Supplementary Data

Novel Condensation of Au-centered Trigonal Prisms in Rare-Earth-Metal-Rich Tellurides: Er₇Au₂Te₂ and Lu₇Au₂Te₂.

Shalabh Gupta and John D. Corbett^{*}

Department of Chemistry, Iowa State University, Ames, Iowa 50011

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Er1	16(1)	10(1)	10(1)	0	4(1)	0
Er2	20(1)	11(1)	10(1)	0	6(1)	0
Er3	14(1)	12(1)	12(1)	0	4(1)	0
Er4	17(1)	10(1)	12(1)	0	4(1)	0
Er5	16(1)	12(1)	13(1)	0	5(1)	0
Er6	14(1)	10(1)	11(1)	0	5(1)	0
Er7	16(1)	16(1)	9(1)	0	4(1)	0
Er8	17(1)	12(1)	10(1)	0	7(1)	0
Au1	17(1)	10(1)	13(1)	0	4(1)	0
Au2	19(1)	11(1)	15(1)	0	6(1)	0
Te1	16(1)	12(1)	11(1)	0	6(1)	0
Te2	14(1)	9(1)	12(1)	0	4(1)	0

Table S1. Anisotropic displacement parameters (Å²x 10³) for Er₇Au₂Te₂. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Interaction	Distance	-ICOHP	Number
	(Å)	(eV)	/cell
Au1–Er4 _{cap}	3.659(1)	0.153	1
Au1–Er3 _{cap}	3.451(2)	0.409	1
Au1–Er8 _{cap}	3.170(1)	0.763	1
Au1–Er5	2.976(1)	1.234	2
Au1–Er4	2.948(1)	1.012	2
Au1–Er6	2.896(1)	0.984	2
Au2–Er5 _{cap}	3.733(1)	0.110	1
Au2–Er2 _{cap}	3.550(1)	0.476	1
Au2–Er7 _{cap}	3.042(1)	0.770	1
Au2–Er2	2.979(1)	1.024	2
Au2–Er1	2.908(1)	0.924	2
Au2–Er3	2.879(1)	1.096	2
Er1–Er2	3.960(2)	0.107	1
Er1–Er5	3.872(2)	0.053	2
Er1–Er7	3.452(1)	0.179	2
Er1–Er3	3.448(2)	0.139	1
Er2–Er3	3.608(2)	0.218	2
Er2–Er7	3.635(1)	0.147	1
Er2–Er3	3.676(2)	0.181	1
Er2–Er2	3.685(2)	0.268	2
Er3–Er5	3.449(2)	0.249	2

Table S2: Bond Distances [Å] and –ICOHP Values (eV/bond mol) for Different Interactions in Er₇Au₂Te₂ (cut off for distances is set at 4.0 Å)

Er3–Er6	3.555(2)	0.145	2
Er4–Er8	3.594(1)	0.162	2
Er4–Er4	3.632(2)	0.168	2
Er4–Er6	3.718(2)	0.105	1
Er4–Er6	3.898(2)	0.030	2
Er4–Er5	3.920(2)	0.119	1
Er5–Er8	3.498(1)	0.264	2
Er5–Er6	3.592(2)	0.246	1
Te1–Er6	3.023(2)	0.723	1
Te1–Er1	3.030(1)	0.698	1
Te1–Er8	3.043(2)	1.024	1
Te1–Er5	3.143(2)	0.765	2
Te1–Er4	3.154(2)	0.709	2
Te2–Er3	3.071(2)	0.812	1
Te2–Er1	3.134(2)	0.602	2
Te2–Er7	3.154(2)	0.692	1
Te2–Er2	3.201(2)	0.677	2
Te2–Er6	3.213(2)	0.513	2
Au1–Au1	3.982(2)	0.029	2
Au2–Au2	3.982(2)	0.027	2

Table S3. Complete list of distances (Å) in $Er_7Au_2Te_2 < 4.0$ Å.

Er1	Au2	2.9080		Er6	3.8976		Er5	3.4984
Au Te Te Er Er Er Er	Au2	2.9080		Er6	3.8976		Er5	3.4984
	Te1	3.0298		Er5	3.9197		Er5	3.4984
	Te2	3.1344		Er4	3.9820		Er4	3.5943
	Te2	3.1344		Er4	3.9820		Er4	3.5943
	Er3	3.4481	Er5	Au1	2.9762		Er4	3.5943
	Er7	3.4523		Au1	2.9762		Er4	3.5943
	Er7	3.4523		Te1	3.1432		Er8	3.9820
	Er5	3.8718		Te1	3.1432		Er8	3.9820
	Er5	3.8718		Er3	3.4492	Au1	Er6	2.8964
	Er2	3.9603		Er3	3.4492		Er6	2.8964
	Er1	3.9820		Er8	3.4984		Er4	2.9484
	Er1	3.9820		Er8	3.4984		Er4	2.9484
Er2	Au2	2.9792		Er6	3.5921		Er5	2.9762
	Au2	2.9792		Au2	3.7335		Er5	2.9762
	Te2	3.2007		Er1	3.8718		Er8	3.1698
	Te2	3.2007		Er1	3 8718		Er3	3 4 5 0 4
	Au2	3 5499		Er4	3 9 1 9 7		Er4	3 6588
	Er3	3 6079		Er5	3 9820		Au1	3 9820
	Er3	3 6079		Er5	3 9820		Au1	3 9820
	Er7	3 6353	Er6	Aul	2 8964	Δ112	Fr3	2 8790
	Er7	3 6353	LIU	Au1	2.8964	7102	Er3	2.8790
	Er3	3 6761		Te1	3 0232		Er3	2.0720
	Er2	3 6852		Te?	3 2132		Er1	2.9080
	Er2	3.6852		Te2	3 2132		Er1 Fr2	2.9000
	Er2 Fr1	3 9603		Fr3	3 5547		Er2	2.9792
	Er?	3 9820		Er3	3 5547		Er2	3.0/18
	Er2	3 9820		Er5	3 5921		Er7	3 5/10
Er2	Δ112	2 8790		Er/	3 718/		Er5	3 7335
LIJ	Au2	2.8790		Er4	3 8976		$\Delta_{11}2$	3 9820
	Te2	3 0710		Er/	3 8976		Δ112	3 9820
	Fr1	3 //81		Er6	3 9820	To1	Fr6	3.0220
	Er5	3 1/92		Er6	3 9820	101	Er1	3.0202
	Er5	3.4492	Fr7	Δ112	3.0418		Er8	3.0298
		3 4 5 0 4		Δ112	3 0/18		Er5	3 1/132
	Fr6	3 5547		Te2	3 1535		Er5	3 1/32
	Er6	3 5547		Te2	3 1535		Er/	3 1536
	Er ²	3 6079		Fr1	3 4523		E_{14}	3 1 5 3 6
	Er2	3 6079		Er1	3 4 5 2 3		Te1	3 9820
	Er2	3 6761		Er1	3.4523			3 9820
	Er2	3 9820		Er1	3.4523	To?	Fr3	3.0710
	Er3	3.9820		Er1 Er2	3.4323	102	Er1	3 1 3 4 4
Er/		2.9820		Er2	3.6353		Er1	3.1344
Er4	Au1	2.9484		Er2	3.6353		Er7	3 1 5 3 5
		2.9404		Er2	3.6353		E_{r}	3.1555
	Tol	3.1536		Er7	3.0333		E12 Er2	3.2007
	Fr8	3.1330		EI / Er7	3.9820		Er6	3.2007
	EIO ErQ	3.5945	E-0	EF/ Tal	3.9020 3.0428		EIU Er6	3.2132
	EIO Er/	3,5745	Elo		3.0420 3.0428			3.2132
	E14 Er/	3 6318		101 An1	3.0420 3.1608		T⊆2	3 0820
	Δ11	3 6588		Au1 Au1	3 1609		162	5.7620
	Fr6	3 718/		Fr5	3.1090			
		J./ 10T			J.7/07			

Fig. S1. Side view of the condensation of tricapped trigonal prisms of Er in $\text{Er}_7\text{Au}_2\text{Te}_2$. The prismatic–face-capping connections are marked in red.

Fig. S2. Projection of the orthorhombic (Imm2) $Dy_7Ir_2Te_2$ structure along the short *a* axis. Note the distorted Dy configuration around the Dy_4 atoms that interbridge the horizontal puckered sheets of condensed Ir-centered TCTP of Dy. (*c* is horizontal.)