804	-5.6475	1.4817
Н	0.0769	-5.0838	-0.1281
Н	0.7966	-2.7016	-0.3120
Н	5.4561	-1.7244	-3.8002
С	4.9820	-0.8563	-4.2844
Ν	3.5262	-0.9561	-4.3221
Н	5.3495	-0.7996	-5.3130
Н	5.2868	0.0553	-3.7654
С	2.8038	-0.6675	-3.1836
С	3.0473	-1.9364	-5.3051
С	3.4109	-0.6138	-1.9212
С	1.3957	-0.3462	-3.2348
Н	3.0921	-1.5305	-6.3226
Н	3.6805	-2.8333	-5.2668
Н	2.0252	-2.2427	-5.0866
С	2.6455	-0.4030	-0.7759
Н	4.4692	-0.8076	-1.8011
С	0.7074	-0.1491	-2.0125
С	0.6643	-0.1611	-4.4497
Ν	1.3249	-0.2173	-0.7943
Н	3.1063	-0.4246	0.2066
С	-0.7074	0.1491	-2.0125
С	-0.6643	0.1611	-4.4497
Н	1.1772	-0.2522	-5.3981
Ν	-1.3249	0.2173	-0.7943
С	-1.3957	0.3462	-3.2348
Н	-1.1772	0.2522	-5.3981
С	-2.6455	0.4030	-0.7759
С	-2.8038	0.6675	-3.1836
С	-3.4109	0.6138	-1.9212
Н	-3.1063	0.4246	0.2066
Ν	-3.5262	0.9561	-4.3221
Н	-4.4692	0.8076	-1.8011
С	-4.9820	0.8563	-4.2844
С	-3.0473	1.9364	-5.3051
Н	-5.4561	1.7244	-3.8002
Н	-5.3495	0.7996	-5.3130
Н	-5.2868	-0.0553	-3.7654
Н	-3.0921	1.5305	-6.3226
Н	-3.6805	2.8333	-5.2668
Н	-2.0252	2.2427	-5.0866

Coordinates of 2' after minimisation

Ru	-0.0000	0.0000	0.7216
Ν	-2.1060	0.2105	0.8419
Ν	0.0170	1.3245	-0.9300
Ν	2.1060	-0.2105	0.8419
Ν	-0.0170	-1.3245	-0.9300
Ν	-0.1925	1.4776	2.2402
Ν	0.1925	-1.4776	2.2402
С	0.0434	0.7187	-2.1608
С	-0.0434	-0.7187	-2.1608
С	-1.4924	1.8028	2.5190
С	-2.5122	1.1327	1.7684
С	2.5122	-1.1327	1.7684
С	1.4924	-1.8028	2.5190
С	0.0000	-2.6619	-0.9085
С	-0.0878	-3.4576	-2.0434
С	-0.2395	-2.8816	-3.3197
С	-0.1370	-1.4363	-3.3783

С	0.0000	2.6619	-0.9085
С	0.0878	3.4576	-2.0434
С	0.2395	2.8816	-3.3197
С	0.1370	1.4363	-3.3783
С	-0.7723	-2.0898	2.9323
Č	-0.5069	-3.0494	3 9239
Ĉ	0.8024	-3 3883	1 2103
C	1.8405	-3.3603	2 4005
C	1.0493	-2.7005	0.1201
C	3.0424	0.4227	0.1301
C	4.4169	0.1839	0.2987
С	4.8386	-0.7416	1.2349
С	3.8760	-1.4324	2.0044
С	0.7723	2.0898	2.9323
С	-3.0424	-0.4227	0.1301
С	0.5069	3.0494	3.9239
С	-0.8024	3.3883	4.2103
Ĉ	-1 8495	2 7603	3 4995
Ĉ	-4 4169	_0 1839	0.2087
C	4.9296	0.7416	1 22/0
C	-4.0300	1.4224	1.2349
C	-3.8/60	1.4324	2.0044
C	4.2108	-2.4088	3.0030
С	3.2401	-3.0440	3.7204
С	-3.2401	3.0440	3.7204
С	-4.2108	2.4088	3.0030
С	-0.0613	-0.6814	-4.5895
С	0.0613	0.6814	-4.5895
н	1.7908	1.8102	2.6870
н	1 3351	3 5111	4 4 5 0 7
и и	1.0333	4 1277	4.9717
11	-1.0555	4.1277	4.7/17
п	-5.5054	3.7793	4.4/45
н	-5.2590	2.0322	3.1780
Н	-5.8955	0.9423	1.3844
Н	-5.1288	-0.7316	-0.3093
Н	-2.6856	-1.1451	-0.5951
Н	5.8955	-0.9423	1.3844
Н	5.2590	-2.6322	3.1780
Н	3.5054	-3.7793	4.4743
Н	5.1288	0.7316	-0.3093
н	2.6856	1 1451	-0 5951
н	1 0333	-4 1277	4 9717
н	-1 3351	-3 5111	4 4507
11	1 7008	1 9102	4.4507 2.6970
п	-1.7908	-1.0102	2.0670
н	-0.0492	3.1245	0.0713
н	0.1154	4.5312	-1.9112
Ν	0.4253	3.6626	-4.4258
Н	0.0753	1.1926	-5.5417
Н	-0.0753	-1.1926	-5.5417
Ν	-0.4253	-3.6626	-4.4258
Н	-0.1154	-4.5312	-1.9112
Н	0.0492	-3.1245	0.0713
С	1.3286	3.3009	-5.5260
Č	0.1212	5.0928	-4 3662
C	1 3 2 8 6	3 3000	5 5260
C	-1.3280	5.0009	4 2660
C II	-0.1212	-3.0928	-4.3002
Н	-0./886	-3.1790	-6.4/24
Н	-1.8761	-2.3869	-5.2983
Н	-2.0623	-4.1047	-5.6554
Н	0.0146	-5.4574	-5.3874
Н	-0.9288	-5.6741	-3.8982
Н	0.8105	-5.2624	-3.8222
Н	0.7886	3.1790	-6.4724
н	1 8761	2 3869	-5 2983
н	2 0623	4 1047	-5 6554
и П	2.0023	+.1047	5 2074
г1 11	-0.0140	5.45/4	-3.38/4
Н	0.9288	5.6741	-3.8982
	-U X 105	7 2h/4	-18/77