Role of spacer in single or two-step FRET: studies in presence of two connected cryptands with properly chosen fluorophores

Kalyan K. Sadhu,^a Soumit Chatterjee,^b Susan Sen^a and Parimal K. Bharadwaj^{*a}

^a Chemistry Department, Indian Institute of Technology Kanpur, Kanpur 208016 India
^b Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India Email: pkb@iitk.ac.in

Supporting Information

Captions for the Figures and Tables:

Fig. S1-S3:	400 MHz ¹ H-NMR, 100 MHz ¹³ C-NMR and ESI-MS, spectra of L_d .		
Fig. S4-S6:	400 MHz ¹ H-NMR, 100 MHz ¹³ C-NMR and ESI-MS, spectra of L_{1a} .		
Fig. S7-S9:	400 MHz ¹ H-NMR, 100 MHz ¹³ C-NMR and ESI-MS, spectra of L_1 .		
Fig. S10-S11:	400 MHz ¹ H-NMR and ESI-MS, spectra of L_{2a} .		
Fig. S12-S13:	400 MHz ¹ H-NMR and FAB-MS, spectra of L_2 .		
Fig. S14-S16:	400 MHz ¹ H-NMR, 100 MHz ¹³ C-NMR and FAB-MS, spectra of L_{3a} .		
Fig. S17-S19:	400 MHz ¹ H-NMR, 100 MHz ¹³ C-NMR and ESI-MS, spectra of L_{3b} .		
Fig. S20-S22:	400 MHz ¹ H-NMR, 100 MHz ¹³ C-NMR and FAB-MS, spectra of L_3 .		
Fig. S23:	Absorption spectra of L_2 in presence of selected metal ions in MeCN.		
Table ST1-ST2:	Absorption and molar extinction coefficient (ϵ) of L_1 and L_3 in presence of different metal ions in MeCN.		
Fig. S24:	Emission spectra of L_2 in presence of selected metal ions in MeCN.		
Fig. S25:	Emission spectra of (a) anthracene and (b) diazole of L_1 in presence of Cu(II) ionic input in MeCN.		
Fig. S26:	Time resolved emission spectra of L_3 in presence of different ionic input in MeCN ($\lambda_{ex} = 295$ nm).		
Table ST3:	Time resolved fluorescence decay analysis of L_3 in presence of different ionic input in MeCN.		
Table ST4:	Fluorescence anisotropy data of the systems L_3 and its metal complexes.		

Figure S1: 400 MHz ¹H-NMR spectrum of L_d .

Figure S2: 100 MHz 13 C-NMR spectrum of L_d.

Figure S3: ESI-MS spectrum of L_d .

Figure S6: ESI-MS spectrum of L_{1a}.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Figure S9: ESI-MS spectrum of L₁.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Figure S13: FAB-MS spectrum of L₂.

Figure S14: 400 MHz ¹H-NMR spectrum of L_{3a} .

Figure S15: 100 MHz 13 C-NMR spectrum of L_{3a}.

Figure S16: FAB-MS spectrum of L_{3a}.

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Figure S22: FAB-MS spectrum of L₃.

Figure S23: UV-vis spectra of L₂, L₂+Cu(II), L₂+Zn(II), L₂+Hg(II), L₂+H⁺ (conc. of L₂ = 3.1×10^{-4} M) in MeCN.

Table S1: Absorption and molar extinction coefficient (ϵ) of L₁ with metal ions in MeCN (conc. of L₁ = 1.7×10^{-5} M).

	λ , nm (ϵ , dm ³ mol ⁻¹ cm ⁻¹)			
L_1	478 (4795) 386 (6385) 368 (6392) 349 (5888) 332 (5332) 254 (69724)			
$L_1+Mn(II)$	474 (5131) 389 (6645) 369 (6611) 351 (6174) 333 (5729) 254 (74129)			
L_1 +Fe(II)	459 (4349) 389 (5234) 366 (6215) 353 (6259) 254 (77047)			
$L_1+Co(II)$	474 (5840) 389 (6193) 370 (6294) 349 (5899) 333 (5713) 255 (76071)			
L_1 +Ni(II)	478 (4193) 389 (6166) 369 (6524) 349 (6142) 332 (5380) 254 (77038)			
$L_1+Cu(II)$	451 (3492) 389 (4142) 371 (4999) 350 (5432) 253 (65775)			
$L_1+Zn(II)$	471 (4382) 391 (6074) 370 (6220) 351 (5923) 334 (5721) 255 (75025)			
$L_1+Cd(II)$	474 (4948) 386 (6934) 368 (6929) 349 (6586) 332 (6182) 255 (84222)			
L_1 +Hg(II)	465 (4791) 391 (7255) 371 (7161) 351 (6688) 332 (6825) 254 (90249)			
$L_1+Ag(I)$	478 (4273) 387 (5983) 367 (6259) 351 (5862) 332 (5280) 254 (75418)			
$L_1+Pb(II)$	476 (4261) 391 (6293) 372 (6496) 351 (6194) 255 (78078)			
L_1+H^+	459 (4158) 389 (6079) 369 (6465) 353 (5935) 254 (73299)			

Table S2: Absorption and molar extinction coefficient (ϵ) of L₃ with metal ions in MeCN (conc. of L₃ = 1.5×10^{-5} M).

	λ , nm (ϵ , dm ³ mol ⁻¹ cm ⁻¹)		
L ₃	483 (14192) 392 (6933) 377 (7527) 344 (12335) 317 (14403) 302 (13919)		
	256 (64055)		
$L_3+Mn(II)$	476 (14249) 396 (7218) 373 (7791) 343 (12757) 318 (15901) 303 (15308)		
	256 (65187)		
L ₃ +Fe(II)	467 (13785) 393 (9284) 372 (10173) 319 (19660) 257 (64036)		
L ₃ +Co(II)	474 (18133) 395 (8292) 372 (8499) 344 (12764) 318 (17164) 304 (16704)		
	257 (68407)		
L_3 +Ni(II)	476 (14079) 391 (7552) 373 (8606) 344 (12863) 317 (16063) 304 (15341)		
	257 (66574)		
$L_3+Cu(II)$	453 (11199) 388 (8243) 372 (8602) 317 (22771) 250 (84620)		
$L_3+Zn(II)$	472 (14402) 395 (8808) 372 (9080) 344 (12423) 317 (17699) 307 (16803)		
	257 (64301)		
$L_3+Cd(II)$	475 (14655) 395 (7705) 373 (8007) 343 (12765) 318 (16837) 305 (15989)		
	257 (66375)		
$L_3+Hg(II)$	468 (12391) 392 (8983) 372 (9596) 343 (12765) 321 (20491) 250 (86109)		
$L_3 + Ag(I)$	479 (13457) 395 (6766) 373 (7406) 346 (11631) 318 (14432) 304 (14059)		
	256 (62487)		
$L_3+Pb(II)$	474 (14581) 395 (9168) 375 (9449) 341 (13559) 317 (18268) 308 (17547)		
	250 (74572)		
L_3+H^+	453 (13346) 394 (11071) 372 (11450) 343 (12765) 322 (23896) 250 (77403)		

Figure S24: Emission spectrum of L₂, L₂+H⁺, L₂+Zn(II) and L₂+Hg(II) (conc. of L₂ = 1.7×10^{-6} M) excitation at (a) 350 nm and (b) 476 nm in MeCN.

Figure S25: Emission spectra of (a) anthracene and (b) diazole of L_1 in presence of Cu(II) ionic input in MeCN.

Figure S26: Time resolved emission spectra of L₃ in presence of different ionic input in MeCN $(\lambda_{ex} = 295 \text{ nm}).$

	MCCI	•		
Sample	A_1	$T_1(ns)$	A_2	$T_2(ns)$
L ₃ (420 nm)	0.72	2.49	0.29	16.27
L ₃ (526 nm)	0.78	3.20	0.22	9.56
$L_3 + Cu(II) (420 \text{ nm})$	0.50	2.94	0.50	20.62
$L_3 + Cu(II) (526 \text{ nm})$	0.71	3.35	0.29	10.09
$L_3 + Hg(II) (420 \text{ nm})$	0.64	2.63	0.36	20.76
$L_3 + Hg(II) (526 nm)$	0.70	2.80	0.30	8.00

Table S3: Time resolved fluorescence decay analysis of L_3 in presence of different ionic input in
MeCN.

Table S4: Fluorescence anisotropy data of the systems L_3 and its metal complexes.

Sample	Anisotropy(Donor)	Anisotropy(Acceptor)			
L ₃	0.11	0.03			
$L_3 + Cu(II)$	0.07	0.06			
$L_3 + Hg(II)$	0.11	0.07			
(b) Excitation at 350 nm					
Sample	Anisotropy(Donor) Anisotropy(Accep				
L ₃	0.01	0.39			
$L_3 + Cu(II)$	0.12	0.26			
$L_3 + Hg(II)$	0.05	0.02			

(a) Excitation at 317 nm